Struct devela::_std::mem::ManuallyDrop
1.20.0 · source · pub struct ManuallyDrop<T>where
T: ?Sized,{ /* private fields */ }
Expand description
A wrapper to inhibit compiler from automatically calling T
’s destructor.
This wrapper is 0-cost.
ManuallyDrop<T>
is guaranteed to have the same layout and bit validity as
T
, and is subject to the same layout optimizations as T
. As a consequence,
it has no effect on the assumptions that the compiler makes about its
contents. For example, initializing a ManuallyDrop<&mut T>
with mem::zeroed
is undefined behavior. If you need to handle uninitialized data, use
MaybeUninit<T>
instead.
Note that accessing the value inside a ManuallyDrop<T>
is safe.
This means that a ManuallyDrop<T>
whose content has been dropped must not
be exposed through a public safe API.
Correspondingly, ManuallyDrop::drop
is unsafe.
ManuallyDrop
and drop order.
Rust has a well-defined drop order of values. To make sure that fields or locals are dropped in a specific order, reorder the declarations such that the implicit drop order is the correct one.
It is possible to use ManuallyDrop
to control the drop order, but this
requires unsafe code and is hard to do correctly in the presence of
unwinding.
For example, if you want to make sure that a specific field is dropped after the others, make it the last field of a struct:
struct Context;
struct Widget {
children: Vec<Widget>,
// `context` will be dropped after `children`.
// Rust guarantees that fields are dropped in the order of declaration.
context: Context,
}
Implementations§
source§impl<T> ManuallyDrop<T>
impl<T> ManuallyDrop<T>
const: 1.32.0 · sourcepub const fn new(value: T) -> ManuallyDrop<T>
Available on crate feature mem
only.
pub const fn new(value: T) -> ManuallyDrop<T>
mem
only.Wrap a value to be manually dropped.
Examples
use std::mem::ManuallyDrop;
let mut x = ManuallyDrop::new(String::from("Hello World!"));
x.truncate(5); // You can still safely operate on the value
assert_eq!(*x, "Hello");
// But `Drop` will not be run here
const: 1.32.0 · sourcepub const fn into_inner(slot: ManuallyDrop<T>) -> T
Available on crate feature mem
only.
pub const fn into_inner(slot: ManuallyDrop<T>) -> T
mem
only.Extracts the value from the ManuallyDrop
container.
This allows the value to be dropped again.
Examples
use std::mem::ManuallyDrop;
let x = ManuallyDrop::new(Box::new(()));
let _: Box<()> = ManuallyDrop::into_inner(x); // This drops the `Box`.
1.42.0 · sourcepub unsafe fn take(slot: &mut ManuallyDrop<T>) -> T
Available on crate feature mem
only.
pub unsafe fn take(slot: &mut ManuallyDrop<T>) -> T
mem
only.Takes the value from the ManuallyDrop<T>
container out.
This method is primarily intended for moving out values in drop.
Instead of using ManuallyDrop::drop
to manually drop the value,
you can use this method to take the value and use it however desired.
Whenever possible, it is preferable to use into_inner
instead, which prevents duplicating the content of the ManuallyDrop<T>
.
Safety
This function semantically moves out the contained value without preventing further usage,
leaving the state of this container unchanged.
It is your responsibility to ensure that this ManuallyDrop
is not used again.
source§impl<T> ManuallyDrop<T>where
T: ?Sized,
impl<T> ManuallyDrop<T>where
T: ?Sized,
sourcepub unsafe fn drop(slot: &mut ManuallyDrop<T>)
Available on crate feature mem
only.
pub unsafe fn drop(slot: &mut ManuallyDrop<T>)
mem
only.Manually drops the contained value. This is exactly equivalent to calling
ptr::drop_in_place
with a pointer to the contained value. As such, unless
the contained value is a packed struct, the destructor will be called in-place
without moving the value, and thus can be used to safely drop pinned data.
If you have ownership of the value, you can use ManuallyDrop::into_inner
instead.
Safety
This function runs the destructor of the contained value. Other than changes made by
the destructor itself, the memory is left unchanged, and so as far as the compiler is
concerned still holds a bit-pattern which is valid for the type T
.
However, this “zombie” value should not be exposed to safe code, and this function
should not be called more than once. To use a value after it’s been dropped, or drop
a value multiple times, can cause Undefined Behavior (depending on what drop
does).
This is normally prevented by the type system, but users of ManuallyDrop
must
uphold those guarantees without assistance from the compiler.
Trait Implementations§
§impl<T> AsBytes for ManuallyDrop<T>where
T: AsBytes + ?Sized,
impl<T> AsBytes for ManuallyDrop<T>where
T: AsBytes + ?Sized,
§fn write_to_prefix(&self, bytes: &mut [u8]) -> Option<()>
fn write_to_prefix(&self, bytes: &mut [u8]) -> Option<()>
source§impl<T> Clone for ManuallyDrop<T>
impl<T> Clone for ManuallyDrop<T>
source§fn clone(&self) -> ManuallyDrop<T>
fn clone(&self) -> ManuallyDrop<T>
1.0.0 · source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source
. Read moresource§impl<T> Debug for ManuallyDrop<T>
impl<T> Debug for ManuallyDrop<T>
source§impl<T> Default for ManuallyDrop<T>
impl<T> Default for ManuallyDrop<T>
source§fn default() -> ManuallyDrop<T>
fn default() -> ManuallyDrop<T>
source§impl<T> Deref for ManuallyDrop<T>where
T: ?Sized,
impl<T> Deref for ManuallyDrop<T>where
T: ?Sized,
source§impl<T> DerefMut for ManuallyDrop<T>where
T: ?Sized,
impl<T> DerefMut for ManuallyDrop<T>where
T: ?Sized,
§impl<T> FromZeroes for ManuallyDrop<T>where
T: FromZeroes + ?Sized,
impl<T> FromZeroes for ManuallyDrop<T>where
T: FromZeroes + ?Sized,
source§impl<T> Hash for ManuallyDrop<T>
impl<T> Hash for ManuallyDrop<T>
source§impl<T> Ord for ManuallyDrop<T>
impl<T> Ord for ManuallyDrop<T>
source§impl<T> PartialEq for ManuallyDrop<T>
impl<T> PartialEq for ManuallyDrop<T>
source§fn eq(&self, other: &ManuallyDrop<T>) -> bool
fn eq(&self, other: &ManuallyDrop<T>) -> bool
self
and other
values to be equal, and is used
by ==
.source§impl<T> PartialOrd for ManuallyDrop<T>where
T: PartialOrd + ?Sized,
impl<T> PartialOrd for ManuallyDrop<T>where
T: PartialOrd + ?Sized,
source§fn partial_cmp(&self, other: &ManuallyDrop<T>) -> Option<Ordering>
fn partial_cmp(&self, other: &ManuallyDrop<T>) -> Option<Ordering>
1.0.0 · source§fn le(&self, other: &Rhs) -> bool
fn le(&self, other: &Rhs) -> bool
self
and other
) and is used by the <=
operator. Read moreimpl<T> Copy for ManuallyDrop<T>
impl<T> Eq for ManuallyDrop<T>
impl<T> FromBytes for ManuallyDrop<T>where
T: FromBytes + ?Sized,
impl<T> Pod for ManuallyDrop<T>where
T: Pod,
impl<T> StructuralEq for ManuallyDrop<T>where
T: ?Sized,
impl<T> StructuralPartialEq for ManuallyDrop<T>where
T: ?Sized,
impl<T> Unaligned for ManuallyDrop<T>where
T: Unaligned + ?Sized,
Auto Trait Implementations§
impl<T: ?Sized> RefUnwindSafe for ManuallyDrop<T>where
T: RefUnwindSafe,
impl<T: ?Sized> Send for ManuallyDrop<T>where
T: Send,
impl<T: ?Sized> Sync for ManuallyDrop<T>where
T: Sync,
impl<T: ?Sized> Unpin for ManuallyDrop<T>where
T: Unpin,
impl<T: ?Sized> UnwindSafe for ManuallyDrop<T>where
T: UnwindSafe,
Blanket Implementations§
source§impl<T> Also for T
impl<T> Also for T
source§impl<T> AnyExt for Twhere
T: Any,
impl<T> AnyExt for Twhere
T: Any,
source§fn type_name(&self) -> &'static str
fn type_name(&self) -> &'static str
any
only.self
. Read moresource§fn as_any_ref(&self) -> &dyn Anywhere
Self: Sized,
fn as_any_ref(&self) -> &dyn Anywhere
Self: Sized,
any
only.source§fn as_any_mut(&mut self) -> &mut dyn Anywhere
Self: Sized,
fn as_any_mut(&mut self) -> &mut dyn Anywhere
Self: Sized,
any
only.source§impl<T, Res> Apply<Res> for Twhere
T: ?Sized,
impl<T, Res> Apply<Res> for Twhere
T: ?Sized,
source§fn apply<F: FnOnce(Self) -> Res>(self, f: F) -> Reswhere
Self: Sized,
fn apply<F: FnOnce(Self) -> Res>(self, f: F) -> Reswhere
Self: Sized,
result
only.source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
§impl<T> CheckedBitPattern for Twhere
T: AnyBitPattern,
impl<T> CheckedBitPattern for Twhere
T: AnyBitPattern,
§type Bits = T
type Bits = T
Self
must have the same layout as the specified Bits
except for
the possible invalid bit patterns being checked during
is_valid_bit_pattern
.§fn is_valid_bit_pattern(_bits: &T) -> bool
fn is_valid_bit_pattern(_bits: &T) -> bool
bits
as &Self
.§impl<Q, K> Equivalent<K> for Q
impl<Q, K> Equivalent<K> for Q
§fn equivalent(&self, key: &K) -> bool
fn equivalent(&self, key: &K) -> bool
source§impl<T> Mem for Twhere
T: ?Sized,
impl<T> Mem for Twhere
T: ?Sized,
source§const NEEDS_DROP: bool = _
const NEEDS_DROP: bool = _
mem
only.source§fn mem_needs_drop(&self) -> bool
fn mem_needs_drop(&self) -> bool
mem
only.true
if dropping values of this type matters.source§fn mem_drop(self)where
Self: Sized,
fn mem_drop(self)where
Self: Sized,
mem
only.self
by running its destructor.source§fn mem_forget(self)where
Self: Sized,
fn mem_forget(self)where
Self: Sized,
mem
only.self
without running its destructor.source§fn mem_replace(&mut self, other: Self) -> Selfwhere
Self: Sized,
fn mem_replace(&mut self, other: Self) -> Selfwhere
Self: Sized,
mem
only.self
with other, returning the previous value of self
.source§fn mem_take(&mut self) -> Selfwhere
Self: Default,
fn mem_take(&mut self) -> Selfwhere
Self: Default,
mem
only.self
with its default value, returning the previous value of self
.source§fn mem_swap(&mut self, other: &mut Self)where
Self: Sized,
fn mem_swap(&mut self, other: &mut Self)where
Self: Sized,
mem
only.self
and other
without deinitializing either one.source§fn mem_as_bytes(&self) -> &[u8] ⓘ
fn mem_as_bytes(&self) -> &[u8] ⓘ
mem
and unsafe_mem
only.source§impl<T> Size for T
impl<T> Size for T
source§const BYTE_ALIGN: usize = _
const BYTE_ALIGN: usize = _
mem
only.source§const BYTE_SIZE: usize = _
const BYTE_SIZE: usize = _
mem
only.source§const PTR_SIZE: usize = 8usize
const PTR_SIZE: usize = 8usize
mem
only.source§fn byte_align(&self) -> usize
fn byte_align(&self) -> usize
mem
only.