pub struct Polynomial<M: Modulus> {
pub coeffs: Vec<u32>,
/* private fields */
}
Expand description
A polynomial in a ring R_Q = Z_Q[X]/(X^N + 1)
Fields§
§coeffs: Vec<u32>
Coefficients of the polynomial, stored in standard representation
Implementations§
Source§impl<M: NttModulus> Polynomial<M>
Extension methods for Polynomial
impl<M: NttModulus> Polynomial<M>
Extension methods for Polynomial
Sourcepub fn ntt_inplace(&mut self) -> Result<()>
pub fn ntt_inplace(&mut self) -> Result<()>
Convert polynomial to NTT domain
Sourcepub fn from_ntt_inplace(&mut self) -> Result<()>
pub fn from_ntt_inplace(&mut self) -> Result<()>
Convert polynomial from NTT domain
Source§impl<M: Modulus> Polynomial<M>
impl<M: Modulus> Polynomial<M>
Sourcepub fn from_coeffs(coeffs_slice: &[u32]) -> Result<Self>
pub fn from_coeffs(coeffs_slice: &[u32]) -> Result<Self>
Creates a polynomial from a slice of coefficients
Sourcepub fn as_coeffs_slice(&self) -> &[u32]
pub fn as_coeffs_slice(&self) -> &[u32]
Returns a slice view of the coefficients
Sourcepub fn as_mut_coeffs_slice(&mut self) -> &mut [u32]
pub fn as_mut_coeffs_slice(&mut self) -> &mut [u32]
Returns a mutable slice view of the coefficients
Sourcepub fn scalar_mul(&self, scalar: u32) -> Self
pub fn scalar_mul(&self, scalar: u32) -> Self
Scalar multiplication
Sourcepub fn schoolbook_mul(&self, other: &Self) -> Self
pub fn schoolbook_mul(&self, other: &Self) -> Self
Schoolbook polynomial multiplication with NEGACYCLIC reduction for Dilithium
In ring R_q[x]/(x^N + 1)
, when degree >= N, we have x^N ≡ -1
Sourcepub fn reduce_coeffs(&mut self)
pub fn reduce_coeffs(&mut self)
In-place coefficient reduction to ensure all coefficients are < Q
Trait Implementations§
Source§impl<M: Modulus> Add for &Polynomial<M>
impl<M: Modulus> Add for &Polynomial<M>
Source§impl<M: Modulus> Add for Polynomial<M>
impl<M: Modulus> Add for Polynomial<M>
Source§impl<M: Clone + Modulus> Clone for Polynomial<M>
impl<M: Clone + Modulus> Clone for Polynomial<M>
Source§fn clone(&self) -> Polynomial<M>
fn clone(&self) -> Polynomial<M>
Returns a duplicate of the value. Read more
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from
source
. Read moreSource§impl<M: Modulus> Neg for &Polynomial<M>
impl<M: Modulus> Neg for &Polynomial<M>
Source§impl<M: Modulus> Neg for Polynomial<M>
impl<M: Modulus> Neg for Polynomial<M>
Source§impl<M: NttModulus> PolynomialNttExt<M> for Polynomial<M>
impl<M: NttModulus> PolynomialNttExt<M> for Polynomial<M>
Source§fn scalar_mul_montgomery(&self, scalar: u32) -> Polynomial<M>
fn scalar_mul_montgomery(&self, scalar: u32) -> Polynomial<M>
Fast scalar multiplication using Montgomery reduction
Source§impl<M: Modulus> Sub for &Polynomial<M>
impl<M: Modulus> Sub for &Polynomial<M>
Source§impl<M: Modulus> Sub for Polynomial<M>
impl<M: Modulus> Sub for Polynomial<M>
Source§impl<M: Modulus> Zeroize for Polynomial<M>
impl<M: Modulus> Zeroize for Polynomial<M>
impl<M: Eq + Modulus> Eq for Polynomial<M>
impl<M: Modulus> StructuralPartialEq for Polynomial<M>
Auto Trait Implementations§
impl<M> Freeze for Polynomial<M>
impl<M> RefUnwindSafe for Polynomial<M>where
M: RefUnwindSafe,
impl<M> Send for Polynomial<M>where
M: Send,
impl<M> Sync for Polynomial<M>where
M: Sync,
impl<M> Unpin for Polynomial<M>where
M: Unpin,
impl<M> UnwindSafe for Polynomial<M>where
M: UnwindSafe,
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more