Skip to main content

Module ml

Module ml 

Source
Expand description

Machine learning utilities for graph neural networks.

This module provides comprehensive feature engineering for graph-based ML:

  • Structural features (degree, clustering, etc.)
  • Temporal sequence features (velocity, burst, trend)
  • Motif detection (cycles, stars, back-and-forth)
  • Relationship features (counterparty concentration, risk)
  • Entity group detection and aggregation

Re-exports§

pub use aggregation::aggregate_all_groups;
pub use aggregation::aggregate_features;
pub use aggregation::aggregate_node_features;
pub use aggregation::aggregate_values;
pub use aggregation::aggregate_weighted;
pub use aggregation::AggregatedFeatures;
pub use aggregation::AggregationType;
pub use aggregation::MultiFeatureAggregation;
pub use entity_groups::detect_entity_groups;
pub use entity_groups::EntityGroup;
pub use entity_groups::GroupDetectionAlgorithm;
pub use entity_groups::GroupDetectionConfig;
pub use entity_groups::GroupDetectionResult;
pub use entity_groups::GroupType;
pub use motifs::compute_motif_features;
pub use motifs::detect_motifs;
pub use motifs::find_back_and_forth;
pub use motifs::find_circular_flows;
pub use motifs::find_star_patterns;
pub use motifs::CircularFlow;
pub use motifs::GraphMotif;
pub use motifs::MotifConfig;
pub use motifs::MotifDetectionResult;
pub use motifs::MotifInstance;
pub use relationship_features::compute_all_combined_features;
pub use relationship_features::compute_all_counterparty_risk;
pub use relationship_features::compute_all_relationship_features;
pub use relationship_features::compute_counterparty_risk;
pub use relationship_features::compute_relationship_features;
pub use relationship_features::CombinedRelationshipFeatures;
pub use relationship_features::CounterpartyRisk;
pub use relationship_features::RelationshipFeatureConfig;
pub use relationship_features::RelationshipFeatures;
pub use temporal::compute_all_temporal_features;
pub use temporal::compute_temporal_sequence_features;
pub use temporal::TemporalConfig;
pub use temporal::TemporalFeatures;
pub use temporal::TemporalIndex;
pub use temporal::WindowFeatures;

Modules§

aggregation
Feature aggregation for entity groups.
entity_groups
Entity group detection for collective fraud analysis.
motifs
Subgraph and motif detection for fraud pattern identification.
relationship_features
Entity relationship feature computation for fraud detection.
temporal
Temporal sequence feature computation for graph nodes.

Structs§

DataSplit
Result of a data split.
DataSplitter
Data splitter for graph data.
FeatureNormalizer
Feature normalizer for graph features.
SplitConfig
Configuration for data splitting.

Enums§

NormalizationMethod
Feature normalization method.
SplitStrategy
Strategy for splitting data.

Functions§

compute_amount_features
Computes amount-based features.
compute_benford_features
Computes Benford’s law features for an amount.
compute_edge_direction_features
Computes edge direction features for directed graphs.
compute_structural_features
Computes structural features for nodes.
compute_temporal_features
Computes temporal features for edges.
label_encode
Label encodes a categorical value.
one_hot_encode
One-hot encodes a categorical value.
positional_encoding
Creates positional encoding for graph nodes (similar to transformer positional encoding).
sample_negative_edges
Creates negative edge samples for link prediction.