pub struct BenfordAnalyzer { /* private fields */ }Expand description
Analyzer for Benford’s Law compliance.
Implementations§
Source§impl BenfordAnalyzer
impl BenfordAnalyzer
Sourcepub fn new(significance_level: f64) -> Self
pub fn new(significance_level: f64) -> Self
Create a new analyzer with the specified significance level.
Sourcepub fn analyze(&self, amounts: &[Decimal]) -> EvalResult<BenfordAnalysis>
pub fn analyze(&self, amounts: &[Decimal]) -> EvalResult<BenfordAnalysis>
Analyze a collection of amounts for Benford’s Law compliance.
Sourcepub fn analyze_second_digit(
&self,
amounts: &[Decimal],
) -> EvalResult<SecondDigitAnalysis>
pub fn analyze_second_digit( &self, amounts: &[Decimal], ) -> EvalResult<SecondDigitAnalysis>
Analyze second-digit distribution (more sensitive for fraud detection).
Trait Implementations§
Auto Trait Implementations§
impl Freeze for BenfordAnalyzer
impl RefUnwindSafe for BenfordAnalyzer
impl Send for BenfordAnalyzer
impl Sync for BenfordAnalyzer
impl Unpin for BenfordAnalyzer
impl UnwindSafe for BenfordAnalyzer
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
Source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self from the equivalent element of its
superset. Read moreSource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self is actually part of its subset T (and can be converted to it).Source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset but without any property checks. Always succeeds.Source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self to the equivalent element of its superset.