pub struct AmountDistributionAnalyzer { /* private fields */ }Expand description
Analyzer for amount distributions.
Implementations§
Source§impl AmountDistributionAnalyzer
impl AmountDistributionAnalyzer
Sourcepub fn with_expected_lognormal(self, mu: f64, sigma: f64) -> Self
pub fn with_expected_lognormal(self, mu: f64, sigma: f64) -> Self
Set expected log-normal parameters for comparison.
Sourcepub fn with_significance_level(self, level: f64) -> Self
pub fn with_significance_level(self, level: f64) -> Self
Set significance level for statistical tests.
Sourcepub fn analyze(
&self,
amounts: &[Decimal],
) -> EvalResult<AmountDistributionAnalysis>
pub fn analyze( &self, amounts: &[Decimal], ) -> EvalResult<AmountDistributionAnalysis>
Analyze amount distribution.
Trait Implementations§
Auto Trait Implementations§
impl Freeze for AmountDistributionAnalyzer
impl RefUnwindSafe for AmountDistributionAnalyzer
impl Send for AmountDistributionAnalyzer
impl Sync for AmountDistributionAnalyzer
impl Unpin for AmountDistributionAnalyzer
impl UnwindSafe for AmountDistributionAnalyzer
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
Source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self from the equivalent element of its
superset. Read moreSource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self is actually part of its subset T (and can be converted to it).Source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset but without any property checks. Always succeeds.Source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self to the equivalent element of its superset.