Trait datafusion_expr::ScalarUDFImpl
source · pub trait ScalarUDFImpl: Debug + Send + Sync {
Show 15 methods
// Required methods
fn as_any(&self) -> &dyn Any;
fn name(&self) -> &str;
fn signature(&self) -> &Signature;
fn return_type(&self, arg_types: &[DataType]) -> Result<DataType>;
fn invoke(&self, _args: &[ColumnarValue]) -> Result<ColumnarValue>;
// Provided methods
fn display_name(&self, args: &[Expr]) -> Result<String> { ... }
fn return_type_from_exprs(
&self,
_args: &[Expr],
_schema: &dyn ExprSchema,
arg_types: &[DataType],
) -> Result<DataType> { ... }
fn invoke_no_args(&self, _number_rows: usize) -> Result<ColumnarValue> { ... }
fn aliases(&self) -> &[String] { ... }
fn simplify(
&self,
args: Vec<Expr>,
_info: &dyn SimplifyInfo,
) -> Result<ExprSimplifyResult> { ... }
fn short_circuits(&self) -> bool { ... }
fn evaluate_bounds(&self, _input: &[&Interval]) -> Result<Interval> { ... }
fn propagate_constraints(
&self,
_interval: &Interval,
_inputs: &[&Interval],
) -> Result<Option<Vec<Interval>>> { ... }
fn output_ordering(
&self,
_inputs: &[ExprProperties],
) -> Result<SortProperties> { ... }
fn coerce_types(&self, _arg_types: &[DataType]) -> Result<Vec<DataType>> { ... }
}Expand description
Trait for implementing ScalarUDF.
This trait exposes the full API for implementing user defined functions and can be used to implement any function.
See advanced_udf.rs for a full example with complete implementation and
ScalarUDF for other available options.
§Basic Example
#[derive(Debug)]
struct AddOne {
signature: Signature
};
impl AddOne {
fn new() -> Self {
Self {
signature: Signature::uniform(1, vec![DataType::Int32], Volatility::Immutable)
}
}
}
/// Implement the ScalarUDFImpl trait for AddOne
impl ScalarUDFImpl for AddOne {
fn as_any(&self) -> &dyn Any { self }
fn name(&self) -> &str { "add_one" }
fn signature(&self) -> &Signature { &self.signature }
fn return_type(&self, args: &[DataType]) -> Result<DataType> {
if !matches!(args.get(0), Some(&DataType::Int32)) {
return plan_err!("add_one only accepts Int32 arguments");
}
Ok(DataType::Int32)
}
// The actual implementation would add one to the argument
fn invoke(&self, args: &[ColumnarValue]) -> Result<ColumnarValue> { unimplemented!() }
}
// Create a new ScalarUDF from the implementation
let add_one = ScalarUDF::from(AddOne::new());
// Call the function `add_one(col)`
let expr = add_one.call(vec![col("a")]);Required Methods§
sourcefn signature(&self) -> &Signature
fn signature(&self) -> &Signature
Returns the function’s Signature for information about what input
types are accepted and the function’s Volatility.
sourcefn return_type(&self, arg_types: &[DataType]) -> Result<DataType>
fn return_type(&self, arg_types: &[DataType]) -> Result<DataType>
What DataType will be returned by this function, given the types of
the arguments.
§Notes
If you provide an implementation for Self::return_type_from_exprs,
DataFusion will not call return_type (this function). In this case it
is recommended to return DataFusionError::Internal.
sourcefn invoke(&self, _args: &[ColumnarValue]) -> Result<ColumnarValue>
fn invoke(&self, _args: &[ColumnarValue]) -> Result<ColumnarValue>
Invoke the function on args, returning the appropriate result
The function will be invoked passed with the slice of ColumnarValue
(either scalar or array).
If the function does not take any arguments, please use invoke_no_args instead and return not_impl_err for this function.
§Performance
For the best performance, the implementations of invoke should handle
the common case when one or more of their arguments are constant values
(aka ColumnarValue::Scalar).
ColumnarValue::values_to_arrays can be used to convert the arguments
to arrays, which will likely be simpler code, but be slower.
Provided Methods§
sourcefn display_name(&self, args: &[Expr]) -> Result<String>
fn display_name(&self, args: &[Expr]) -> Result<String>
Returns the user-defined display name of the UDF given the arguments
sourcefn return_type_from_exprs(
&self,
_args: &[Expr],
_schema: &dyn ExprSchema,
arg_types: &[DataType],
) -> Result<DataType>
fn return_type_from_exprs( &self, _args: &[Expr], _schema: &dyn ExprSchema, arg_types: &[DataType], ) -> Result<DataType>
What DataType will be returned by this function, given the
arguments?
Note most UDFs should implement Self::return_type and not this
function. The output type for most functions only depends on the types
of their inputs (e.g. sqrt(f32) is always f32).
By default, this function calls Self::return_type with the
types of each argument.
This method can be overridden for functions that return different types based on the values of their arguments.
For example, the following two function calls get the same argument
types (something and a Utf8 string) but return different types based
on the value of the second argument:
arrow_cast(x, 'Int16')–>Int16arrow_cast(x, 'Float32')–>Float32
§Notes:
This function must consistently return the same type for the same
logical input even if the input is simplified (e.g. it must return the same
value for ('foo' | 'bar') as it does for (‘foobar’).
sourcefn invoke_no_args(&self, _number_rows: usize) -> Result<ColumnarValue>
fn invoke_no_args(&self, _number_rows: usize) -> Result<ColumnarValue>
Invoke the function without args, instead the number of rows are provided,
returning the appropriate result.
sourcefn aliases(&self) -> &[String]
fn aliases(&self) -> &[String]
Returns any aliases (alternate names) for this function.
Aliases can be used to invoke the same function using different names.
For example in some databases now() and current_timestamp() are
aliases for the same function. This behavior can be obtained by
returning current_timestamp as an alias for the now function.
Note: aliases should only include names other than Self::name.
Defaults to [] (no aliases)
sourcefn simplify(
&self,
args: Vec<Expr>,
_info: &dyn SimplifyInfo,
) -> Result<ExprSimplifyResult>
fn simplify( &self, args: Vec<Expr>, _info: &dyn SimplifyInfo, ) -> Result<ExprSimplifyResult>
Optionally apply per-UDF simplification / rewrite rules.
This can be used to apply function specific simplification rules during
optimization (e.g. arrow_cast –> Expr::Cast). The default
implementation does nothing.
Note that DataFusion handles simplifying arguments and “constant
folding” (replacing a function call with constant arguments such as
my_add(1,2) --> 3 ). Thus, there is no need to implement such
optimizations manually for specific UDFs.
§Arguments
args: The arguments of the functioninfo: The necessary information for simplification
§Returns
ExprSimplifyResult indicating the result of the simplification NOTE
if the function cannot be simplified, the arguments MUST be returned
unmodified
sourcefn short_circuits(&self) -> bool
fn short_circuits(&self) -> bool
Returns true if some of this exprs subexpressions may not be evaluated
and thus any side effects (like divide by zero) may not be encountered
Setting this to true prevents certain optimizations such as common subexpression elimination
sourcefn evaluate_bounds(&self, _input: &[&Interval]) -> Result<Interval>
fn evaluate_bounds(&self, _input: &[&Interval]) -> Result<Interval>
Computes the output interval for a ScalarUDFImpl, given the input
intervals.
§Parameters
childrenare the intervals for the children (inputs) of this function.
§Example
If the function is ABS(a), and the input interval is a: [-3, 2],
then the output interval would be [0, 3].
sourcefn propagate_constraints(
&self,
_interval: &Interval,
_inputs: &[&Interval],
) -> Result<Option<Vec<Interval>>>
fn propagate_constraints( &self, _interval: &Interval, _inputs: &[&Interval], ) -> Result<Option<Vec<Interval>>>
Updates bounds for child expressions, given a known interval for this function. This is used to propagate constraints down through an expression tree.
§Parameters
intervalis the currently known interval for this function.inputsare the current intervals for the inputs (children) of this function.
§Returns
A Vec of new intervals for the children, in order.
If constraint propagation reveals an infeasibility for any child, returns
None. If none of the children intervals change as a result of
propagation, may return an empty vector instead of cloning children.
This is the default (and conservative) return value.
§Example
If the function is ABS(a), the current interval is [4, 5] and the
input a is given as [-7, 3], then propagation would return [-5, 3].
sourcefn output_ordering(&self, _inputs: &[ExprProperties]) -> Result<SortProperties>
fn output_ordering(&self, _inputs: &[ExprProperties]) -> Result<SortProperties>
Calculates the SortProperties of this function based on its
children’s properties.
sourcefn coerce_types(&self, _arg_types: &[DataType]) -> Result<Vec<DataType>>
fn coerce_types(&self, _arg_types: &[DataType]) -> Result<Vec<DataType>>
Coerce arguments of a function call to types that the function can evaluate.
This function is only called if ScalarUDFImpl::signature returns crate::TypeSignature::UserDefined. Most
UDFs should return one of the other variants of TypeSignature which handle common
cases
See the type coercion module documentation for more details on type coercion
For example, if your function requires a floating point arguments, but the user calls
it like my_func(1::int) (aka with 1 as an integer), coerce_types could return [DataType::Float64]
to ensure the argument was cast to 1::double
§Parameters
arg_types: The argument types of the arguments this function with
§Return value
A Vec the same length as arg_types. DataFusion will CAST the function call
arguments to these specific types.