1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
//! Column
use crate::{DFSchema, DataFusionError, Result, SchemaError};
use std::collections::HashSet;
use std::convert::Infallible;
use std::fmt;
use std::str::FromStr;
use std::sync::Arc;
/// A named reference to a qualified field in a schema.
#[derive(Debug, Clone, PartialEq, Eq, Hash, PartialOrd, Ord)]
pub struct Column {
/// relation/table name.
pub relation: Option<String>,
/// field/column name.
pub name: String,
}
impl Column {
/// Create Column from optional qualifier and name
pub fn new(relation: Option<impl Into<String>>, name: impl Into<String>) -> Self {
Self {
relation: relation.map(|r| r.into()),
name: name.into(),
}
}
/// Create Column from unqualified name.
pub fn from_name(name: impl Into<String>) -> Self {
Self {
relation: None,
name: name.into(),
}
}
/// Deserialize a fully qualified name string into a column
pub fn from_qualified_name(flat_name: impl Into<String>) -> Self {
let flat_name = flat_name.into();
use sqlparser::tokenizer::Token;
let dialect = sqlparser::dialect::GenericDialect {};
let mut tokenizer = sqlparser::tokenizer::Tokenizer::new(&dialect, &flat_name);
if let Ok(tokens) = tokenizer.tokenize() {
if let [Token::Word(relation), Token::Period, Token::Word(name)] =
tokens.as_slice()
{
return Column {
relation: Some(relation.value.clone()),
name: name.value.clone(),
};
}
}
// any expression that's not in the form of `foo.bar` will be treated as unqualified column
// name
Column {
relation: None,
name: flat_name,
}
}
/// Serialize column into a flat name string
pub fn flat_name(&self) -> String {
match &self.relation {
Some(r) => format!("{}.{}", r, self.name),
None => self.name.clone(),
}
}
/// Qualify column if not done yet.
///
/// If this column already has a [relation](Self::relation), it will be returned as is and the given parameters are
/// ignored. Otherwise this will search through the given schemas to find the column. This will use the first schema
/// that matches.
///
/// A schema matches if there is a single column that -- when unqualified -- matches this column. There is an
/// exception for `USING` statements, see below.
///
/// # Using columns
/// Take the following SQL statement:
///
/// ```sql
/// SELECT id FROM t1 JOIN t2 USING(id)
/// ```
///
/// In this case, both `t1.id` and `t2.id` will match unqualified column `id`. To express this possibility, use
/// `using_columns`. Each entry in this array is a set of columns that are bound together via a `USING` clause. So
/// in this example this would be `[{t1.id, t2.id}]`.
pub fn normalize_with_schemas(
self,
schemas: &[&Arc<DFSchema>],
using_columns: &[HashSet<Column>],
) -> Result<Self> {
if self.relation.is_some() {
return Ok(self);
}
for schema in schemas {
let fields = schema.fields_with_unqualified_name(&self.name);
match fields.len() {
0 => continue,
1 => {
return Ok(fields[0].qualified_column());
}
_ => {
// More than 1 fields in this schema have their names set to self.name.
//
// This should only happen when a JOIN query with USING constraint references
// join columns using unqualified column name. For example:
//
// ```sql
// SELECT id FROM t1 JOIN t2 USING(id)
// ```
//
// In this case, both `t1.id` and `t2.id` will match unqualified column `id`.
// We will use the relation from the first matched field to normalize self.
// Compare matched fields with one USING JOIN clause at a time
for using_col in using_columns {
let all_matched = fields
.iter()
.all(|f| using_col.contains(&f.qualified_column()));
// All matched fields belong to the same using column set, in orther words
// the same join clause. We simply pick the qualifer from the first match.
if all_matched {
return Ok(fields[0].qualified_column());
}
}
}
}
}
Err(DataFusionError::SchemaError(SchemaError::FieldNotFound {
field: Column::new(self.relation.clone(), self.name),
valid_fields: schemas
.iter()
.flat_map(|s| s.fields().iter().map(|f| f.qualified_column()))
.collect(),
}))
}
}
impl From<&str> for Column {
fn from(c: &str) -> Self {
Self::from_qualified_name(c)
}
}
/// Create a column, cloning the string
impl From<&String> for Column {
fn from(c: &String) -> Self {
Self::from_qualified_name(c)
}
}
/// Create a column, reusing the existing string
impl From<String> for Column {
fn from(c: String) -> Self {
Self::from_qualified_name(c)
}
}
impl FromStr for Column {
type Err = Infallible;
fn from_str(s: &str) -> Result<Self, Self::Err> {
Ok(s.into())
}
}
impl fmt::Display for Column {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{}", self.flat_name())
}
}