1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! Column

use crate::{DFSchema, DataFusionError, Result, SchemaError};
use std::collections::HashSet;
use std::convert::Infallible;
use std::fmt;
use std::str::FromStr;
use std::sync::Arc;

/// A named reference to a qualified field in a schema.
#[derive(Debug, Clone, PartialEq, Eq, Hash, PartialOrd, Ord)]
pub struct Column {
    /// relation/table name.
    pub relation: Option<String>,
    /// field/column name.
    pub name: String,
}

impl Column {
    /// Create Column from optional qualifier and name
    pub fn new(relation: Option<impl Into<String>>, name: impl Into<String>) -> Self {
        Self {
            relation: relation.map(|r| r.into()),
            name: name.into(),
        }
    }

    /// Create Column from unqualified name.
    pub fn from_name(name: impl Into<String>) -> Self {
        Self {
            relation: None,
            name: name.into(),
        }
    }

    /// Deserialize a fully qualified name string into a column
    pub fn from_qualified_name(flat_name: impl Into<String>) -> Self {
        let flat_name = flat_name.into();
        use sqlparser::tokenizer::Token;

        let dialect = sqlparser::dialect::GenericDialect {};
        let mut tokenizer = sqlparser::tokenizer::Tokenizer::new(&dialect, &flat_name);
        if let Ok(tokens) = tokenizer.tokenize() {
            if let [Token::Word(relation), Token::Period, Token::Word(name)] =
                tokens.as_slice()
            {
                return Column {
                    relation: Some(relation.value.clone()),
                    name: name.value.clone(),
                };
            }
        }
        // any expression that's not in the form of `foo.bar` will be treated as unqualified column
        // name
        Column {
            relation: None,
            name: flat_name,
        }
    }

    /// Serialize column into a flat name string
    pub fn flat_name(&self) -> String {
        match &self.relation {
            Some(r) => format!("{}.{}", r, self.name),
            None => self.name.clone(),
        }
    }

    /// Qualify column if not done yet.
    ///
    /// If this column already has a [relation](Self::relation), it will be returned as is and the given parameters are
    /// ignored. Otherwise this will search through the given schemas to find the column. This will use the first schema
    /// that matches.
    ///
    /// A schema matches if there is a single column that -- when unqualified -- matches this column. There is an
    /// exception for `USING` statements, see below.
    ///
    /// # Using columns
    /// Take the following SQL statement:
    ///
    /// ```sql
    /// SELECT id FROM t1 JOIN t2 USING(id)
    /// ```
    ///
    /// In this case, both `t1.id` and `t2.id` will match unqualified column `id`. To express this possibility, use
    /// `using_columns`. Each entry in this array is a set of columns that are bound together via a `USING` clause. So
    /// in this example this would be `[{t1.id, t2.id}]`.
    pub fn normalize_with_schemas(
        self,
        schemas: &[&Arc<DFSchema>],
        using_columns: &[HashSet<Column>],
    ) -> Result<Self> {
        if self.relation.is_some() {
            return Ok(self);
        }

        for schema in schemas {
            let fields = schema.fields_with_unqualified_name(&self.name);
            match fields.len() {
                0 => continue,
                1 => {
                    return Ok(fields[0].qualified_column());
                }
                _ => {
                    // More than 1 fields in this schema have their names set to self.name.
                    //
                    // This should only happen when a JOIN query with USING constraint references
                    // join columns using unqualified column name. For example:
                    //
                    // ```sql
                    // SELECT id FROM t1 JOIN t2 USING(id)
                    // ```
                    //
                    // In this case, both `t1.id` and `t2.id` will match unqualified column `id`.
                    // We will use the relation from the first matched field to normalize self.

                    // Compare matched fields with one USING JOIN clause at a time
                    for using_col in using_columns {
                        let all_matched = fields
                            .iter()
                            .all(|f| using_col.contains(&f.qualified_column()));
                        // All matched fields belong to the same using column set, in orther words
                        // the same join clause. We simply pick the qualifer from the first match.
                        if all_matched {
                            return Ok(fields[0].qualified_column());
                        }
                    }
                }
            }
        }

        Err(DataFusionError::SchemaError(SchemaError::FieldNotFound {
            field: Column::new(self.relation.clone(), self.name),
            valid_fields: schemas
                .iter()
                .flat_map(|s| s.fields().iter().map(|f| f.qualified_column()))
                .collect(),
        }))
    }
}

impl From<&str> for Column {
    fn from(c: &str) -> Self {
        Self::from_qualified_name(c)
    }
}

/// Create a column, cloning the string
impl From<&String> for Column {
    fn from(c: &String) -> Self {
        Self::from_qualified_name(c)
    }
}

/// Create a column, reusing the existing string
impl From<String> for Column {
    fn from(c: String) -> Self {
        Self::from_qualified_name(c)
    }
}

impl FromStr for Column {
    type Err = Infallible;

    fn from_str(s: &str) -> Result<Self, Self::Err> {
        Ok(s.into())
    }
}

impl fmt::Display for Column {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.flat_name())
    }
}