#[non_exhaustive]pub struct FormulaLimit {
pub count: Option<i32>,
pub order: Option<QuerySortOrder>,
pub additional_properties: BTreeMap<String, Value>,
/* private fields */
}
Expand description
Message for specifying limits to the number of values returned by a query. This limit is only for scalar queries and has no effect on timeseries queries.
Fields (Non-exhaustive)§
This struct is marked as non-exhaustive
Non-exhaustive structs could have additional fields added in future. Therefore, non-exhaustive structs cannot be constructed in external crates using the traditional
Struct { .. }
syntax; cannot be matched against without a wildcard ..
; and struct update syntax will not work.count: Option<i32>
The number of results to which to limit.
order: Option<QuerySortOrder>
Direction of sort.
additional_properties: BTreeMap<String, Value>
Implementations§
Source§impl FormulaLimit
impl FormulaLimit
Sourcepub fn new() -> FormulaLimit
pub fn new() -> FormulaLimit
Examples found in repository?
examples/v2_metrics_QueryScalarData.rs (line 31)
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
async fn main() {
let body = ScalarFormulaQueryRequest::new(ScalarFormulaRequest::new(
ScalarFormulaRequestAttributes::new(
1568899800000,
vec![ScalarQuery::MetricsScalarQuery(Box::new(
MetricsScalarQuery::new(
MetricsAggregator::AVG,
MetricsDataSource::METRICS,
"avg:system.cpu.user{*} by {env}".to_string(),
),
))],
1568923200000,
)
.formulas(vec![QueryFormula::new("a+b".to_string())
.limit(FormulaLimit::new().count(10).order(QuerySortOrder::DESC))]),
ScalarFormulaRequestType::SCALAR_REQUEST,
));
let configuration = datadog::Configuration::new();
let api = MetricsAPI::with_config(configuration);
let resp = api.query_scalar_data(body).await;
if let Ok(value) = resp {
println!("{:#?}", value);
} else {
println!("{:#?}", resp.unwrap_err());
}
}
More examples
examples/v2_metrics_QueryTimeseriesData.rs (line 29)
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
async fn main() {
let body = TimeseriesFormulaQueryRequest::new(TimeseriesFormulaRequest::new(
TimeseriesFormulaRequestAttributes::new(
1568899800000,
vec![TimeseriesQuery::MetricsTimeseriesQuery(Box::new(
MetricsTimeseriesQuery::new(
MetricsDataSource::METRICS,
"avg:system.cpu.user{*} by {env}".to_string(),
),
))],
1568923200000,
)
.formulas(vec![QueryFormula::new("a+b".to_string())
.limit(FormulaLimit::new().count(10).order(QuerySortOrder::DESC))])
.interval(5000),
TimeseriesFormulaRequestType::TIMESERIES_REQUEST,
));
let configuration = datadog::Configuration::new();
let api = MetricsAPI::with_config(configuration);
let resp = api.query_timeseries_data(body).await;
if let Ok(value) = resp {
println!("{:#?}", value);
} else {
println!("{:#?}", resp.unwrap_err());
}
}
examples/v2_metrics_QueryScalarData_3112571352.rs (line 32)
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
async fn main() {
let body = ScalarFormulaQueryRequest::new(ScalarFormulaRequest::new(
ScalarFormulaRequestAttributes::new(
1636625471000,
vec![ScalarQuery::MetricsScalarQuery(Box::new(
MetricsScalarQuery::new(
MetricsAggregator::AVG,
MetricsDataSource::METRICS,
"avg:system.cpu.user{*}".to_string(),
)
.name("a".to_string()),
))],
1636629071000,
)
.formulas(vec![QueryFormula::new("a".to_string())
.limit(FormulaLimit::new().count(10).order(QuerySortOrder::DESC))]),
ScalarFormulaRequestType::SCALAR_REQUEST,
));
let configuration = datadog::Configuration::new();
let api = MetricsAPI::with_config(configuration);
let resp = api.query_scalar_data(body).await;
if let Ok(value) = resp {
println!("{:#?}", value);
} else {
println!("{:#?}", resp.unwrap_err());
}
}
examples/v2_metrics_QueryTimeseriesData_301142940.rs (line 30)
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
async fn main() {
let body = TimeseriesFormulaQueryRequest::new(TimeseriesFormulaRequest::new(
TimeseriesFormulaRequestAttributes::new(
1636625471000,
vec![TimeseriesQuery::MetricsTimeseriesQuery(Box::new(
MetricsTimeseriesQuery::new(
MetricsDataSource::METRICS,
"avg:datadog.estimated_usage.metrics.custom{*}".to_string(),
)
.name("a".to_string()),
))],
1636629071000,
)
.formulas(vec![QueryFormula::new("a".to_string())
.limit(FormulaLimit::new().count(10).order(QuerySortOrder::DESC))])
.interval(5000),
TimeseriesFormulaRequestType::TIMESERIES_REQUEST,
));
let configuration = datadog::Configuration::new();
let api = MetricsAPI::with_config(configuration);
let resp = api.query_timeseries_data(body).await;
if let Ok(value) = resp {
println!("{:#?}", value);
} else {
println!("{:#?}", resp.unwrap_err());
}
}
Sourcepub fn count(self, value: i32) -> Self
pub fn count(self, value: i32) -> Self
Examples found in repository?
examples/v2_metrics_QueryScalarData.rs (line 31)
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
async fn main() {
let body = ScalarFormulaQueryRequest::new(ScalarFormulaRequest::new(
ScalarFormulaRequestAttributes::new(
1568899800000,
vec![ScalarQuery::MetricsScalarQuery(Box::new(
MetricsScalarQuery::new(
MetricsAggregator::AVG,
MetricsDataSource::METRICS,
"avg:system.cpu.user{*} by {env}".to_string(),
),
))],
1568923200000,
)
.formulas(vec![QueryFormula::new("a+b".to_string())
.limit(FormulaLimit::new().count(10).order(QuerySortOrder::DESC))]),
ScalarFormulaRequestType::SCALAR_REQUEST,
));
let configuration = datadog::Configuration::new();
let api = MetricsAPI::with_config(configuration);
let resp = api.query_scalar_data(body).await;
if let Ok(value) = resp {
println!("{:#?}", value);
} else {
println!("{:#?}", resp.unwrap_err());
}
}
More examples
examples/v2_metrics_QueryTimeseriesData.rs (line 29)
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
async fn main() {
let body = TimeseriesFormulaQueryRequest::new(TimeseriesFormulaRequest::new(
TimeseriesFormulaRequestAttributes::new(
1568899800000,
vec![TimeseriesQuery::MetricsTimeseriesQuery(Box::new(
MetricsTimeseriesQuery::new(
MetricsDataSource::METRICS,
"avg:system.cpu.user{*} by {env}".to_string(),
),
))],
1568923200000,
)
.formulas(vec![QueryFormula::new("a+b".to_string())
.limit(FormulaLimit::new().count(10).order(QuerySortOrder::DESC))])
.interval(5000),
TimeseriesFormulaRequestType::TIMESERIES_REQUEST,
));
let configuration = datadog::Configuration::new();
let api = MetricsAPI::with_config(configuration);
let resp = api.query_timeseries_data(body).await;
if let Ok(value) = resp {
println!("{:#?}", value);
} else {
println!("{:#?}", resp.unwrap_err());
}
}
examples/v2_metrics_QueryScalarData_3112571352.rs (line 32)
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
async fn main() {
let body = ScalarFormulaQueryRequest::new(ScalarFormulaRequest::new(
ScalarFormulaRequestAttributes::new(
1636625471000,
vec![ScalarQuery::MetricsScalarQuery(Box::new(
MetricsScalarQuery::new(
MetricsAggregator::AVG,
MetricsDataSource::METRICS,
"avg:system.cpu.user{*}".to_string(),
)
.name("a".to_string()),
))],
1636629071000,
)
.formulas(vec![QueryFormula::new("a".to_string())
.limit(FormulaLimit::new().count(10).order(QuerySortOrder::DESC))]),
ScalarFormulaRequestType::SCALAR_REQUEST,
));
let configuration = datadog::Configuration::new();
let api = MetricsAPI::with_config(configuration);
let resp = api.query_scalar_data(body).await;
if let Ok(value) = resp {
println!("{:#?}", value);
} else {
println!("{:#?}", resp.unwrap_err());
}
}
examples/v2_metrics_QueryTimeseriesData_301142940.rs (line 30)
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
async fn main() {
let body = TimeseriesFormulaQueryRequest::new(TimeseriesFormulaRequest::new(
TimeseriesFormulaRequestAttributes::new(
1636625471000,
vec![TimeseriesQuery::MetricsTimeseriesQuery(Box::new(
MetricsTimeseriesQuery::new(
MetricsDataSource::METRICS,
"avg:datadog.estimated_usage.metrics.custom{*}".to_string(),
)
.name("a".to_string()),
))],
1636629071000,
)
.formulas(vec![QueryFormula::new("a".to_string())
.limit(FormulaLimit::new().count(10).order(QuerySortOrder::DESC))])
.interval(5000),
TimeseriesFormulaRequestType::TIMESERIES_REQUEST,
));
let configuration = datadog::Configuration::new();
let api = MetricsAPI::with_config(configuration);
let resp = api.query_timeseries_data(body).await;
if let Ok(value) = resp {
println!("{:#?}", value);
} else {
println!("{:#?}", resp.unwrap_err());
}
}
Sourcepub fn order(self, value: QuerySortOrder) -> Self
pub fn order(self, value: QuerySortOrder) -> Self
Examples found in repository?
examples/v2_metrics_QueryScalarData.rs (line 31)
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
async fn main() {
let body = ScalarFormulaQueryRequest::new(ScalarFormulaRequest::new(
ScalarFormulaRequestAttributes::new(
1568899800000,
vec![ScalarQuery::MetricsScalarQuery(Box::new(
MetricsScalarQuery::new(
MetricsAggregator::AVG,
MetricsDataSource::METRICS,
"avg:system.cpu.user{*} by {env}".to_string(),
),
))],
1568923200000,
)
.formulas(vec![QueryFormula::new("a+b".to_string())
.limit(FormulaLimit::new().count(10).order(QuerySortOrder::DESC))]),
ScalarFormulaRequestType::SCALAR_REQUEST,
));
let configuration = datadog::Configuration::new();
let api = MetricsAPI::with_config(configuration);
let resp = api.query_scalar_data(body).await;
if let Ok(value) = resp {
println!("{:#?}", value);
} else {
println!("{:#?}", resp.unwrap_err());
}
}
More examples
examples/v2_metrics_QueryTimeseriesData.rs (line 29)
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
async fn main() {
let body = TimeseriesFormulaQueryRequest::new(TimeseriesFormulaRequest::new(
TimeseriesFormulaRequestAttributes::new(
1568899800000,
vec![TimeseriesQuery::MetricsTimeseriesQuery(Box::new(
MetricsTimeseriesQuery::new(
MetricsDataSource::METRICS,
"avg:system.cpu.user{*} by {env}".to_string(),
),
))],
1568923200000,
)
.formulas(vec![QueryFormula::new("a+b".to_string())
.limit(FormulaLimit::new().count(10).order(QuerySortOrder::DESC))])
.interval(5000),
TimeseriesFormulaRequestType::TIMESERIES_REQUEST,
));
let configuration = datadog::Configuration::new();
let api = MetricsAPI::with_config(configuration);
let resp = api.query_timeseries_data(body).await;
if let Ok(value) = resp {
println!("{:#?}", value);
} else {
println!("{:#?}", resp.unwrap_err());
}
}
examples/v2_metrics_QueryScalarData_3112571352.rs (line 32)
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
async fn main() {
let body = ScalarFormulaQueryRequest::new(ScalarFormulaRequest::new(
ScalarFormulaRequestAttributes::new(
1636625471000,
vec![ScalarQuery::MetricsScalarQuery(Box::new(
MetricsScalarQuery::new(
MetricsAggregator::AVG,
MetricsDataSource::METRICS,
"avg:system.cpu.user{*}".to_string(),
)
.name("a".to_string()),
))],
1636629071000,
)
.formulas(vec![QueryFormula::new("a".to_string())
.limit(FormulaLimit::new().count(10).order(QuerySortOrder::DESC))]),
ScalarFormulaRequestType::SCALAR_REQUEST,
));
let configuration = datadog::Configuration::new();
let api = MetricsAPI::with_config(configuration);
let resp = api.query_scalar_data(body).await;
if let Ok(value) = resp {
println!("{:#?}", value);
} else {
println!("{:#?}", resp.unwrap_err());
}
}
examples/v2_metrics_QueryTimeseriesData_301142940.rs (line 30)
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
async fn main() {
let body = TimeseriesFormulaQueryRequest::new(TimeseriesFormulaRequest::new(
TimeseriesFormulaRequestAttributes::new(
1636625471000,
vec![TimeseriesQuery::MetricsTimeseriesQuery(Box::new(
MetricsTimeseriesQuery::new(
MetricsDataSource::METRICS,
"avg:datadog.estimated_usage.metrics.custom{*}".to_string(),
)
.name("a".to_string()),
))],
1636629071000,
)
.formulas(vec![QueryFormula::new("a".to_string())
.limit(FormulaLimit::new().count(10).order(QuerySortOrder::DESC))])
.interval(5000),
TimeseriesFormulaRequestType::TIMESERIES_REQUEST,
));
let configuration = datadog::Configuration::new();
let api = MetricsAPI::with_config(configuration);
let resp = api.query_timeseries_data(body).await;
if let Ok(value) = resp {
println!("{:#?}", value);
} else {
println!("{:#?}", resp.unwrap_err());
}
}
pub fn additional_properties(self, value: BTreeMap<String, Value>) -> Self
Trait Implementations§
Source§impl Clone for FormulaLimit
impl Clone for FormulaLimit
Source§fn clone(&self) -> FormulaLimit
fn clone(&self) -> FormulaLimit
Returns a copy of the value. Read more
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from
source
. Read moreSource§impl Debug for FormulaLimit
impl Debug for FormulaLimit
Source§impl Default for FormulaLimit
impl Default for FormulaLimit
Source§impl<'de> Deserialize<'de> for FormulaLimit
impl<'de> Deserialize<'de> for FormulaLimit
Source§fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>where
D: Deserializer<'de>,
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>where
D: Deserializer<'de>,
Deserialize this value from the given Serde deserializer. Read more
Source§impl PartialEq for FormulaLimit
impl PartialEq for FormulaLimit
Source§impl Serialize for FormulaLimit
impl Serialize for FormulaLimit
impl StructuralPartialEq for FormulaLimit
Auto Trait Implementations§
impl Freeze for FormulaLimit
impl RefUnwindSafe for FormulaLimit
impl Send for FormulaLimit
impl Sync for FormulaLimit
impl Unpin for FormulaLimit
impl UnwindSafe for FormulaLimit
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more