1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
//! # Tensor operations
//!
//! Traits for different operations you can to with tensors.
//!
//! ## Operations are separated into categories
//!
//! ```txt
//! Initialization ops: ConvertFrom, Zeros, Ones
//! Getters: IntoVariable, IntoVec, HasShape
//! Unary ops: ReLU, DReLU, Exp, Ln, Tanh
//! Reduce ops: Sum, Max, Min
//! Movement ops: Reshape, Expand, Permute
//! Binary ops: Pow
//! Processing ops: MatMul, Conv
//! ```
//!
mod convert_from;
mod drelu;
mod exp;
mod has_max;
mod has_min;
mod ln;
mod one;
mod pow;
mod relu;
mod tanh;
mod zero;
mod zeros_like;
use crate::shape::{Axes, ReducableBy, Shape};
/// # HasDevice
pub trait HasDevice {
/// Type of device that tensor is stored on
type Dev: crate::device::Device;
/// Device that tensor is stored on
fn device(&self) -> &Self::Dev;
}
/// # HasDType
pub trait HasDType {
/// Type of tensor
type T: crate::device::DType;
}
/// # HasShape
///
/// Stores the shape of the tensor.
///
/// ## Example
/// ```
/// use zyx::prelude::*;
/// use zyx::device::cpu;
/// let mut device = cpu::Device::default();
/// let x = device.buffer([2, 3, 1]);
/// assert_eq!(x.shape(), [3]);
/// ```
pub trait HasShape {
/// Shape of tensor
type Sh: Shape;
/// Get the shape as array
fn shape(&self) -> <Self::Sh as Shape>::AsArray {
Self::Sh::array()
}
}
/// # HasMax
///
/// This trait is implemeted for [DType's](crate::device::DType) that have global maximum
pub trait HasMax {
/// Global maximum of tensor
fn max() -> Self;
}
/// # HasMin
pub trait HasMin {
/// Global minimum of tensor
fn min() -> Self;
}
/// # ZerosLike
///
/// Returns a tensor filled with the scalar value 0, with the same size as input.
pub trait ZerosLike {
/// Returns a tensor filled with the scalar value 0, with the same size as input.
fn zeros_like(&self) -> Self;
}
/// ## Convert between devices and types
///
/// Create new tensor on given device with given type
// Needed because we can't use core::convert::From
// because it's foreign trait and it doesn't work
// when T == Self
pub trait ConvertFrom<T> {
/// Converts input into output type
fn cfrom(x: T) -> Self;
}
/// ## Convert into given type
///
/// This trait is automatically implemented for everything that implements ConvertFrom
pub trait ConvertInto<T> {
/// Converts input into output type
fn cinto(self) -> T;
}
impl<T, R> ConvertInto<R> for T
where
R: ConvertFrom<T>,
{
fn cinto(self) -> R {
R::cfrom(self)
}
}
/// ## Zero operation
///
/// Create new tensor initialized with zeros.
/// ### Example
/// ```
/// use zyx::prelude::*;
/// use zyx::device::cpu;
/// use zyx::shape::Sh3;
///
/// let mut device = cpu::Device::default();
///
/// let x: cpu::Buffer<'_, Sh3<2, 3, 1>> = device.zeros();
/// ```
/// ### Output
/// ```txt
/// [0
/// 0
/// 0]
/// [0
/// 0
/// 0]
/// ```
pub trait Zero {
/// Create new tensor initialized with zeros.
fn zero() -> Self;
}
/// ## One operation
///
/// Create new tensor initialized with ones.
/// ### Example
/// ```
/// use zyx::prelude::*;
/// use zyx::device::cpu::{Device, Buffer};
/// use zyx::shape::Sh3;
///
/// let mut device = Device::default();
///
/// let x: Buffer<'_, Sh3<2, 3, 1>, i32> = device.ones();
/// let y = x.shape();
/// ```
/// ### Output
/// ```txt
/// [1
/// 1
/// 1]
/// [1
/// 1
/// 1]
/// ```
pub trait One {
/// Create new tensor initialized with ones.
fn one() -> Self;
}
// Unary ops
/// ## ReLU operation
///
/// Applies the rectified linear unit function
/// DReLU(x)=max(0,x)
///
/// ### Example
/// ```
/// use zyx::ops::ReLU;
/// let x: i32 = 1;
/// let y = x.relu();
/// assert_eq!(y, 1);
/// ```
pub trait ReLU {
/// Output of the ReLU operation.
type Output;
/// Apply ReLU operation on given input.
fn relu(self) -> Self::Output;
}
/// ## DReLU operation
///
/// Applies the derivative of the rectified linear unit function
/// DReLU(x) = if self < 0. { 0. } else { 1. }
///
/// ### Example
/// ```
/// use zyx::ops::DReLU;
/// let x: i32 = 2;
/// let y = x.drelu();
/// assert_eq!(y, 1)
/// ```
pub trait DReLU {
/// Output of the DReLU operation.
type Output;
/// Apply DReLU operation on given input.
fn drelu(self) -> Self::Output;
}
/// ## Exp operation
///
/// Returns the exponential of the input
/// Exp(x) = x.exp()
///
/// ### Example
/// ```
/// use zyx::ops::Exp;
/// let x = 2.;
/// let y = x.exp();
/// ```
pub trait Exp {
/// Output of the Exp operation.
type Output;
/// Apply Exp operation on given input.
fn exp(self) -> Self::Output;
}
/// ## Ln operation
///
/// Returns the natural logarithm of the input
/// Ln(x) = x.ln()
///
/// ### Example
/// ```
/// use zyx::ops::Ln;
/// let x = 2.;
/// let y = x.ln();
/// ```
pub trait Ln {
/// Output of the Ln operation.
type Output;
/// Apply Ln operation on given input.
fn ln(self) -> Self::Output;
}
/// ## Tanh operation
///
/// Returns the hyperbolic tangent of the input
/// Tanh(x) = x.tanh()
///
/// ### Example
/// ```
/// use zyx::ops::Tanh;
/// let x = 2.;
/// let y = x.tanh();
/// ```
pub trait Tanh {
/// Output of the Tanh operation.
type Output;
/// Apply Tanh operation on given input.
fn tanh(self) -> Self::Output;
}
/// ## Summation operation
///
/// This operation reduces input across one or multiple dimensions.
/// All reduce operations (sum, max) take given dimensions and set them to one, applying operation accordingly.
/// The result's dimensions are not squeezed.
///
/// ### Example
///
/// ```
/// use zyx::prelude::*;
/// use zyx::device::cpu;
/// use zyx::shape::Ax1;
///
/// let mut device = cpu::Device::default();
///
/// let x = device.buffer([[3, 2, 1], [4, 2, 1]]);
/// let y = x.sum::<Ax1<0>>();
/// println!("{}", y);
/// ```
/// ### Output
/// ```txt
/// [7 4 2]
/// ```
pub trait Sum {
/// Sum over dims
fn sum<Dims>(self) -> Self::Output
where
Dims: Axes,
Self: Summable<Dims>;
}
impl<T> Sum for T {
fn sum<Dims>(self) -> T::Output
where
Dims: Axes,
T: Summable<Dims>,
{
self._sum()
}
}
/// Summable
pub trait Summable<Dims>
where
Dims: Axes,
{
/// Output of the Sum operation.
type Output;
/// Apply Sum operation on given input.
fn _sum(self) -> Self::Output;
}
/// ## Max operation
///
/// This operation reduces input across one or multiple dimensions.
/// All reduce operations (sum, max) take given dimensions and set them to one, applying operation accordingly.
/// The result's dimensions are not squeezed.
///
/// ### Example
///
/// ```ignore
/// use zyx::prelude::*;
/// use zyx::device::cpu::Buffer;
/// use zyx::shape::Ax1;
///
/// let x = Buffer::cfrom([[3, 2, 1], [4, 2, 1]]);
/// let y = x.max::<Ax1<0>>();
/// println!("{}, {}", y.0, y.1);
/// ```
/// ### Output
/// ```txt
/// [[4 2 1]], [[1 0 0]]
/// ```
pub trait Max {
/// Max over dims
fn max<Dims>(self) -> (Self::Values, Self::Indices)
where
Dims: Axes,
Self: Maximizable<Dims>;
}
impl<T> Max for T {
fn max<Dims>(self) -> (T::Values, T::Indices)
where
Dims: Axes,
T: Maximizable<Dims>,
{
self._max()
}
}
/// Maximizable
pub trait Maximizable<Dims>
where
Dims: Axes,
{
/// Output of the Max operation.
type Values;
/// Indices of Values.
type Indices;
/// Apply Max operation on given input.
fn _max(self) -> (Self::Values, Self::Indices);
}
/// ## Min operation
///
/// This operation reduces input across one or multiple dimensions.
/// All reduce operations (sum, max) take given dimensions and set them to one, applying operation accordingly.
/// The result's dimensions are not squeezed.
///
/// ### Example
///
/// ```ignore
/// use zyx::prelude::*;
/// use zyx::device::cpu::Buffer;
/// use zyx::shape::Ax1;
///
/// let x = Buffer::cfrom([[3, 2, 1], [4, 2, 1]]);
/// let y = x.min::<Ax1<0>>();
/// println!("{}", y.0);
/// ```
/// ### Output
/// ```txt
/// [[3 2 1]]
/// ```
pub trait Min {
/// Minimize over dims
fn min<Dims>(self) -> (Self::Values, Self::Indices)
where
Dims: Axes,
Self: Minimizable<Dims>;
}
impl<T> Min for T {
fn min<Dims>(self) -> (T::Values, T::Indices)
where
Dims: Axes,
T: Minimizable<Dims>,
{
self._min()
}
}
/// Minimizable
pub trait Minimizable<Dims>
where
Dims: Axes,
{
/// Output of the Min operation.
type Values;
/// Indices of Values.
type Indices;
/// Apply Min operation on given input.
fn _min(self) -> (Self::Values, Self::Indices);
}
// Reshape simply changes shape of the tensor.
// Permute also changes it's data ordering.
// Expand expands to given shape if some dimensions are one.
// PERMUTE, PAD, SHRINK, EXPAND, FLIP,
// Reshape, Permute, Slice, Expand, Flip # movement ops
// Movement ops
/// ## Reshape tensor
///
/// Reshaping changes tensor's shape, while leaving data untouched.
///
/// ### Example
/// ```
/// use zyx::device::cpu;
/// use zyx::prelude::*;
/// use zyx::shape::Sh3;
///
/// let mut device = cpu::Device::default();
///
/// let x = device.buffer([[[3, 2, 4], [3, 4, 2]], [[1, 4, 2], [5, 1, 6]]]);
/// let x = x.reshape::<Sh3<2, 1, 6>>();
/// println!("{}", x);
/// ```
///
/// ### Output
/// ```txt
/// [[3 2 4 2 4 2]
/// [1 4 2 5 1 6]]
/// ```
pub trait Reshape {
/// Reshape to Sh
fn reshape<Sh>(self) -> Self::Output
where
Sh: Shape,
Self: Reshapable<Sh>;
}
impl<T> Reshape for T {
fn reshape<Sh>(self) -> T::Output
where
Sh: Shape,
T: Reshapable<Sh>,
{
self._reshape()
}
}
/// Reshapable
pub trait Reshapable<Sh>
where
// TODO add check Sh::NUMEL == Self::Sh::NUMEL when stable rust supports it,
// for now it is checked using static_assertions const_assert at buffers
Sh: Shape,
{
/// Output of the Reshape operation.
type Output;
/// Apply Reshape operation on given input.
fn _reshape(self) -> Self::Output;
}
/// ## Expand tensor
///
/// Expands tensor to given shape, if some dimensions are 1.
/// These dimensions must be specified as second generic argument.
/// It is enforced at compile time that they will be correct.
/// For example, if you passed Ax1<0> in the following example,
/// the program would not compile.
/// Data is cloned to fill the required size.
///
/// ### Example
/// ```
/// use zyx::prelude::*;
/// use zyx::device::cpu;
/// use zyx::shape::{Sh3, Ax1};
///
/// let mut device = cpu::Device::default();
///
/// let x = device.buffer([[[3, 2, 4]], [[1, 4, 2]]]);
/// let x = x.expand::<Sh3<2, 3, 3>, Ax1<1>>();
/// println!("{}", x);
/// ```
///
/// ### Output
/// ```txt
/// [[3 2 4
/// 3 2 4
/// 3 2 4]
/// [1 4 2
/// 1 4 2
/// 1 4 2]]
/// ```
///
pub trait Expand {
/// Expand to Sh
fn expand<Sh, Ax>(self) -> Self::Output
where
Sh: Shape,
Ax: Axes,
Self: HasShape,
Sh: ReducableBy<Ax, Output = Self::Sh>,
Self: Expandable<Sh, Ax>;
}
// For this, as well as [Permute] and so on we need to differentiate public and private API due to compiler reasons
impl<T> Expand for T {
fn expand<Sh, Ax>(self) -> T::Output
where
Sh: Shape,
Ax: Axes,
Self: HasShape,
Sh: ReducableBy<Ax, Output = <Self as HasShape>::Sh>,
T: Expandable<Sh, Ax>,
{
self._expand()
}
}
/// Expandable
pub trait Expandable<Sh, Ax>
where
Sh: Shape,
Ax: Axes,
Self: HasShape,
Sh: ReducableBy<Ax, Output = Self::Sh>,
{
/// Output of the Expand operation.
type Output;
/// Apply Expand operation on given input.
fn _expand(self) -> Self::Output;
}
/// ## Permute tensor
///
/// Shuffles tensors's dimensions in given order.
///
/// ### Example
/// ```
/// use zyx::device::cpu;
/// use zyx::prelude::*;
/// use zyx::shape::Ax3;
///
/// let mut device = cpu::Device::default();
///
/// let x = device.buffer([[[3, 2, 4]], [[1, 4, 2]]]);
/// let x = x.permute::<Ax3<2, 0, 1>>();
/// println!("{}", x);
/// # assert_eq!(&x.to_vec(), &[3, 1, 2, 4, 4, 2]);
/// # assert_eq!(x.shape(), [3, 2, 1]);
/// ```
///
/// ### Output
/// ```txt
/// [[3
/// 1]
/// [2
/// 4]
/// [4
/// 2]]
/// ```
pub trait Permute {
/// Permute shape with dims
fn permute<Dims>(self) -> Self::Output
where
Dims: Axes,
Self: Permutable<Dims>;
}
impl<T> Permute for T {
fn permute<Dims>(self) -> T::Output
where
Dims: Axes,
T: Permutable<Dims>,
{
self._permute()
}
}
/// Permutable
pub trait Permutable<Dims>
where
Dims: Axes,
{
/// Output of the Permute operation.
type Output;
/// Apply Permute operation on given input.
fn _permute(self) -> Self::Output;
}
// TODO: this is only API proposal, it is yet to be finalized
// Extracts only given dimensions, setting remaining dimensions to 1
/*pub trait Slice<SH, const N: usize>
where
SH: Shape<N>,
{
type Output;
fn slice(self, dims: SH) -> Self::Output;
}*/
/// # Transpose tensor
///
/// Transpose is a subset of permute.
/// It is equivalent to x.permute((-1, -2))
///
/// ### Example
/// ```
/// use zyx::prelude::*;
/// use zyx::device::cpu;
///
/// let mut device = cpu::Device::default();
///
/// let x = device.buffer([[3, 2, 4], [1, 4, 2]]);
/// let x = x.transpose();
/// println!("{}", x);
/// # assert_eq!(&x.to_vec(), &[3, 1, 2, 4, 4, 2]);
/// # assert_eq!(x.shape(), [3, 2]);
/// ```
///
/// ### Output
/// ```txt
/// [3 1
/// 2 4
/// 4 2]
/// ```
pub trait Transpose {
/// Output of the Transpose operation.
type Output;
/// Apply Transpose operation on given input.
fn transpose(self) -> Self::Output;
}
impl<T> Transpose for T
where
T: Permutable<crate::shape::Ax2<-1, -2>>,
{
type Output = T::Output;
fn transpose(self) -> Self::Output {
self.permute()
}
}
// Binary ops are Add, Sub, Mul, Div, Pow, all with same size tensors,
// use core::ops to implement them (except for Pow)
/// Pow operation
///
/// Calculate the power of the input tensor to the given exponent tensor.
/// As with all binary operations, both left and right hand side can be also scalar.
///
/// ### Example
/// ```
/// use zyx::device::cpu;
/// use zyx::prelude::*;
///
/// let mut device = cpu::Device::default();
///
/// let x = device.buffer([[3., 2., 4.], [1., 4., 2.]]);
/// let z = x.pow(2);
/// println!("{}", z);
/// ```
///
/// ### Output
/// ```txt
/// [ 9 4 16
/// 1 16 4]
/// ```
pub trait Pow<Rhs = Self> {
/// Output of the Pow operation.
type Output;
/// Apply Pow operation on given input.
fn pow(self, rhs: Rhs) -> Self::Output;
}
/// ## Mathematical multiplication
///
/// Calculates matrix product.
///
/// ### Example
/// ```
/// use zyx::device::cpu;
/// use zyx::prelude::*;
///
/// let mut device = cpu::Device::default();
///
/// let x = device.buffer([[3., 2., 4.], [1., 4., 2.]]);
/// let y = device.buffer([[3., 2.], [4., 1.], [4., 2.]]);
/// let z = x.matmul(y);
/// println!("{}", z);
/// ```
///
/// ### Output
/// ```txt
/// [33 16
/// 27 10]
/// ```
pub trait MatMul<Rhs = Self> {
/// Output of the MatMul operation.
type Output;
/// Apply MatMul operation on given input.
fn matmul(self, rhs: Rhs) -> Self::Output;
}
// TODO: conv2d
/// ## 2D Convolution
///
/// Calculates 2D convodution.
///
/// NOTE: This API is not yet stable and may be subject to change
pub trait Conv<const N: usize, const M: usize, Kernel = Self> {
/// Output of the Conv operation.
type Output;
/// Apply Conv operation on given input.
fn conv(self, kernel: Kernel, padding: crate::shape::Sh2<N, M>) -> Self::Output;
}
// This is only operation that requires alloc.
// Maybe figure a way how to do this without alloc?
// Can we return slice?
// Can gpu buffer return slice?
extern crate alloc;
/// ## IntoVec operation
///
/// Returns values from tensor as a Vec.
/// It must have row major order.
pub trait IntoVec<T> {
/// Returns values from tensor as a Vec with row-major order.
fn to_vec(&self) -> alloc::vec::Vec<T>;
}
/// Turn any datatype into [crate::tensor::Variable].
pub trait IntoVariable {
/// Calling this function turns input into [crate::tensor::Variable] adding gradient in the process.
fn with_grad(self) -> crate::tensor::Variable<Self>
where
Self: Sized;
}