#ifdef _MSC_VER
# pragma warning(disable : 4127)
#endif
#define _FILE_OFFSET_BITS 64
#if (defined(__sun__) && (!defined(__LP64__)))
# define _LARGEFILE_SOURCE
#elif ! defined(__LP64__)
# define _LARGEFILE64_SOURCE
#endif
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <time.h>
#include "mem.h"
#include "error_private.h"
#include "fse.h"
#include "huff0_static.h"
#include "zstd_internal.h"
#include "divsufsort.h"
#include "zdict_static.h"
#if !defined(S_ISREG)
# define S_ISREG(x) (((x) & S_IFMT) == S_IFREG)
#endif
#define KB *(1 <<10)
#define MB *(1 <<20)
#define GB *(1U<<30)
#define DICTLISTSIZE 10000
#define NOISELENGTH 32
#define PRIME1 2654435761U
#define PRIME2 2246822519U
#define MINRATIO 4
static const U32 g_compressionLevel_default = 5;
static const U32 g_selectivity_default = 9;
static const size_t g_provision_entropySize = 200;
static const size_t g_min_fast_dictContent = 192;
#define DISPLAY(...) fprintf(stderr, __VA_ARGS__)
#define DISPLAYLEVEL(l, ...) if (g_displayLevel>=l) { DISPLAY(__VA_ARGS__); }
static unsigned g_displayLevel = 0;
#define DISPLAYUPDATE(l, ...) if (g_displayLevel>=l) { \
if (ZDICT_GetMilliSpan(g_time) > refreshRate) \
{ g_time = clock(); DISPLAY(__VA_ARGS__); \
if (g_displayLevel>=4) fflush(stdout); } }
static const unsigned refreshRate = 300;
static clock_t g_time = 0;
static void ZDICT_printHex(U32 dlevel, const void* ptr, size_t length)
{
const BYTE* const b = (const BYTE*)ptr;
size_t u;
for (u=0; u<length; u++)
{
BYTE c = b[u];
if (c<32 || c>126) c = '.';
DISPLAYLEVEL(dlevel, "%c", c);
}
}
static unsigned ZDICT_GetMilliSpan(clock_t nPrevious)
{
clock_t nCurrent = clock();
unsigned nSpan = (unsigned)(((nCurrent - nPrevious) * 1000) / CLOCKS_PER_SEC);
return nSpan;
}
unsigned ZDICT_isError(size_t errorCode) { return ERR_isError(errorCode); }
const char* ZDICT_getErrorName(size_t errorCode) { return ERR_getErrorName(errorCode); }
static unsigned ZDICT_NbCommonBytes (register size_t val)
{
if (MEM_isLittleEndian()) {
if (MEM_64bits()) {
# if defined(_MSC_VER) && defined(_WIN64)
unsigned long r = 0;
_BitScanForward64( &r, (U64)val );
return (unsigned)(r>>3);
# elif defined(__GNUC__) && (__GNUC__ >= 3)
return (__builtin_ctzll((U64)val) >> 3);
# else
static const int DeBruijnBytePos[64] = { 0, 0, 0, 0, 0, 1, 1, 2, 0, 3, 1, 3, 1, 4, 2, 7, 0, 2, 3, 6, 1, 5, 3, 5, 1, 3, 4, 4, 2, 5, 6, 7, 7, 0, 1, 2, 3, 3, 4, 6, 2, 6, 5, 5, 3, 4, 5, 6, 7, 1, 2, 4, 6, 4, 4, 5, 7, 2, 6, 5, 7, 6, 7, 7 };
return DeBruijnBytePos[((U64)((val & -(long long)val) * 0x0218A392CDABBD3FULL)) >> 58];
# endif
} else {
# if defined(_MSC_VER)
unsigned long r=0;
_BitScanForward( &r, (U32)val );
return (unsigned)(r>>3);
# elif defined(__GNUC__) && (__GNUC__ >= 3)
return (__builtin_ctz((U32)val) >> 3);
# else
static const int DeBruijnBytePos[32] = { 0, 0, 3, 0, 3, 1, 3, 0, 3, 2, 2, 1, 3, 2, 0, 1, 3, 3, 1, 2, 2, 2, 2, 0, 3, 1, 2, 0, 1, 0, 1, 1 };
return DeBruijnBytePos[((U32)((val & -(S32)val) * 0x077CB531U)) >> 27];
# endif
}
} else {
if (MEM_64bits()) {
# if defined(_MSC_VER) && defined(_WIN64)
unsigned long r = 0;
_BitScanReverse64( &r, val );
return (unsigned)(r>>3);
# elif defined(__GNUC__) && (__GNUC__ >= 3)
return (__builtin_clzll(val) >> 3);
# else
unsigned r;
const unsigned n32 = sizeof(size_t)*4;
if (!(val>>n32)) { r=4; } else { r=0; val>>=n32; }
if (!(val>>16)) { r+=2; val>>=8; } else { val>>=24; }
r += (!val);
return r;
# endif
} else {
# if defined(_MSC_VER)
unsigned long r = 0;
_BitScanReverse( &r, (unsigned long)val );
return (unsigned)(r>>3);
# elif defined(__GNUC__) && (__GNUC__ >= 3)
return (__builtin_clz((U32)val) >> 3);
# else
unsigned r;
if (!(val>>16)) { r=2; val>>=8; } else { r=0; val>>=24; }
r += (!val);
return r;
# endif
} }
}
static size_t ZDICT_count(const void* pIn, const void* pMatch)
{
const char* const pStart = (const char*)pIn;
for (;;) {
size_t diff = MEM_readST(pMatch) ^ MEM_readST(pIn);
if (!diff) { pIn = (const char*)pIn+sizeof(size_t); pMatch = (const char*)pMatch+sizeof(size_t); continue; }
pIn = (const char*)pIn+ZDICT_NbCommonBytes(diff);
return (size_t)((const char*)pIn - pStart);
}
}
typedef struct {
U32 pos;
U32 length;
U32 savings;
} dictItem;
static void ZDICT_initDictItem(dictItem* d)
{
d->pos = 1;
d->length = 0;
d->savings = (U32)(-1);
}
#define LLIMIT 64
#define MINMATCHLENGTH 7
static dictItem ZDICT_analyzePos(
BYTE* doneMarks,
const int* suffix, U32 start,
const void* buffer, U32 minRatio)
{
U32 lengthList[LLIMIT] = {0};
U32 cumulLength[LLIMIT] = {0};
U32 savings[LLIMIT] = {0};
const BYTE* b = (const BYTE*)buffer;
size_t length;
size_t maxLength = LLIMIT;
size_t pos = suffix[start];
U32 end = start;
dictItem solution;
memset(&solution, 0, sizeof(solution));
doneMarks[pos] = 1;
if ( (MEM_read16(b+pos+0) == MEM_read16(b+pos+2))
||(MEM_read16(b+pos+1) == MEM_read16(b+pos+3))
||(MEM_read16(b+pos+2) == MEM_read16(b+pos+4)) ) {
U16 u16 = MEM_read16(b+pos+4);
U32 u, e = 6;
while (MEM_read16(b+pos+e) == u16) e+=2 ;
if (b[pos+e] == b[pos+e-1]) e++;
for (u=1; u<e; u++)
doneMarks[pos+u] = 1;
return solution;
}
do {
end++;
length = ZDICT_count(b + pos, b + suffix[end]);
} while (length >=MINMATCHLENGTH);
do {
length = ZDICT_count(b + pos, b + *(suffix+start-1));
if (length >=MINMATCHLENGTH) start--;
} while(length >= MINMATCHLENGTH);
if (end-start < minRatio) {
U32 idx;
for(idx=start; idx<end; idx++)
doneMarks[suffix[idx]] = 1;
return solution;
}
{
int i;
U32 searchLength;
U32 refinedStart = start;
U32 refinedEnd = end;
DISPLAYLEVEL(4, "\n");
DISPLAYLEVEL(4, "found %3u matches of length >= %u at pos %7u ", (U32)(end-start), MINMATCHLENGTH, (U32)pos);
DISPLAYLEVEL(4, "\n");
for (searchLength = MINMATCHLENGTH ; ; searchLength++) {
BYTE currentChar = 0;
U32 currentCount = 0;
U32 currentID = refinedStart;
U32 id;
U32 selectedCount = 0;
U32 selectedID = currentID;
for (id =refinedStart; id < refinedEnd; id++) {
if (b[ suffix[id] + searchLength] != currentChar) {
if (currentCount > selectedCount) {
selectedCount = currentCount;
selectedID = currentID;
}
currentID = id;
currentChar = b[ suffix[id] + searchLength];
currentCount = 0;
}
currentCount ++;
}
if (currentCount > selectedCount) {
selectedCount = currentCount;
selectedID = currentID;
}
if (selectedCount < minRatio)
break;
refinedStart = selectedID;
refinedEnd = refinedStart + selectedCount;
}
start = refinedStart;
pos = suffix[refinedStart];
end = start;
memset(lengthList, 0, sizeof(lengthList));
do {
end++;
length = ZDICT_count(b + pos, b + suffix[end]);
if (length >= LLIMIT) length = LLIMIT-1;
lengthList[length]++;
} while (length >=MINMATCHLENGTH);
do {
length = ZDICT_count(b + pos, b + suffix[start-1]);
if (length >= LLIMIT) length = LLIMIT-1;
lengthList[length]++;
if (length >=MINMATCHLENGTH) start--;
} while(length >= MINMATCHLENGTH);
memset(cumulLength, 0, sizeof(cumulLength));
cumulLength[maxLength-1] = lengthList[maxLength-1];
for (i=(int)(maxLength-2); i>=0; i--)
cumulLength[i] = cumulLength[i+1] + lengthList[i];
for (i=LLIMIT-1; i>=MINMATCHLENGTH; i--) if (cumulLength[i]>=minRatio) break;
maxLength = i;
{
U32 l = (U32)maxLength;
BYTE c = b[pos + maxLength-1];
while (b[pos+l-2]==c) l--;
maxLength = l;
}
if (maxLength < MINMATCHLENGTH) return solution;
savings[5] = 0;
for (i=MINMATCHLENGTH; i<=(int)maxLength; i++)
savings[i] = savings[i-1] + (lengthList[i] * (i-3));
DISPLAYLEVEL(4, "Selected ref at position %u, of length %u : saves %u (ratio: %.2f) \n",
(U32)pos, (U32)maxLength, savings[maxLength], (double)savings[maxLength] / maxLength);
solution.pos = (U32)pos;
solution.length = (U32)maxLength;
solution.savings = savings[maxLength];
{
U32 id;
U32 testedPos;
for (id=start; id<end; id++) {
U32 p, pEnd;
testedPos = suffix[id];
if (testedPos == pos)
length = solution.length;
else {
length = ZDICT_count(b+pos, b+testedPos);
if (length > solution.length) length = solution.length;
}
pEnd = (U32)(testedPos + length);
for (p=testedPos; p<pEnd; p++)
doneMarks[p] = 1;
} } }
return solution;
}
static U32 ZDICT_checkMerge(dictItem* table, dictItem elt, U32 eltNbToSkip)
{
const U32 tableSize = table->pos;
const U32 max = elt.pos + (elt.length-1);
U32 u; for (u=1; u<tableSize; u++) {
if (u==eltNbToSkip) continue;
if ((table[u].pos > elt.pos) && (table[u].pos < max)) {
U32 addedLength = table[u].pos - elt.pos;
table[u].length += addedLength;
table[u].pos = elt.pos;
table[u].savings += elt.savings * addedLength / elt.length;
table[u].savings += elt.length / 8;
elt = table[u];
while ((u>1) && (table[u-1].savings < elt.savings))
table[u] = table[u-1], u--;
table[u] = elt;
return u;
} }
for (u=1; u<tableSize; u++) {
if (u==eltNbToSkip) continue;
if ((table[u].pos + table[u].length > elt.pos) && (table[u].pos < elt.pos)) {
int addedLength = (elt.pos + elt.length) - (table[u].pos + table[u].length);
table[u].savings += elt.length / 8;
if (addedLength > 0) {
table[u].length += addedLength;
table[u].savings += elt.savings * addedLength / elt.length;
}
elt = table[u];
while ((u>1) && (table[u-1].savings < elt.savings))
table[u] = table[u-1], u--;
table[u] = elt;
return u;
} }
return 0;
}
static void ZDICT_removeDictItem(dictItem* table, U32 id)
{
U32 max = table->pos;
U32 u;
if (!id) return;
for (u=id; u<max-1; u++)
table[u] = table[u+1];
table->pos--;
}
static void ZDICT_insertDictItem(dictItem* table, U32 maxSize, dictItem elt)
{
U32 mergeId = ZDICT_checkMerge(table, elt, 0);
if (mergeId) {
U32 newMerge = 1;
while (newMerge) {
newMerge = ZDICT_checkMerge(table, table[mergeId], mergeId);
if (newMerge) ZDICT_removeDictItem(table, mergeId);
mergeId = newMerge;
}
return;
}
{
U32 current;
U32 nextElt = table->pos;
if (nextElt >= maxSize) nextElt = maxSize-1;
current = nextElt-1;
while (table[current].savings < elt.savings) {
table[current+1] = table[current];
current--;
}
table[current+1] = elt;
table->pos = nextElt+1;
}
}
static U32 ZDICT_dictSize(const dictItem* dictList)
{
U32 u, dictSize = 0;
for (u=1; u<dictList[0].pos; u++)
dictSize += dictList[u].length;
return dictSize;
}
static size_t ZDICT_trainBuffer(dictItem* dictList, U32 dictListSize,
const void* const buffer, const size_t bufferSize,
const size_t* fileSizes, unsigned nbFiles,
U32 shiftRatio, unsigned maxDictSize)
{
int* const suffix0 = (int*)malloc((bufferSize+2)*sizeof(*suffix0));
int* const suffix = suffix0+1;
U32* reverseSuffix = (U32*)malloc((bufferSize)*sizeof(*reverseSuffix));
BYTE* doneMarks = (BYTE*)malloc((bufferSize+16)*sizeof(*doneMarks));
U32* filePos = (U32*)malloc(nbFiles * sizeof(*filePos));
U32 minRatio = nbFiles >> shiftRatio;
int divSuftSortResult;
size_t result = 0;
DISPLAYLEVEL(2, "\r%70s\r", "");
if (!suffix0 || !reverseSuffix || !doneMarks || !filePos) {
result = ERROR(memory_allocation);
goto _cleanup;
}
if (minRatio < MINRATIO) minRatio = MINRATIO;
memset(doneMarks, 0, bufferSize+16);
DISPLAYLEVEL(2, "sorting %u files of total size %u MB ...\n", nbFiles, (U32)(bufferSize>>20));
divSuftSortResult = divsufsort((const unsigned char*)buffer, suffix, (int)bufferSize, 0);
if (divSuftSortResult != 0) { result = ERROR(GENERIC); goto _cleanup; }
suffix[bufferSize] = (int)bufferSize;
suffix0[0] = (int)bufferSize;
{
size_t pos;
for (pos=0; pos < bufferSize; pos++)
reverseSuffix[suffix[pos]] = (U32)pos;
filePos[0] = 0;
for (pos=1; pos<nbFiles; pos++)
filePos[pos] = (U32)(filePos[pos-1] + fileSizes[pos-1]);
}
DISPLAYLEVEL(2, "finding patterns ... \n");
DISPLAYLEVEL(3, "minimum ratio : %u \n", minRatio);
{
U32 cursor; for (cursor=0; cursor < bufferSize; ) {
dictItem solution;
if (doneMarks[cursor]) { cursor++; continue; }
solution = ZDICT_analyzePos(doneMarks, suffix, reverseSuffix[cursor], buffer, minRatio);
if (solution.length==0) { cursor++; continue; }
ZDICT_insertDictItem(dictList, dictListSize, solution);
cursor += solution.length;
DISPLAYUPDATE(2, "\r%4.2f %% \r", (double)cursor / bufferSize * 100);
} }
{
U32 max = dictList->pos;
U32 currentSize = 0;
U32 n; for (n=1; n<max; n++) {
currentSize += dictList[n].length;
if (currentSize > maxDictSize) break;
}
dictList->pos = n;
}
_cleanup:
free(suffix0);
free(reverseSuffix);
free(doneMarks);
free(filePos);
return result;
}
static void ZDICT_fillNoise(void* buffer, size_t length)
{
unsigned acc = PRIME1;
size_t p=0;;
for (p=0; p<length; p++) {
acc *= PRIME2;
((unsigned char*)buffer)[p] = (unsigned char)(acc >> 21);
}
}
typedef struct
{
ZSTD_CCtx* ref;
ZSTD_CCtx* zc;
void* workPlace;
} EStats_ress_t;
static void ZDICT_countEStats(EStats_ress_t esr,
U32* countLit, U32* offsetcodeCount, U32* matchlengthCount, U32* litlengthCount,
const void* src, size_t srcSize)
{
const BYTE* bytePtr;
const U32* u32Ptr;
seqStore_t seqStore;
if (srcSize > BLOCKSIZE) srcSize = BLOCKSIZE;
ZSTD_copyCCtx(esr.zc, esr.ref);
ZSTD_compressBlock(esr.zc, esr.workPlace, BLOCKSIZE, src, srcSize);
seqStore = ZSTD_copySeqStore(esr.zc);
for(bytePtr = seqStore.litStart; bytePtr < seqStore.lit; bytePtr++)
countLit[*bytePtr]++;
for(u32Ptr = seqStore.offsetStart; u32Ptr < seqStore.offset; u32Ptr++) {
BYTE offcode = (BYTE)ZSTD_highbit(*u32Ptr) + 1;
if (*u32Ptr==0) offcode=0;
offsetcodeCount[offcode]++;
}
for(bytePtr = seqStore.matchLengthStart; bytePtr < seqStore.matchLength; bytePtr++)
matchlengthCount[*bytePtr]++;
for(bytePtr = seqStore.litLengthStart; bytePtr < seqStore.litLength; bytePtr++)
litlengthCount[*bytePtr]++;
}
#define OFFCODE_MAX 18
static size_t ZDICT_analyzeEntropy(void* dstBuffer, size_t maxDstSize,
unsigned compressionLevel,
const void* srcBuffer, const size_t* fileSizes, unsigned nbFiles,
const void* dictBuffer, size_t dictBufferSize)
{
U32 countLit[256];
U32 offcodeCount[MaxOff+1];
HUF_CREATE_STATIC_CTABLE(hufTable, 255);
short offcodeNCount[MaxOff+1];
U32 matchLengthCount[MaxML+1];
short matchLengthNCount[MaxML+1];
U32 litlengthCount[MaxLL+1];
short litlengthNCount[MaxLL+1];
EStats_ress_t esr;
ZSTD_parameters params;
U32 u, huffLog = 12, Offlog = OffFSELog, mlLog = MLFSELog, llLog = LLFSELog, total;
size_t pos = 0, errorCode;
size_t eSize = 0;
for (u=0; u<256; u++) countLit[u]=1;
for (u=0; u<=OFFCODE_MAX; u++) offcodeCount[u]=1;
for (u=0; u<=MaxML; u++) matchLengthCount[u]=1;
for (u=0; u<=MaxLL; u++) litlengthCount[u]=1;
esr.ref = ZSTD_createCCtx();
esr.zc = ZSTD_createCCtx();
esr.workPlace = malloc(BLOCKSIZE);
if (!esr.ref || !esr.zc || !esr.workPlace) {
eSize = ERROR(memory_allocation);
DISPLAYLEVEL(1, "Not enough memory");
goto _cleanup;
}
if (compressionLevel==0) compressionLevel=g_compressionLevel_default;
params = ZSTD_getParams(compressionLevel, dictBufferSize + 15 KB);
params.strategy = ZSTD_greedy;
ZSTD_compressBegin_advanced(esr.ref, dictBuffer, dictBufferSize, params);
for (u=0; u<nbFiles; u++) {
ZDICT_countEStats(esr,
countLit, offcodeCount, matchLengthCount, litlengthCount,
(const char*)srcBuffer + pos, fileSizes[u]);
pos += fileSizes[u];
}
errorCode = HUF_buildCTable (hufTable, countLit, 255, huffLog);
if (HUF_isError(errorCode)) {
eSize = ERROR(GENERIC);
DISPLAYLEVEL(1, "HUF_buildCTable error");
goto _cleanup;
}
huffLog = (U32)errorCode;
total=0; for (u=0; u<=OFFCODE_MAX; u++) total+=offcodeCount[u];
errorCode = FSE_normalizeCount(offcodeNCount, Offlog, offcodeCount, total, OFFCODE_MAX);
if (FSE_isError(errorCode)) {
eSize = ERROR(GENERIC);
DISPLAYLEVEL(1, "FSE_normalizeCount error with offcodeCount");
goto _cleanup;
}
Offlog = (U32)errorCode;
total=0; for (u=0; u<=MaxML; u++) total+=matchLengthCount[u];
errorCode = FSE_normalizeCount(matchLengthNCount, mlLog, matchLengthCount, total, MaxML);
if (FSE_isError(errorCode)) {
eSize = ERROR(GENERIC);
DISPLAYLEVEL(1, "FSE_normalizeCount error with matchLengthCount");
goto _cleanup;
}
mlLog = (U32)errorCode;
total=0; for (u=0; u<=MaxLL; u++) total+=litlengthCount[u];
errorCode = FSE_normalizeCount(litlengthNCount, llLog, litlengthCount, total, MaxLL);
if (FSE_isError(errorCode)) {
eSize = ERROR(GENERIC);
DISPLAYLEVEL(1, "FSE_normalizeCount error with litlengthCount");
goto _cleanup;
}
llLog = (U32)errorCode;
errorCode = HUF_writeCTable(dstBuffer, maxDstSize, hufTable, 255, huffLog);
if (HUF_isError(errorCode)) {
eSize = ERROR(GENERIC);
DISPLAYLEVEL(1, "HUF_writeCTable error");
goto _cleanup;
}
dstBuffer = (char*)dstBuffer + errorCode;
maxDstSize -= errorCode;
eSize += errorCode;
errorCode = FSE_writeNCount(dstBuffer, maxDstSize, offcodeNCount, OFFCODE_MAX, Offlog);
if (FSE_isError(errorCode)) {
eSize = ERROR(GENERIC);
DISPLAYLEVEL(1, "FSE_writeNCount error with offcodeNCount");
goto _cleanup;
}
dstBuffer = (char*)dstBuffer + errorCode;
maxDstSize -= errorCode;
eSize += errorCode;
errorCode = FSE_writeNCount(dstBuffer, maxDstSize, matchLengthNCount, MaxML, mlLog);
if (FSE_isError(errorCode)) {
eSize = ERROR(GENERIC);
DISPLAYLEVEL(1, "FSE_writeNCount error with matchLengthNCount");
goto _cleanup;
}
dstBuffer = (char*)dstBuffer + errorCode;
maxDstSize -= errorCode;
eSize += errorCode;
errorCode = FSE_writeNCount(dstBuffer, maxDstSize, litlengthNCount, MaxLL, llLog);
if (FSE_isError(errorCode)) {
eSize = ERROR(GENERIC);
DISPLAYLEVEL(1, "FSE_writeNCount error with litlengthNCount");
goto _cleanup;
}
dstBuffer = (char*)dstBuffer + errorCode;
maxDstSize -= errorCode;
eSize += errorCode;
_cleanup:
ZSTD_freeCCtx(esr.ref);
ZSTD_freeCCtx(esr.zc);
free(esr.workPlace);
return eSize;
}
#define DIB_FASTSEGMENTSIZE 64
static size_t ZDICT_fastSampling(void* dictBuffer, size_t dictSize,
const void* samplesBuffer, size_t samplesSize)
{
char* dstPtr = (char*)dictBuffer + dictSize;
const char* srcPtr = (const char*)samplesBuffer;
size_t nbSegments = dictSize / DIB_FASTSEGMENTSIZE;
size_t segNb, interSize;
if (nbSegments <= 2) return ERROR(srcSize_wrong);
if (samplesSize < dictSize) return ERROR(srcSize_wrong);
dstPtr -= DIB_FASTSEGMENTSIZE;
memcpy(dstPtr, srcPtr, DIB_FASTSEGMENTSIZE);
dstPtr -= DIB_FASTSEGMENTSIZE;
memcpy(dstPtr, srcPtr+samplesSize-DIB_FASTSEGMENTSIZE, DIB_FASTSEGMENTSIZE);
interSize = (samplesSize - nbSegments*DIB_FASTSEGMENTSIZE) / (nbSegments-1);
srcPtr += DIB_FASTSEGMENTSIZE;
for (segNb=2; segNb < nbSegments; segNb++) {
srcPtr += interSize;
dstPtr -= DIB_FASTSEGMENTSIZE;
memcpy(dstPtr, srcPtr, DIB_FASTSEGMENTSIZE);
srcPtr += DIB_FASTSEGMENTSIZE;
}
return nbSegments * DIB_FASTSEGMENTSIZE;
}
size_t ZDICT_trainFromBuffer_unsafe(
void* dictBuffer, size_t maxDictSize,
const void* samplesBuffer, const size_t* sampleSizes, unsigned nbSamples,
ZDICT_params_t params)
{
const U32 dictListSize = MAX( MAX(DICTLISTSIZE, nbSamples), (U32)(maxDictSize/16));
dictItem* dictList = (dictItem*)malloc(dictListSize * sizeof(*dictList));
unsigned selectivity = params.selectivityLevel;
unsigned compressionLevel = params.compressionLevel;
size_t targetDictSize = maxDictSize - g_provision_entropySize;
size_t sBuffSize;
size_t dictSize = 0;
if (maxDictSize <= g_provision_entropySize + g_min_fast_dictContent) return ERROR(dstSize_tooSmall);
{ unsigned u; for (u=0, sBuffSize=0; u<nbSamples; u++) sBuffSize += sampleSizes[u]; }
if (!dictList) return ERROR(memory_allocation);
ZDICT_initDictItem(dictList);
g_displayLevel = params.notificationLevel;
if (selectivity==0) selectivity = g_selectivity_default;
if (compressionLevel==0) compressionLevel = g_compressionLevel_default;
if (selectivity>1) {
ZDICT_trainBuffer(dictList, dictListSize,
samplesBuffer, sBuffSize,
sampleSizes, nbSamples,
selectivity, (U32)targetDictSize);
if (g_displayLevel>= 3) {
const U32 nb = 25;
U32 u;
U32 dictContentSize = ZDICT_dictSize(dictList);
DISPLAYLEVEL(3, "\n %u segments found, of total size %u \n", dictList[0].pos, dictContentSize);
DISPLAYLEVEL(3, "list %u best segments \n", nb);
for (u=1; u<=nb; u++) {
U32 p = dictList[u].pos;
U32 l = dictList[u].length;
U32 d = MIN(40, l);
DISPLAYLEVEL(3, "%3u:%3u bytes at pos %8u, savings %7u bytes |",
u, l, p, dictList[u].savings);
ZDICT_printHex(3, (const char*)samplesBuffer+p, d);
DISPLAYLEVEL(3, "| \n");
} } }
{
U32 dictContentSize = ZDICT_dictSize(dictList);
size_t hSize;
BYTE* ptr;
U32 u;
ptr = (BYTE*)dictBuffer + maxDictSize;
for (u=1; u<dictList->pos; u++) {
U32 l = dictList[u].length;
ptr -= l;
if (ptr<(BYTE*)dictBuffer) return ERROR(GENERIC);
memcpy(ptr, (const char*)samplesBuffer+dictList[u].pos, l);
}
if (selectivity==1) {
DISPLAYLEVEL(3, "\r%70s\r", "");
DISPLAYLEVEL(3, "Adding %u KB with fast sampling \n", (U32)(targetDictSize>>10));
dictContentSize = (U32)ZDICT_fastSampling((char*)dictBuffer + g_provision_entropySize,
targetDictSize, samplesBuffer, sBuffSize);
}
MEM_writeLE32(dictBuffer, ZSTD_DICT_MAGIC);
hSize = 4;
DISPLAYLEVEL(2, "\r%70s\r", "");
DISPLAYLEVEL(2, "statistics ... \n");
hSize += ZDICT_analyzeEntropy((char*)dictBuffer+4, maxDictSize-4,
compressionLevel,
samplesBuffer, sampleSizes, nbSamples,
(char*)dictBuffer + maxDictSize - dictContentSize, dictContentSize);
if (hSize + dictContentSize < maxDictSize)
memmove((char*)dictBuffer + hSize, (char*)dictBuffer + maxDictSize - dictContentSize, dictContentSize);
dictSize = MIN(maxDictSize, hSize+dictContentSize);
}
free(dictList);
return dictSize;
}
size_t ZDICT_trainFromBuffer_advanced(void* dictBuffer, size_t dictBufferCapacity,
const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples,
ZDICT_params_t params)
{
size_t sBuffSize;
void* newBuff;
size_t result;
{ unsigned u; for (u=0, sBuffSize=0; u<nbSamples; u++) sBuffSize += samplesSizes[u]; }
newBuff = malloc(sBuffSize + NOISELENGTH);
if (!newBuff) return ERROR(memory_allocation);
memcpy(newBuff, samplesBuffer, sBuffSize);
ZDICT_fillNoise((char*)newBuff + sBuffSize, NOISELENGTH);
result = ZDICT_trainFromBuffer_unsafe(dictBuffer, dictBufferCapacity,
newBuff, samplesSizes, nbSamples,
params);
free(newBuff);
return result;
}
size_t ZDICT_trainFromBuffer(void* dictBuffer, size_t dictBufferCapacity,
const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples)
{
ZDICT_params_t params;
memset(¶ms, 0, sizeof(params));
return ZDICT_trainFromBuffer_advanced(dictBuffer, dictBufferCapacity,
samplesBuffer, samplesSizes, nbSamples,
params);
}