1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
#[cfg(not(feature = "std"))]
extern crate alloc;

#[cfg(feature = "std")]
extern crate core;

#[cfg(not(feature = "std"))]
use alloc::vec::Vec;

use crate::Arena;
use core::{
    cell::{
        RefCell,
        RefMut,
    },
    mem,
    slice,
};

/// A handle to data registered in a specific [`Registry`].
///
/// A handle is returned when an element is registered in a registry. It can be passed back to the
/// registry to get a mutable reference to the same data.
pub type Handle = usize;

/// A container that can be used for registering values of a given type and retrieving references by
/// handle.
///
/// A [`Registry`] is a centralized data source that values can be inserted into. After insertion,
/// the registry returns a [`Handle`], which will refer to the same value for the lifetime of the
/// registry.
///
/// A single value can be moved into the registry using [`Registry::register`], and multiple values
/// can be moved in using [`Registry::register_extend`].
///
/// Internally, a registry uses an [`Arena`] for allocating values, which guarantees references are
/// valid for the lifetime of the arena. A [`Registry`] adds the additional guarantees that all
/// handles will refer to a single value in the underlying arena for the lifetime of the registry.
pub struct Registry<T> {
    // Internally, a registry is based on the following ideas:
    //  - All references to data in an arena is valid for the entire lifetime of the arena.
    //  - If a reference is valid, the corresponding pointer is also valid.
    //  - Thus, we can save a mapping of handles to pointers to arena-allocated data that will be
    //    valid for the lifetime of the registry.
    arena: Arena<T>,
    handles: RefCell<Vec<*mut T>>,
}

/// Iterator over mutable elements in a [`Registry`].
pub struct IterMut<'r, T> {
    // Store the mutable reference to the handles vector, so that we enforce that it is still being
    // used. We extended the lifetime of the iterator so that we could store it here.
    #[allow(dead_code)]
    handles: RefMut<'r, Vec<*mut T>>,
    iter: slice::Iter<'r, *mut T>,
}

impl<'r, T> Iterator for IterMut<'r, T> {
    type Item = &'r mut T;

    fn next(&mut self) -> Option<Self::Item> {
        self.iter.next().cloned().map(|r| unsafe { &mut *r })
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        self.iter.size_hint()
    }
}

impl<T> Registry<T> {
    /// Creates a new registry.
    pub fn new() -> Self {
        Self {
            arena: Arena::new(),
            handles: RefCell::new(Vec::new()),
        }
    }

    /// Creates a new registry with the given capacity.
    pub fn with_capacity(size: usize) -> Self {
        Self {
            arena: Arena::with_capacity(size),
            handles: RefCell::new(Vec::with_capacity(size)),
        }
    }

    /// Returns the number of elements owned by the registry.
    pub fn len(&self) -> usize {
        self.arena.len()
    }

    /// Registers a new value in the arena, returning a handle to that value.
    pub fn register(&self, value: T) -> Handle {
        // Allocate the value in the arena.
        let data = self.arena.alloc(value);
        // Add a new handle to this reference.
        let mut handles = self.handles.borrow_mut();
        let handle = handles.len();
        handles.push(data as *mut T);
        handle
    }

    /// Registers the contents of an iterator in the registry.
    ///
    /// Returns a numeric range of handles `[a, b)`, where `a` is the handle of the first element
    /// inserted and `b` is the handle after the last element inserted.
    pub fn register_extend<I>(&self, iterable: I) -> (Handle, Handle)
    where
        I: IntoIterator<Item = T>,
    {
        // Allocate all values in the arena.
        let data = self.arena.alloc_extend(iterable);
        // Add handles to all references.
        let mut handles = self.handles.borrow_mut();
        let first = handles.len();
        let next = first + data.len();
        handles.extend(data.iter_mut().map(|r| r as *mut T));
        (first, next)
    }

    /// Ensures there is enough continuous space for at least `additional` values.
    pub fn reserve(&self, additional: usize) {
        self.arena.reserve(additional);
        self.handles.borrow_mut().reserve(additional);
    }

    /// Converts the [`Registry<T>`] into a [`Vec<T>`].
    ///
    /// Items will maintain their handle as their vector index.
    pub fn into_vec(self) -> Vec<T> {
        // Arena maintains insertion order, which is the same as how we generate handles. Thus, we
        // can rely on the arena's conversion to a vector.
        self.arena.into_vec()
    }

    /// Returns an iterator that provides mutable access to all elements in the registry, in order
    /// of registration.
    ///
    /// Registries only allow mutable iteration because the entire registry must be borrowed for the
    /// duration of the iteration. The mutable borrow to call this method allows Rust's borrow
    /// checker to enforce this rule.
    pub fn iter_mut(&mut self) -> IterMut<T> {
        let handles = self.handles.borrow_mut();
        let iter = handles.iter();
        let iter = unsafe { mem::transmute(iter) };
        IterMut { handles, iter }
    }

    /// Returns a mutable reference to a value previously registered in the registry.
    pub fn get_mut(&self, handle: Handle) -> Option<&mut T> {
        self.handles
            .borrow()
            .get(handle)
            .cloned()
            .map(|r| unsafe { &mut *r })
    }

    /// Returns a reference to a value previously registered in the registry.
    pub fn get(&self, handle: Handle) -> Option<&T> {
        self.handles
            .borrow()
            .get(handle)
            .cloned()
            .map(|r| unsafe { &*r })
    }
}

#[cfg(test)]
mod registry_test {
    #[cfg(not(feature = "std"))]
    extern crate alloc;

    #[cfg(not(feature = "std"))]
    use alloc::vec;

    use crate::{
        Handle,
        Registry,
    };
    use core::cell::Cell;

    // A shared counter for how many times a value is deallocated.
    struct DropCounter<'c>(&'c Cell<u32>);

    impl<'c> Drop for DropCounter<'c> {
        fn drop(&mut self) {
            self.0.set(self.0.get() + 1);
        }
    }

    // A node type, like one used in a list, tree, or graph data structure.
    //
    // Helps us verify that arena-allocated values can refer to each other.
    struct Node<'d, T> {
        parent: Option<Handle>,
        value: T,
        #[allow(dead_code)]
        drop_counter: DropCounter<'d>,
    }

    impl<'a, 'd, T> Node<'d, T> {
        pub fn new(parent: Option<Handle>, value: T, drop_counter: DropCounter<'d>) -> Self {
            Self {
                parent,
                value,
                drop_counter,
            }
        }
    }

    #[test]
    #[allow(dropping_references)]
    fn allocates_and_owns_values() {
        let drop_counter = Cell::new(0);
        {
            let registry = Registry::with_capacity(2);

            // Allocate a chain of nodes that refer to each other.
            let mut handle = registry.register(Node::new(None, 1, DropCounter(&drop_counter)));
            assert_eq!(registry.len(), 1);
            handle = registry.register(Node::new(Some(handle), 2, DropCounter(&drop_counter)));
            assert_eq!(registry.len(), 2);
            handle = registry.register(Node::new(Some(handle), 3, DropCounter(&drop_counter)));
            assert_eq!(registry.len(), 3);
            handle = registry.register(Node::new(Some(handle), 4, DropCounter(&drop_counter)));
            assert_eq!(registry.len(), 4);

            let mut node = registry.get(handle).unwrap();
            assert_eq!(node.value, 4);
            node = registry.get(node.parent.unwrap()).unwrap();
            assert_eq!(node.value, 3);
            node = registry.get(node.parent.unwrap()).unwrap();
            assert_eq!(node.value, 2);
            node = registry.get(node.parent.unwrap()).unwrap();
            assert_eq!(node.value, 1);
            assert_eq!(node.parent, None);
            assert_eq!(drop_counter.get(), 0);
        }
        // All values deallocated at the same time.
        assert_eq!(drop_counter.get(), 4);
    }

    #[test]
    fn register_extend_allocates_and_returns_handle_range() {
        let registry = Registry::new();
        let mut next_handle = 0;
        for i in 0..15 {
            let (begin, end) = registry.register_extend(0..i);
            assert_eq!(begin, next_handle);
            assert_eq!(end - begin, i);
            for (j, handle) in (0..i).zip(begin..end) {
                assert_eq!(registry.get(handle).cloned(), Some(j));
            }
            next_handle = end;
        }
    }

    #[test]
    fn register_extend_allocates_and_owns_values() {
        let drop_counter = Cell::new(0);
        {
            let registry = Registry::with_capacity(2);
            let iter = (0..100).map(|i| Node::new(None, i, DropCounter(&drop_counter)));
            let root = registry.register_extend(iter).0;
            let iter = (0..100).map(|i| Node::new(Some(root), i, DropCounter(&drop_counter)));
            registry.register_extend(iter);
            assert_eq!(drop_counter.get(), 0);
        }
        assert_eq!(drop_counter.get(), 200);
    }

    #[test]
    fn into_vec_reflects_insertion_order() {
        let registry = Registry::new();
        for &s in &["a", "b", "c", "d"] {
            registry.register(s);
        }
        let vec = registry.into_vec();
        assert_eq!(vec, vec!["a", "b", "c", "d"])
    }

    #[test]
    fn iter_mut_itereates_in_order() {
        #[derive(Debug, PartialEq, Eq)]
        struct NoCopy(usize);

        let mut registry = Registry::new();
        for i in 0..10 {
            registry.register(NoCopy(i));
        }
        assert!(registry
            .iter_mut()
            .zip((0..10).map(|i| NoCopy(i)))
            .all(|(a, b)| a == &b));
    }

    #[test]
    fn iter_mut_allows_mutable_access() {
        let mut registry = Registry::new();
        for i in 0..10 {
            registry.register(i);
        }
        for i in registry.iter_mut() {
            *i += 1
        }
        assert!(registry.iter_mut().zip(1..11).all(|(a, b)| a == &b));
    }

    #[test]
    fn handles_valid_with_large_blocks() {
        let registry = Registry::with_capacity(2);
        // Commit the first block and start the next.
        let first_range = registry.register_extend(0..1);
        let second_range = registry.register_extend(0..100);
        // Since the current block has elements in it, a new block is created.
        registry.reserve(1000);
        // These should fit in the same block.
        let third_range = registry.register_extend(0..500);
        let fourth_range = registry.register_extend(501..1000);

        // Validate that all handles still refer to the inserted values.
        assert!((first_range.0..first_range.1)
            .zip(0..1)
            .all(|(handle, value)| registry.get(handle).unwrap() == &value));
        assert!((second_range.0..second_range.1)
            .zip(0..100)
            .all(|(handle, value)| registry.get(handle).unwrap() == &value));
        assert!((third_range.0..third_range.1)
            .zip(0..500)
            .all(|(handle, value)| registry.get(handle).unwrap() == &value));
        assert!((fourth_range.0..fourth_range.1)
            .zip(501..1000)
            .all(|(handle, value)| registry.get(handle).unwrap() == &value));
    }
}