zerocopy 0.8.27

Zerocopy makes zero-cost memory manipulation effortless. We write "unsafe" so you don't have to.
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
// Copyright 2024 The Fuchsia Authors
//
// Licensed under the 2-Clause BSD License <LICENSE-BSD or
// https://opensource.org/license/bsd-2-clause>, Apache License, Version 2.0
// <LICENSE-APACHE or https://www.apache.org/licenses/LICENSE-2.0>, or the MIT
// license <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your option.
// This file may not be copied, modified, or distributed except according to
// those terms.

use core::{mem, num::NonZeroUsize};

use crate::util;

/// The target pointer width, counted in bits.
const POINTER_WIDTH_BITS: usize = mem::size_of::<usize>() * 8;

/// The layout of a type which might be dynamically-sized.
///
/// `DstLayout` describes the layout of sized types, slice types, and "slice
/// DSTs" - ie, those that are known by the type system to have a trailing slice
/// (as distinguished from `dyn Trait` types - such types *might* have a
/// trailing slice type, but the type system isn't aware of it).
///
/// Note that `DstLayout` does not have any internal invariants, so no guarantee
/// is made that a `DstLayout` conforms to any of Rust's requirements regarding
/// the layout of real Rust types or instances of types.
#[doc(hidden)]
#[allow(missing_debug_implementations, missing_copy_implementations)]
#[cfg_attr(any(kani, test), derive(Debug, PartialEq, Eq))]
#[derive(Copy, Clone)]
pub struct DstLayout {
    pub(crate) align: NonZeroUsize,
    pub(crate) size_info: SizeInfo,
    // Is it guaranteed statically (without knowing a value's runtime metadata)
    // that the top-level type contains no padding? This does *not* apply
    // recursively - for example, `[(u8, u16)]` has `statically_shallow_unpadded
    // = true` even though this type likely has padding inside each `(u8, u16)`.
    pub(crate) statically_shallow_unpadded: bool,
}

#[cfg_attr(any(kani, test), derive(Debug, PartialEq, Eq))]
#[derive(Copy, Clone)]
pub(crate) enum SizeInfo<E = usize> {
    Sized { size: usize },
    SliceDst(TrailingSliceLayout<E>),
}

#[cfg_attr(any(kani, test), derive(Debug, PartialEq, Eq))]
#[derive(Copy, Clone)]
pub(crate) struct TrailingSliceLayout<E = usize> {
    // The offset of the first byte of the trailing slice field. Note that this
    // is NOT the same as the minimum size of the type. For example, consider
    // the following type:
    //
    //   struct Foo {
    //       a: u16,
    //       b: u8,
    //       c: [u8],
    //   }
    //
    // In `Foo`, `c` is at byte offset 3. When `c.len() == 0`, `c` is followed
    // by a padding byte.
    pub(crate) offset: usize,
    // The size of the element type of the trailing slice field.
    pub(crate) elem_size: E,
}

impl SizeInfo {
    /// Attempts to create a `SizeInfo` from `Self` in which `elem_size` is a
    /// `NonZeroUsize`. If `elem_size` is 0, returns `None`.
    #[allow(unused)]
    const fn try_to_nonzero_elem_size(&self) -> Option<SizeInfo<NonZeroUsize>> {
        Some(match *self {
            SizeInfo::Sized { size } => SizeInfo::Sized { size },
            SizeInfo::SliceDst(TrailingSliceLayout { offset, elem_size }) => {
                if let Some(elem_size) = NonZeroUsize::new(elem_size) {
                    SizeInfo::SliceDst(TrailingSliceLayout { offset, elem_size })
                } else {
                    return None;
                }
            }
        })
    }
}

#[doc(hidden)]
#[derive(Copy, Clone)]
#[cfg_attr(test, derive(Debug))]
#[allow(missing_debug_implementations)]
pub enum CastType {
    Prefix,
    Suffix,
}

#[cfg_attr(test, derive(Debug))]
pub(crate) enum MetadataCastError {
    Alignment,
    Size,
}

impl DstLayout {
    /// The minimum possible alignment of a type.
    const MIN_ALIGN: NonZeroUsize = match NonZeroUsize::new(1) {
        Some(min_align) => min_align,
        None => const_unreachable!(),
    };

    /// The maximum theoretic possible alignment of a type.
    ///
    /// For compatibility with future Rust versions, this is defined as the
    /// maximum power-of-two that fits into a `usize`. See also
    /// [`DstLayout::CURRENT_MAX_ALIGN`].
    pub(crate) const THEORETICAL_MAX_ALIGN: NonZeroUsize =
        match NonZeroUsize::new(1 << (POINTER_WIDTH_BITS - 1)) {
            Some(max_align) => max_align,
            None => const_unreachable!(),
        };

    /// The current, documented max alignment of a type \[1\].
    ///
    /// \[1\] Per <https://doc.rust-lang.org/reference/type-layout.html#the-alignment-modifiers>:
    ///
    ///   The alignment value must be a power of two from 1 up to
    ///   2<sup>29</sup>.
    #[cfg(not(kani))]
    #[cfg(not(target_pointer_width = "16"))]
    pub(crate) const CURRENT_MAX_ALIGN: NonZeroUsize = match NonZeroUsize::new(1 << 28) {
        Some(max_align) => max_align,
        None => const_unreachable!(),
    };

    #[cfg(not(kani))]
    #[cfg(target_pointer_width = "16")]
    pub(crate) const CURRENT_MAX_ALIGN: NonZeroUsize = match NonZeroUsize::new(1 << 15) {
        Some(max_align) => max_align,
        None => const_unreachable!(),
    };

    /// Assumes that this layout lacks static shallow padding.
    ///
    /// # Panics
    ///
    /// This method does not panic.
    ///
    /// # Safety
    ///
    /// If `self` describes the size and alignment of type that lacks static
    /// shallow padding, unsafe code may assume that the result of this method
    /// accurately reflects the size, alignment, and lack of static shallow
    /// padding of that type.
    const fn assume_shallow_unpadded(self) -> Self {
        Self { statically_shallow_unpadded: true, ..self }
    }

    /// Constructs a `DstLayout` for a zero-sized type with `repr_align`
    /// alignment (or 1). If `repr_align` is provided, then it must be a power
    /// of two.
    ///
    /// # Panics
    ///
    /// This function panics if the supplied `repr_align` is not a power of two.
    ///
    /// # Safety
    ///
    /// Unsafe code may assume that the contract of this function is satisfied.
    #[doc(hidden)]
    #[must_use]
    #[inline]
    pub const fn new_zst(repr_align: Option<NonZeroUsize>) -> DstLayout {
        let align = match repr_align {
            Some(align) => align,
            None => Self::MIN_ALIGN,
        };

        const_assert!(align.get().is_power_of_two());

        DstLayout {
            align,
            size_info: SizeInfo::Sized { size: 0 },
            statically_shallow_unpadded: true,
        }
    }

    /// Constructs a `DstLayout` which describes `T` and assumes `T` may contain
    /// padding.
    ///
    /// # Safety
    ///
    /// Unsafe code may assume that `DstLayout` is the correct layout for `T`.
    #[doc(hidden)]
    #[must_use]
    #[inline]
    pub const fn for_type<T>() -> DstLayout {
        // SAFETY: `align` is correct by construction. `T: Sized`, and so it is
        // sound to initialize `size_info` to `SizeInfo::Sized { size }`; the
        // `size` field is also correct by construction. `unpadded` can safely
        // default to `false`.
        DstLayout {
            align: match NonZeroUsize::new(mem::align_of::<T>()) {
                Some(align) => align,
                None => const_unreachable!(),
            },
            size_info: SizeInfo::Sized { size: mem::size_of::<T>() },
            statically_shallow_unpadded: false,
        }
    }

    /// Constructs a `DstLayout` which describes a `T` that does not contain
    /// padding.
    ///
    /// # Safety
    ///
    /// Unsafe code may assume that `DstLayout` is the correct layout for `T`.
    #[doc(hidden)]
    #[must_use]
    #[inline]
    pub const fn for_unpadded_type<T>() -> DstLayout {
        Self::for_type::<T>().assume_shallow_unpadded()
    }

    /// Constructs a `DstLayout` which describes `[T]`.
    ///
    /// # Safety
    ///
    /// Unsafe code may assume that `DstLayout` is the correct layout for `[T]`.
    pub(crate) const fn for_slice<T>() -> DstLayout {
        // SAFETY: The alignment of a slice is equal to the alignment of its
        // element type, and so `align` is initialized correctly.
        //
        // Since this is just a slice type, there is no offset between the
        // beginning of the type and the beginning of the slice, so it is
        // correct to set `offset: 0`. The `elem_size` is correct by
        // construction. Since `[T]` is a (degenerate case of a) slice DST, it
        // is correct to initialize `size_info` to `SizeInfo::SliceDst`.
        DstLayout {
            align: match NonZeroUsize::new(mem::align_of::<T>()) {
                Some(align) => align,
                None => const_unreachable!(),
            },
            size_info: SizeInfo::SliceDst(TrailingSliceLayout {
                offset: 0,
                elem_size: mem::size_of::<T>(),
            }),
            statically_shallow_unpadded: true,
        }
    }

    /// Constructs a complete `DstLayout` reflecting a `repr(C)` struct with the
    /// given alignment modifiers and fields.
    ///
    /// This method cannot be used to match the layout of a record with the
    /// default representation, as that representation is mostly unspecified.
    ///
    /// # Safety
    ///
    /// For any definition of a `repr(C)` struct, if this method is invoked with
    /// alignment modifiers and fields corresponding to that definition, the
    /// resulting `DstLayout` will correctly encode the layout of that struct.
    ///
    /// We make no guarantees to the behavior of this method when it is invoked
    /// with arguments that cannot correspond to a valid `repr(C)` struct.
    #[must_use]
    #[inline]
    pub const fn for_repr_c_struct(
        repr_align: Option<NonZeroUsize>,
        repr_packed: Option<NonZeroUsize>,
        fields: &[DstLayout],
    ) -> DstLayout {
        let mut layout = DstLayout::new_zst(repr_align);

        let mut i = 0;
        #[allow(clippy::arithmetic_side_effects)]
        while i < fields.len() {
            #[allow(clippy::indexing_slicing)]
            let field = fields[i];
            layout = layout.extend(field, repr_packed);
            i += 1;
        }

        layout = layout.pad_to_align();

        // SAFETY: `layout` accurately describes the layout of a `repr(C)`
        // struct with `repr_align` or `repr_packed` alignment modifications and
        // the given `fields`. The `layout` is constructed using a sequence of
        // invocations of `DstLayout::{new_zst,extend,pad_to_align}`. The
        // documentation of these items vows that invocations in this manner
        // will accurately describe a type, so long as:
        //
        //  - that type is `repr(C)`,
        //  - its fields are enumerated in the order they appear,
        //  - the presence of `repr_align` and `repr_packed` are correctly accounted for.
        //
        // We respect all three of these preconditions above.
        layout
    }

    /// Like `Layout::extend`, this creates a layout that describes a record
    /// whose layout consists of `self` followed by `next` that includes the
    /// necessary inter-field padding, but not any trailing padding.
    ///
    /// In order to match the layout of a `#[repr(C)]` struct, this method
    /// should be invoked for each field in declaration order. To add trailing
    /// padding, call `DstLayout::pad_to_align` after extending the layout for
    /// all fields. If `self` corresponds to a type marked with
    /// `repr(packed(N))`, then `repr_packed` should be set to `Some(N)`,
    /// otherwise `None`.
    ///
    /// This method cannot be used to match the layout of a record with the
    /// default representation, as that representation is mostly unspecified.
    ///
    /// # Safety
    ///
    /// If a (potentially hypothetical) valid `repr(C)` Rust type begins with
    /// fields whose layout are `self`, and those fields are immediately
    /// followed by a field whose layout is `field`, then unsafe code may rely
    /// on `self.extend(field, repr_packed)` producing a layout that correctly
    /// encompasses those two components.
    ///
    /// We make no guarantees to the behavior of this method if these fragments
    /// cannot appear in a valid Rust type (e.g., the concatenation of the
    /// layouts would lead to a size larger than `isize::MAX`).
    #[doc(hidden)]
    #[must_use]
    #[inline]
    pub const fn extend(self, field: DstLayout, repr_packed: Option<NonZeroUsize>) -> Self {
        use util::{max, min, padding_needed_for};

        // If `repr_packed` is `None`, there are no alignment constraints, and
        // the value can be defaulted to `THEORETICAL_MAX_ALIGN`.
        let max_align = match repr_packed {
            Some(max_align) => max_align,
            None => Self::THEORETICAL_MAX_ALIGN,
        };

        const_assert!(max_align.get().is_power_of_two());

        // We use Kani to prove that this method is robust to future increases
        // in Rust's maximum allowed alignment. However, if such a change ever
        // actually occurs, we'd like to be notified via assertion failures.
        #[cfg(not(kani))]
        {
            const_debug_assert!(self.align.get() <= DstLayout::CURRENT_MAX_ALIGN.get());
            const_debug_assert!(field.align.get() <= DstLayout::CURRENT_MAX_ALIGN.get());
            if let Some(repr_packed) = repr_packed {
                const_debug_assert!(repr_packed.get() <= DstLayout::CURRENT_MAX_ALIGN.get());
            }
        }

        // The field's alignment is clamped by `repr_packed` (i.e., the
        // `repr(packed(N))` attribute, if any) [1].
        //
        // [1] Per https://doc.rust-lang.org/reference/type-layout.html#the-alignment-modifiers:
        //
        //   The alignments of each field, for the purpose of positioning
        //   fields, is the smaller of the specified alignment and the alignment
        //   of the field's type.
        let field_align = min(field.align, max_align);

        // The struct's alignment is the maximum of its previous alignment and
        // `field_align`.
        let align = max(self.align, field_align);

        let (interfield_padding, size_info) = match self.size_info {
            // If the layout is already a DST, we panic; DSTs cannot be extended
            // with additional fields.
            SizeInfo::SliceDst(..) => const_panic!("Cannot extend a DST with additional fields."),

            SizeInfo::Sized { size: preceding_size } => {
                // Compute the minimum amount of inter-field padding needed to
                // satisfy the field's alignment, and offset of the trailing
                // field. [1]
                //
                // [1] Per https://doc.rust-lang.org/reference/type-layout.html#the-alignment-modifiers:
                //
                //   Inter-field padding is guaranteed to be the minimum
                //   required in order to satisfy each field's (possibly
                //   altered) alignment.
                let padding = padding_needed_for(preceding_size, field_align);

                // This will not panic (and is proven to not panic, with Kani)
                // if the layout components can correspond to a leading layout
                // fragment of a valid Rust type, but may panic otherwise (e.g.,
                // combining or aligning the components would create a size
                // exceeding `isize::MAX`).
                let offset = match preceding_size.checked_add(padding) {
                    Some(offset) => offset,
                    None => const_panic!("Adding padding to `self`'s size overflows `usize`."),
                };

                (
                    padding,
                    match field.size_info {
                        SizeInfo::Sized { size: field_size } => {
                            // If the trailing field is sized, the resulting layout
                            // will be sized. Its size will be the sum of the
                            // preceding layout, the size of the new field, and the
                            // size of inter-field padding between the two.
                            //
                            // This will not panic (and is proven with Kani to not
                            // panic) if the layout components can correspond to a
                            // leading layout fragment of a valid Rust type, but may
                            // panic otherwise (e.g., combining or aligning the
                            // components would create a size exceeding
                            // `usize::MAX`).
                            let size = match offset.checked_add(field_size) {
                                Some(size) => size,
                                None => const_panic!("`field` cannot be appended without the total size overflowing `usize`"),
                            };
                            SizeInfo::Sized { size }
                        }
                        SizeInfo::SliceDst(TrailingSliceLayout {
                            offset: trailing_offset,
                            elem_size,
                        }) => {
                            // If the trailing field is dynamically sized, so too
                            // will the resulting layout. The offset of the trailing
                            // slice component is the sum of the offset of the
                            // trailing field and the trailing slice offset within
                            // that field.
                            //
                            // This will not panic (and is proven with Kani to not
                            // panic) if the layout components can correspond to a
                            // leading layout fragment of a valid Rust type, but may
                            // panic otherwise (e.g., combining or aligning the
                            // components would create a size exceeding
                            // `usize::MAX`).
                            let offset = match offset.checked_add(trailing_offset) {
                                Some(offset) => offset,
                                None => const_panic!("`field` cannot be appended without the total size overflowing `usize`"),
                            };
                            SizeInfo::SliceDst(TrailingSliceLayout { offset, elem_size })
                        }
                    },
                )
            }
        };

        let statically_shallow_unpadded = self.statically_shallow_unpadded
            && field.statically_shallow_unpadded
            && interfield_padding == 0;

        DstLayout { align, size_info, statically_shallow_unpadded }
    }

    /// Like `Layout::pad_to_align`, this routine rounds the size of this layout
    /// up to the nearest multiple of this type's alignment or `repr_packed`
    /// (whichever is less). This method leaves DST layouts unchanged, since the
    /// trailing padding of DSTs is computed at runtime.
    ///
    /// The accompanying boolean is `true` if the resulting composition of
    /// fields necessitated static (as opposed to dynamic) padding; otherwise
    /// `false`.
    ///
    /// In order to match the layout of a `#[repr(C)]` struct, this method
    /// should be invoked after the invocations of [`DstLayout::extend`]. If
    /// `self` corresponds to a type marked with `repr(packed(N))`, then
    /// `repr_packed` should be set to `Some(N)`, otherwise `None`.
    ///
    /// This method cannot be used to match the layout of a record with the
    /// default representation, as that representation is mostly unspecified.
    ///
    /// # Safety
    ///
    /// If a (potentially hypothetical) valid `repr(C)` type begins with fields
    /// whose layout are `self` followed only by zero or more bytes of trailing
    /// padding (not included in `self`), then unsafe code may rely on
    /// `self.pad_to_align(repr_packed)` producing a layout that correctly
    /// encapsulates the layout of that type.
    ///
    /// We make no guarantees to the behavior of this method if `self` cannot
    /// appear in a valid Rust type (e.g., because the addition of trailing
    /// padding would lead to a size larger than `isize::MAX`).
    #[doc(hidden)]
    #[must_use]
    #[inline]
    pub const fn pad_to_align(self) -> Self {
        use util::padding_needed_for;

        let (static_padding, size_info) = match self.size_info {
            // For sized layouts, we add the minimum amount of trailing padding
            // needed to satisfy alignment.
            SizeInfo::Sized { size: unpadded_size } => {
                let padding = padding_needed_for(unpadded_size, self.align);
                let size = match unpadded_size.checked_add(padding) {
                    Some(size) => size,
                    None => const_panic!("Adding padding caused size to overflow `usize`."),
                };
                (padding, SizeInfo::Sized { size })
            }
            // For DST layouts, trailing padding depends on the length of the
            // trailing DST and is computed at runtime. This does not alter the
            // offset or element size of the layout, so we leave `size_info`
            // unchanged.
            size_info @ SizeInfo::SliceDst(_) => (0, size_info),
        };

        let statically_shallow_unpadded = self.statically_shallow_unpadded && static_padding == 0;

        DstLayout { align: self.align, size_info, statically_shallow_unpadded }
    }

    /// Produces `true` if `self` requires static padding; otherwise `false`.
    #[must_use]
    #[inline(always)]
    pub const fn requires_static_padding(self) -> bool {
        !self.statically_shallow_unpadded
    }

    /// Produces `true` if there exists any metadata for which a type of layout
    /// `self` would require dynamic trailing padding; otherwise `false`.
    #[must_use]
    #[inline(always)]
    pub const fn requires_dynamic_padding(self) -> bool {
        // A `% self.align.get()` cannot panic, since `align` is non-zero.
        #[allow(clippy::arithmetic_side_effects)]
        match self.size_info {
            SizeInfo::Sized { .. } => false,
            SizeInfo::SliceDst(trailing_slice_layout) => {
                // SAFETY: This predicate is formally proved sound by
                // `proofs::prove_requires_dynamic_padding`.
                trailing_slice_layout.offset % self.align.get() != 0
                    || trailing_slice_layout.elem_size % self.align.get() != 0
            }
        }
    }

    /// Validates that a cast is sound from a layout perspective.
    ///
    /// Validates that the size and alignment requirements of a type with the
    /// layout described in `self` would not be violated by performing a
    /// `cast_type` cast from a pointer with address `addr` which refers to a
    /// memory region of size `bytes_len`.
    ///
    /// If the cast is valid, `validate_cast_and_convert_metadata` returns
    /// `(elems, split_at)`. If `self` describes a dynamically-sized type, then
    /// `elems` is the maximum number of trailing slice elements for which a
    /// cast would be valid (for sized types, `elem` is meaningless and should
    /// be ignored). `split_at` is the index at which to split the memory region
    /// in order for the prefix (suffix) to contain the result of the cast, and
    /// in order for the remaining suffix (prefix) to contain the leftover
    /// bytes.
    ///
    /// There are three conditions under which a cast can fail:
    /// - The smallest possible value for the type is larger than the provided
    ///   memory region
    /// - A prefix cast is requested, and `addr` does not satisfy `self`'s
    ///   alignment requirement
    /// - A suffix cast is requested, and `addr + bytes_len` does not satisfy
    ///   `self`'s alignment requirement (as a consequence, since all instances
    ///   of the type are a multiple of its alignment, no size for the type will
    ///   result in a starting address which is properly aligned)
    ///
    /// # Safety
    ///
    /// The caller may assume that this implementation is correct, and may rely
    /// on that assumption for the soundness of their code. In particular, the
    /// caller may assume that, if `validate_cast_and_convert_metadata` returns
    /// `Some((elems, split_at))`, then:
    /// - A pointer to the type (for dynamically sized types, this includes
    ///   `elems` as its pointer metadata) describes an object of size `size <=
    ///   bytes_len`
    /// - If this is a prefix cast:
    ///   - `addr` satisfies `self`'s alignment
    ///   - `size == split_at`
    /// - If this is a suffix cast:
    ///   - `split_at == bytes_len - size`
    ///   - `addr + split_at` satisfies `self`'s alignment
    ///
    /// Note that this method does *not* ensure that a pointer constructed from
    /// its return values will be a valid pointer. In particular, this method
    /// does not reason about `isize` overflow, which is a requirement of many
    /// Rust pointer APIs, and may at some point be determined to be a validity
    /// invariant of pointer types themselves. This should never be a problem so
    /// long as the arguments to this method are derived from a known-valid
    /// pointer (e.g., one derived from a safe Rust reference), but it is
    /// nonetheless the caller's responsibility to justify that pointer
    /// arithmetic will not overflow based on a safety argument *other than* the
    /// mere fact that this method returned successfully.
    ///
    /// # Panics
    ///
    /// `validate_cast_and_convert_metadata` will panic if `self` describes a
    /// DST whose trailing slice element is zero-sized.
    ///
    /// If `addr + bytes_len` overflows `usize`,
    /// `validate_cast_and_convert_metadata` may panic, or it may return
    /// incorrect results. No guarantees are made about when
    /// `validate_cast_and_convert_metadata` will panic. The caller should not
    /// rely on `validate_cast_and_convert_metadata` panicking in any particular
    /// condition, even if `debug_assertions` are enabled.
    #[allow(unused)]
    #[inline(always)]
    pub(crate) const fn validate_cast_and_convert_metadata(
        &self,
        addr: usize,
        bytes_len: usize,
        cast_type: CastType,
    ) -> Result<(usize, usize), MetadataCastError> {
        // `debug_assert!`, but with `#[allow(clippy::arithmetic_side_effects)]`.
        macro_rules! __const_debug_assert {
            ($e:expr $(, $msg:expr)?) => {
                const_debug_assert!({
                    #[allow(clippy::arithmetic_side_effects)]
                    let e = $e;
                    e
                } $(, $msg)?);
            };
        }

        // Note that, in practice, `self` is always a compile-time constant. We
        // do this check earlier than needed to ensure that we always panic as a
        // result of bugs in the program (such as calling this function on an
        // invalid type) instead of allowing this panic to be hidden if the cast
        // would have failed anyway for runtime reasons (such as a too-small
        // memory region).
        //
        // FIXME(#67): Once our MSRV is 1.65, use let-else:
        // https://blog.rust-lang.org/2022/11/03/Rust-1.65.0.html#let-else-statements
        let size_info = match self.size_info.try_to_nonzero_elem_size() {
            Some(size_info) => size_info,
            None => const_panic!("attempted to cast to slice type with zero-sized element"),
        };

        // Precondition
        __const_debug_assert!(
            addr.checked_add(bytes_len).is_some(),
            "`addr` + `bytes_len` > usize::MAX"
        );

        // Alignment checks go in their own block to avoid introducing variables
        // into the top-level scope.
        {
            // We check alignment for `addr` (for prefix casts) or `addr +
            // bytes_len` (for suffix casts). For a prefix cast, the correctness
            // of this check is trivial - `addr` is the address the object will
            // live at.
            //
            // For a suffix cast, we know that all valid sizes for the type are
            // a multiple of the alignment (and by safety precondition, we know
            // `DstLayout` may only describe valid Rust types). Thus, a
            // validly-sized instance which lives at a validly-aligned address
            // must also end at a validly-aligned address. Thus, if the end
            // address for a suffix cast (`addr + bytes_len`) is not aligned,
            // then no valid start address will be aligned either.
            let offset = match cast_type {
                CastType::Prefix => 0,
                CastType::Suffix => bytes_len,
            };

            // Addition is guaranteed not to overflow because `offset <=
            // bytes_len`, and `addr + bytes_len <= usize::MAX` is a
            // precondition of this method. Modulus is guaranteed not to divide
            // by 0 because `align` is non-zero.
            #[allow(clippy::arithmetic_side_effects)]
            if (addr + offset) % self.align.get() != 0 {
                return Err(MetadataCastError::Alignment);
            }
        }

        let (elems, self_bytes) = match size_info {
            SizeInfo::Sized { size } => {
                if size > bytes_len {
                    return Err(MetadataCastError::Size);
                }
                (0, size)
            }
            SizeInfo::SliceDst(TrailingSliceLayout { offset, elem_size }) => {
                // Calculate the maximum number of bytes that could be consumed
                // - any number of bytes larger than this will either not be a
                // multiple of the alignment, or will be larger than
                // `bytes_len`.
                let max_total_bytes =
                    util::round_down_to_next_multiple_of_alignment(bytes_len, self.align);
                // Calculate the maximum number of bytes that could be consumed
                // by the trailing slice.
                //
                // FIXME(#67): Once our MSRV is 1.65, use let-else:
                // https://blog.rust-lang.org/2022/11/03/Rust-1.65.0.html#let-else-statements
                let max_slice_and_padding_bytes = match max_total_bytes.checked_sub(offset) {
                    Some(max) => max,
                    // `bytes_len` too small even for 0 trailing slice elements.
                    None => return Err(MetadataCastError::Size),
                };

                // Calculate the number of elements that fit in
                // `max_slice_and_padding_bytes`; any remaining bytes will be
                // considered padding.
                //
                // Guaranteed not to divide by zero: `elem_size` is non-zero.
                #[allow(clippy::arithmetic_side_effects)]
                let elems = max_slice_and_padding_bytes / elem_size.get();
                // Guaranteed not to overflow on multiplication: `usize::MAX >=
                // max_slice_and_padding_bytes >= (max_slice_and_padding_bytes /
                // elem_size) * elem_size`.
                //
                // Guaranteed not to overflow on addition:
                // - max_slice_and_padding_bytes == max_total_bytes - offset
                // - elems * elem_size <= max_slice_and_padding_bytes == max_total_bytes - offset
                // - elems * elem_size + offset <= max_total_bytes <= usize::MAX
                #[allow(clippy::arithmetic_side_effects)]
                let without_padding = offset + elems * elem_size.get();
                // `self_bytes` is equal to the offset bytes plus the bytes
                // consumed by the trailing slice plus any padding bytes
                // required to satisfy the alignment. Note that we have computed
                // the maximum number of trailing slice elements that could fit
                // in `self_bytes`, so any padding is guaranteed to be less than
                // the size of an extra element.
                //
                // Guaranteed not to overflow:
                // - By previous comment: without_padding == elems * elem_size +
                //   offset <= max_total_bytes
                // - By construction, `max_total_bytes` is a multiple of
                //   `self.align`.
                // - At most, adding padding needed to round `without_padding`
                //   up to the next multiple of the alignment will bring
                //   `self_bytes` up to `max_total_bytes`.
                #[allow(clippy::arithmetic_side_effects)]
                let self_bytes =
                    without_padding + util::padding_needed_for(without_padding, self.align);
                (elems, self_bytes)
            }
        };

        __const_debug_assert!(self_bytes <= bytes_len);

        let split_at = match cast_type {
            CastType::Prefix => self_bytes,
            // Guaranteed not to underflow:
            // - In the `Sized` branch, only returns `size` if `size <=
            //   bytes_len`.
            // - In the `SliceDst` branch, calculates `self_bytes <=
            //   max_toatl_bytes`, which is upper-bounded by `bytes_len`.
            #[allow(clippy::arithmetic_side_effects)]
            CastType::Suffix => bytes_len - self_bytes,
        };

        Ok((elems, split_at))
    }
}

pub(crate) use cast_from_raw::cast_from_raw;
mod cast_from_raw {
    use crate::{pointer::PtrInner, *};

    /// Implements [`<Dst as SizeEq<Src>>::cast_from_raw`][cast_from_raw].
    ///
    /// # PME
    ///
    /// Generates a post-monomorphization error if it is not possible to satisfy
    /// the soundness conditions of [`SizeEq::cast_from_raw`][cast_from_raw]
    /// for `Src` and `Dst`.
    ///
    /// [cast_from_raw]: crate::pointer::SizeEq::cast_from_raw
    //
    // FIXME(#1817): Support Sized->Unsized and Unsized->Sized casts
    pub(crate) fn cast_from_raw<Src, Dst>(src: PtrInner<'_, Src>) -> PtrInner<'_, Dst>
    where
        Src: KnownLayout<PointerMetadata = usize> + ?Sized,
        Dst: KnownLayout<PointerMetadata = usize> + ?Sized,
    {
        // At compile time (specifically, post-monomorphization time), we need
        // to compute two things:
        // - Whether, given *any* `*Src`, it is possible to construct a `*Dst`
        //   which addresses the same number of bytes (ie, whether, for any
        //   `Src` pointer metadata, there exists `Dst` pointer metadata that
        //   addresses the same number of bytes)
        // - If this is possible, any information necessary to perform the
        //   `Src`->`Dst` metadata conversion at runtime.
        //
        // Assume that `Src` and `Dst` are slice DSTs, and define:
        // - `S_OFF = Src::LAYOUT.size_info.offset`
        // - `S_ELEM = Src::LAYOUT.size_info.elem_size`
        // - `D_OFF = Dst::LAYOUT.size_info.offset`
        // - `D_ELEM = Dst::LAYOUT.size_info.elem_size`
        //
        // We are trying to solve the following equation:
        //
        //   D_OFF + d_meta * D_ELEM = S_OFF + s_meta * S_ELEM
        //
        // At runtime, we will be attempting to compute `d_meta`, given `s_meta`
        // (a runtime value) and all other parameters (which are compile-time
        // values). We can solve like so:
        //
        //   D_OFF + d_meta * D_ELEM = S_OFF + s_meta * S_ELEM
        //
        //   d_meta * D_ELEM = S_OFF - D_OFF + s_meta * S_ELEM
        //
        //   d_meta = (S_OFF - D_OFF + s_meta * S_ELEM)/D_ELEM
        //
        // Since `d_meta` will be a `usize`, we need the right-hand side to be
        // an integer, and this needs to hold for *any* value of `s_meta` (in
        // order for our conversion to be infallible - ie, to not have to reject
        // certain values of `s_meta` at runtime). This means that:
        // - `s_meta * S_ELEM` must be a multiple of `D_ELEM`
        // - Since this must hold for any value of `s_meta`, `S_ELEM` must be a
        //   multiple of `D_ELEM`
        // - `S_OFF - D_OFF` must be a multiple of `D_ELEM`
        //
        // Thus, let `OFFSET_DELTA_ELEMS = (S_OFF - D_OFF)/D_ELEM` and
        // `ELEM_MULTIPLE = S_ELEM/D_ELEM`. We can rewrite the above expression
        // as:
        //
        //   d_meta = (S_OFF - D_OFF + s_meta * S_ELEM)/D_ELEM
        //
        //   d_meta = OFFSET_DELTA_ELEMS + s_meta * ELEM_MULTIPLE
        //
        // Thus, we just need to compute the following and confirm that they
        // have integer solutions in order to both a) determine whether
        // infallible `Src` -> `Dst` casts are possible and, b) pre-compute the
        // parameters necessary to perform those casts at runtime. These
        // parameters are encapsulated in `CastParams`, which acts as a witness
        // that such infallible casts are possible.

        /// The parameters required in order to perform a pointer cast from
        /// `Src` to `Dst` as described above.
        ///
        /// These are a compile-time function of the layouts of `Src` and `Dst`.
        ///
        /// # Safety
        ///
        /// `offset_delta_elems` and `elem_multiple` must be valid as described
        /// above.
        ///
        /// `Src`'s alignment must not be smaller than `Dst`'s alignment.
        #[derive(Copy, Clone)]
        struct CastParams {
            offset_delta_elems: usize,
            elem_multiple: usize,
        }

        impl CastParams {
            const fn try_compute(src: &DstLayout, dst: &DstLayout) -> Option<CastParams> {
                if src.align.get() < dst.align.get() {
                    return None;
                }

                let (src, dst) = if let (SizeInfo::SliceDst(src), SizeInfo::SliceDst(dst)) =
                    (src.size_info, dst.size_info)
                {
                    (src, dst)
                } else {
                    return None;
                };

                let offset_delta = if let Some(od) = src.offset.checked_sub(dst.offset) {
                    od
                } else {
                    return None;
                };

                let dst_elem_size = if let Some(e) = NonZeroUsize::new(dst.elem_size) {
                    e
                } else {
                    return None;
                };

                // PANICS: `dst_elem_size: NonZeroUsize`, so this won't div by zero.
                #[allow(clippy::arithmetic_side_effects)]
                let delta_mod_other_elem = offset_delta % dst_elem_size.get();

                // PANICS: `dst_elem_size: NonZeroUsize`, so this won't div by zero.
                #[allow(clippy::arithmetic_side_effects)]
                let elem_remainder = src.elem_size % dst_elem_size.get();

                if delta_mod_other_elem != 0 || src.elem_size < dst.elem_size || elem_remainder != 0
                {
                    return None;
                }

                // PANICS: `dst_elem_size: NonZeroUsize`, so this won't div by zero.
                #[allow(clippy::arithmetic_side_effects)]
                let offset_delta_elems = offset_delta / dst_elem_size.get();

                // PANICS: `dst_elem_size: NonZeroUsize`, so this won't div by zero.
                #[allow(clippy::arithmetic_side_effects)]
                let elem_multiple = src.elem_size / dst_elem_size.get();

                // SAFETY: We checked above that `src.align >= dst.align`.
                Some(CastParams {
                    // SAFETY: We checked above that this is an exact ratio.
                    offset_delta_elems,
                    // SAFETY: We checked above that this is an exact ratio.
                    elem_multiple,
                })
            }

            /// # Safety
            ///
            /// `src_meta` describes a `Src` whose size is no larger than
            /// `isize::MAX`.
            ///
            /// The returned metadata describes a `Dst` of the same size as the
            /// original `Src`.
            unsafe fn cast_metadata(self, src_meta: usize) -> usize {
                #[allow(unused)]
                use crate::util::polyfills::*;

                // SAFETY: `self` is a witness that the following equation
                // holds:
                //
                //   D_OFF + d_meta * D_ELEM = S_OFF + s_meta * S_ELEM
                //
                // Since the caller promises that `src_meta` is valid `Src`
                // metadata, this math will not overflow, and the returned value
                // will describe a `Dst` of the same size.
                #[allow(unstable_name_collisions)]
                unsafe {
                    self.offset_delta_elems
                        .unchecked_add(src_meta.unchecked_mul(self.elem_multiple))
                }
            }
        }

        trait Params<Src: ?Sized> {
            const CAST_PARAMS: CastParams;
        }

        impl<Src, Dst> Params<Src> for Dst
        where
            Src: KnownLayout + ?Sized,
            Dst: KnownLayout<PointerMetadata = usize> + ?Sized,
        {
            const CAST_PARAMS: CastParams =
                match CastParams::try_compute(&Src::LAYOUT, &Dst::LAYOUT) {
                    Some(params) => params,
                    None => const_panic!(
                        "cannot `transmute_ref!` or `transmute_mut!` between incompatible types"
                    ),
                };
        }

        let src_meta = <Src as KnownLayout>::pointer_to_metadata(src.as_non_null().as_ptr());
        let params = <Dst as Params<Src>>::CAST_PARAMS;

        // SAFETY: `src: PtrInner`, and so by invariant on `PtrInner`, `src`'s
        // referent is no larger than `isize::MAX`.
        let dst_meta = unsafe { params.cast_metadata(src_meta) };

        let dst = <Dst as KnownLayout>::raw_from_ptr_len(src.as_non_null().cast(), dst_meta);

        // SAFETY: By post-condition on `params.cast_metadata`, `dst` addresses
        // the same number of bytes as `src`. Since `src: PtrInner`, `src` has
        // provenance for its entire referent, which lives inside of a single
        // allocation. Since `dst` has the same address as `src` and was
        // constructed using provenance-preserving operations, it addresses a
        // subset of those bytes, and has provenance for those bytes.
        unsafe { PtrInner::new(dst) }
    }
}

// FIXME(#67): For some reason, on our MSRV toolchain, this `allow` isn't
// enforced despite having `#![allow(unknown_lints)]` at the crate root, but
// putting it here works. Once our MSRV is high enough that this bug has been
// fixed, remove this `allow`.
#[allow(unknown_lints)]
#[cfg(test)]
mod tests {
    use super::*;

    /// Tests of when a sized `DstLayout` is extended with a sized field.
    #[allow(clippy::decimal_literal_representation)]
    #[test]
    fn test_dst_layout_extend_sized_with_sized() {
        // This macro constructs a layout corresponding to a `u8` and extends it
        // with a zero-sized trailing field of given alignment `n`. The macro
        // tests that the resulting layout has both size and alignment `min(n,
        // P)` for all valid values of `repr(packed(P))`.
        macro_rules! test_align_is_size {
            ($n:expr) => {
                let base = DstLayout::for_type::<u8>();
                let trailing_field = DstLayout::for_type::<elain::Align<$n>>();

                let packs =
                    core::iter::once(None).chain((0..29).map(|p| NonZeroUsize::new(2usize.pow(p))));

                for pack in packs {
                    let composite = base.extend(trailing_field, pack);
                    let max_align = pack.unwrap_or(DstLayout::CURRENT_MAX_ALIGN);
                    let align = $n.min(max_align.get());
                    assert_eq!(
                        composite,
                        DstLayout {
                            align: NonZeroUsize::new(align).unwrap(),
                            size_info: SizeInfo::Sized { size: align },
                            statically_shallow_unpadded: false,
                        }
                    )
                }
            };
        }

        test_align_is_size!(1);
        test_align_is_size!(2);
        test_align_is_size!(4);
        test_align_is_size!(8);
        test_align_is_size!(16);
        test_align_is_size!(32);
        test_align_is_size!(64);
        test_align_is_size!(128);
        test_align_is_size!(256);
        test_align_is_size!(512);
        test_align_is_size!(1024);
        test_align_is_size!(2048);
        test_align_is_size!(4096);
        test_align_is_size!(8192);
        test_align_is_size!(16384);
        test_align_is_size!(32768);
        test_align_is_size!(65536);
        test_align_is_size!(131072);
        test_align_is_size!(262144);
        test_align_is_size!(524288);
        test_align_is_size!(1048576);
        test_align_is_size!(2097152);
        test_align_is_size!(4194304);
        test_align_is_size!(8388608);
        test_align_is_size!(16777216);
        test_align_is_size!(33554432);
        test_align_is_size!(67108864);
        test_align_is_size!(33554432);
        test_align_is_size!(134217728);
        test_align_is_size!(268435456);
    }

    /// Tests of when a sized `DstLayout` is extended with a DST field.
    #[test]
    fn test_dst_layout_extend_sized_with_dst() {
        // Test that for all combinations of real-world alignments and
        // `repr_packed` values, that the extension of a sized `DstLayout`` with
        // a DST field correctly computes the trailing offset in the composite
        // layout.

        let aligns = (0..29).map(|p| NonZeroUsize::new(2usize.pow(p)).unwrap());
        let packs = core::iter::once(None).chain(aligns.clone().map(Some));

        for align in aligns {
            for pack in packs.clone() {
                let base = DstLayout::for_type::<u8>();
                let elem_size = 42;
                let trailing_field_offset = 11;

                let trailing_field = DstLayout {
                    align,
                    size_info: SizeInfo::SliceDst(TrailingSliceLayout { elem_size, offset: 11 }),
                    statically_shallow_unpadded: false,
                };

                let composite = base.extend(trailing_field, pack);

                let max_align = pack.unwrap_or(DstLayout::CURRENT_MAX_ALIGN).get();

                let align = align.get().min(max_align);

                assert_eq!(
                    composite,
                    DstLayout {
                        align: NonZeroUsize::new(align).unwrap(),
                        size_info: SizeInfo::SliceDst(TrailingSliceLayout {
                            elem_size,
                            offset: align + trailing_field_offset,
                        }),
                        statically_shallow_unpadded: false,
                    }
                )
            }
        }
    }

    /// Tests that calling `pad_to_align` on a sized `DstLayout` adds the
    /// expected amount of trailing padding.
    #[test]
    fn test_dst_layout_pad_to_align_with_sized() {
        // For all valid alignments `align`, construct a one-byte layout aligned
        // to `align`, call `pad_to_align`, and assert that the size of the
        // resulting layout is equal to `align`.
        for align in (0..29).map(|p| NonZeroUsize::new(2usize.pow(p)).unwrap()) {
            let layout = DstLayout {
                align,
                size_info: SizeInfo::Sized { size: 1 },
                statically_shallow_unpadded: true,
            };

            assert_eq!(
                layout.pad_to_align(),
                DstLayout {
                    align,
                    size_info: SizeInfo::Sized { size: align.get() },
                    statically_shallow_unpadded: align.get() == 1
                }
            );
        }

        // Test explicitly-provided combinations of unpadded and padded
        // counterparts.

        macro_rules! test {
            (unpadded { size: $unpadded_size:expr, align: $unpadded_align:expr }
                    => padded { size: $padded_size:expr, align: $padded_align:expr }) => {
                let unpadded = DstLayout {
                    align: NonZeroUsize::new($unpadded_align).unwrap(),
                    size_info: SizeInfo::Sized { size: $unpadded_size },
                    statically_shallow_unpadded: false,
                };
                let padded = unpadded.pad_to_align();

                assert_eq!(
                    padded,
                    DstLayout {
                        align: NonZeroUsize::new($padded_align).unwrap(),
                        size_info: SizeInfo::Sized { size: $padded_size },
                        statically_shallow_unpadded: false,
                    }
                );
            };
        }

        test!(unpadded { size: 0, align: 4 } => padded { size: 0, align: 4 });
        test!(unpadded { size: 1, align: 4 } => padded { size: 4, align: 4 });
        test!(unpadded { size: 2, align: 4 } => padded { size: 4, align: 4 });
        test!(unpadded { size: 3, align: 4 } => padded { size: 4, align: 4 });
        test!(unpadded { size: 4, align: 4 } => padded { size: 4, align: 4 });
        test!(unpadded { size: 5, align: 4 } => padded { size: 8, align: 4 });
        test!(unpadded { size: 6, align: 4 } => padded { size: 8, align: 4 });
        test!(unpadded { size: 7, align: 4 } => padded { size: 8, align: 4 });
        test!(unpadded { size: 8, align: 4 } => padded { size: 8, align: 4 });

        let current_max_align = DstLayout::CURRENT_MAX_ALIGN.get();

        test!(unpadded { size: 1, align: current_max_align }
                => padded { size: current_max_align, align: current_max_align });

        test!(unpadded { size: current_max_align + 1, align: current_max_align }
                => padded { size: current_max_align * 2, align: current_max_align });
    }

    /// Tests that calling `pad_to_align` on a DST `DstLayout` is a no-op.
    #[test]
    fn test_dst_layout_pad_to_align_with_dst() {
        for align in (0..29).map(|p| NonZeroUsize::new(2usize.pow(p)).unwrap()) {
            for offset in 0..10 {
                for elem_size in 0..10 {
                    let layout = DstLayout {
                        align,
                        size_info: SizeInfo::SliceDst(TrailingSliceLayout { offset, elem_size }),
                        statically_shallow_unpadded: false,
                    };
                    assert_eq!(layout.pad_to_align(), layout);
                }
            }
        }
    }

    // This test takes a long time when running under Miri, so we skip it in
    // that case. This is acceptable because this is a logic test that doesn't
    // attempt to expose UB.
    #[test]
    #[cfg_attr(miri, ignore)]
    fn test_validate_cast_and_convert_metadata() {
        #[allow(non_local_definitions)]
        impl From<usize> for SizeInfo {
            fn from(size: usize) -> SizeInfo {
                SizeInfo::Sized { size }
            }
        }

        #[allow(non_local_definitions)]
        impl From<(usize, usize)> for SizeInfo {
            fn from((offset, elem_size): (usize, usize)) -> SizeInfo {
                SizeInfo::SliceDst(TrailingSliceLayout { offset, elem_size })
            }
        }

        fn layout<S: Into<SizeInfo>>(s: S, align: usize) -> DstLayout {
            DstLayout {
                size_info: s.into(),
                align: NonZeroUsize::new(align).unwrap(),
                statically_shallow_unpadded: false,
            }
        }

        /// This macro accepts arguments in the form of:
        ///
        ///           layout(_, _).validate(_, _, _), Ok(Some((_, _)))
        ///                  |  |           |  |  |            |  |
        ///    size ---------+  |           |  |  |            |  |
        ///    align -----------+           |  |  |            |  |
        ///    addr ------------------------+  |  |            |  |
        ///    bytes_len ----------------------+  |            |  |
        ///    cast_type -------------------------+            |  |
        ///    elems ------------------------------------------+  |
        ///    split_at ------------------------------------------+
        ///
        /// `.validate` is shorthand for `.validate_cast_and_convert_metadata`
        /// for brevity.
        ///
        /// Each argument can either be an iterator or a wildcard. Each
        /// wildcarded variable is implicitly replaced by an iterator over a
        /// representative sample of values for that variable. Each `test!`
        /// invocation iterates over every combination of values provided by
        /// each variable's iterator (ie, the cartesian product) and validates
        /// that the results are expected.
        ///
        /// The final argument uses the same syntax, but it has a different
        /// meaning:
        /// - If it is `Ok(pat)`, then the pattern `pat` is supplied to
        ///   a matching assert to validate the computed result for each
        ///   combination of input values.
        /// - If it is `Err(Some(msg) | None)`, then `test!` validates that the
        ///   call to `validate_cast_and_convert_metadata` panics with the given
        ///   panic message or, if the current Rust toolchain version is too
        ///   early to support panicking in `const fn`s, panics with *some*
        ///   message. In the latter case, the `const_panic!` macro is used,
        ///   which emits code which causes a non-panicking error at const eval
        ///   time, but which does panic when invoked at runtime. Thus, it is
        ///   merely difficult to predict the *value* of this panic. We deem
        ///   that testing against the real panic strings on stable and nightly
        ///   toolchains is enough to ensure correctness.
        ///
        /// Note that the meta-variables that match these variables have the
        /// `tt` type, and some valid expressions are not valid `tt`s (such as
        /// `a..b`). In this case, wrap the expression in parentheses, and it
        /// will become valid `tt`.
        macro_rules! test {
                (
                    layout($size:tt, $align:tt)
                    .validate($addr:tt, $bytes_len:tt, $cast_type:tt), $expect:pat $(,)?
                ) => {
                    itertools::iproduct!(
                        test!(@generate_size $size),
                        test!(@generate_align $align),
                        test!(@generate_usize $addr),
                        test!(@generate_usize $bytes_len),
                        test!(@generate_cast_type $cast_type)
                    ).for_each(|(size_info, align, addr, bytes_len, cast_type)| {
                        // Temporarily disable the panic hook installed by the test
                        // harness. If we don't do this, all panic messages will be
                        // kept in an internal log. On its own, this isn't a
                        // problem, but if a non-caught panic ever happens (ie, in
                        // code later in this test not in this macro), all of the
                        // previously-buffered messages will be dumped, hiding the
                        // real culprit.
                        let previous_hook = std::panic::take_hook();
                        // I don't understand why, but this seems to be required in
                        // addition to the previous line.
                        std::panic::set_hook(Box::new(|_| {}));
                        let actual = std::panic::catch_unwind(|| {
                            layout(size_info, align).validate_cast_and_convert_metadata(addr, bytes_len, cast_type)
                        }).map_err(|d| {
                            let msg = d.downcast::<&'static str>().ok().map(|s| *s.as_ref());
                            assert!(msg.is_some() || cfg!(not(zerocopy_panic_in_const_and_vec_try_reserve_1_57_0)), "non-string panic messages are not permitted when `--cfg zerocopy_panic_in_const_and_vec_try_reserve` is set");
                            msg
                        });
                        std::panic::set_hook(previous_hook);

                        assert!(
                            matches!(actual, $expect),
                            "layout({:?}, {}).validate_cast_and_convert_metadata({}, {}, {:?})" ,size_info, align, addr, bytes_len, cast_type
                        );
                    });
                };
                (@generate_usize _) => { 0..8 };
                // Generate sizes for both Sized and !Sized types.
                (@generate_size _) => {
                    test!(@generate_size (_)).chain(test!(@generate_size (_, _)))
                };
                // Generate sizes for both Sized and !Sized types by chaining
                // specified iterators for each.
                (@generate_size ($sized_sizes:tt | $unsized_sizes:tt)) => {
                    test!(@generate_size ($sized_sizes)).chain(test!(@generate_size $unsized_sizes))
                };
                // Generate sizes for Sized types.
                (@generate_size (_)) => { test!(@generate_size (0..8)) };
                (@generate_size ($sizes:expr)) => { $sizes.into_iter().map(Into::<SizeInfo>::into) };
                // Generate sizes for !Sized types.
                (@generate_size ($min_sizes:tt, $elem_sizes:tt)) => {
                    itertools::iproduct!(
                        test!(@generate_min_size $min_sizes),
                        test!(@generate_elem_size $elem_sizes)
                    ).map(Into::<SizeInfo>::into)
                };
                (@generate_fixed_size _) => { (0..8).into_iter().map(Into::<SizeInfo>::into) };
                (@generate_min_size _) => { 0..8 };
                (@generate_elem_size _) => { 1..8 };
                (@generate_align _) => { [1, 2, 4, 8, 16] };
                (@generate_opt_usize _) => { [None].into_iter().chain((0..8).map(Some).into_iter()) };
                (@generate_cast_type _) => { [CastType::Prefix, CastType::Suffix] };
                (@generate_cast_type $variant:ident) => { [CastType::$variant] };
                // Some expressions need to be wrapped in parentheses in order to be
                // valid `tt`s (required by the top match pattern). See the comment
                // below for more details. This arm removes these parentheses to
                // avoid generating an `unused_parens` warning.
                (@$_:ident ($vals:expr)) => { $vals };
                (@$_:ident $vals:expr) => { $vals };
            }

        const EVENS: [usize; 8] = [0, 2, 4, 6, 8, 10, 12, 14];
        const ODDS: [usize; 8] = [1, 3, 5, 7, 9, 11, 13, 15];

        // base_size is too big for the memory region.
        test!(
            layout(((1..8) | ((1..8), (1..8))), _).validate([0], [0], _),
            Ok(Err(MetadataCastError::Size))
        );
        test!(
            layout(((2..8) | ((2..8), (2..8))), _).validate([0], [1], Prefix),
            Ok(Err(MetadataCastError::Size))
        );
        test!(
            layout(((2..8) | ((2..8), (2..8))), _).validate([0x1000_0000 - 1], [1], Suffix),
            Ok(Err(MetadataCastError::Size))
        );

        // addr is unaligned for prefix cast
        test!(layout(_, [2]).validate(ODDS, _, Prefix), Ok(Err(MetadataCastError::Alignment)));
        test!(layout(_, [2]).validate(ODDS, _, Prefix), Ok(Err(MetadataCastError::Alignment)));

        // addr is aligned, but end of buffer is unaligned for suffix cast
        test!(layout(_, [2]).validate(EVENS, ODDS, Suffix), Ok(Err(MetadataCastError::Alignment)));
        test!(layout(_, [2]).validate(EVENS, ODDS, Suffix), Ok(Err(MetadataCastError::Alignment)));

        // Unfortunately, these constants cannot easily be used in the
        // implementation of `validate_cast_and_convert_metadata`, since
        // `panic!` consumes a string literal, not an expression.
        //
        // It's important that these messages be in a separate module. If they
        // were at the function's top level, we'd pass them to `test!` as, e.g.,
        // `Err(TRAILING)`, which would run into a subtle Rust footgun - the
        // `TRAILING` identifier would be treated as a pattern to match rather
        // than a value to check for equality.
        mod msgs {
            pub(super) const TRAILING: &str =
                "attempted to cast to slice type with zero-sized element";
            pub(super) const OVERFLOW: &str = "`addr` + `bytes_len` > usize::MAX";
        }

        // casts with ZST trailing element types are unsupported
        test!(layout((_, [0]), _).validate(_, _, _), Err(Some(msgs::TRAILING) | None),);

        // addr + bytes_len must not overflow usize
        test!(layout(_, _).validate([usize::MAX], (1..100), _), Err(Some(msgs::OVERFLOW) | None));
        test!(layout(_, _).validate((1..100), [usize::MAX], _), Err(Some(msgs::OVERFLOW) | None));
        test!(
            layout(_, _).validate(
                [usize::MAX / 2 + 1, usize::MAX],
                [usize::MAX / 2 + 1, usize::MAX],
                _
            ),
            Err(Some(msgs::OVERFLOW) | None)
        );

        // Validates that `validate_cast_and_convert_metadata` satisfies its own
        // documented safety postconditions, and also a few other properties
        // that aren't documented but we want to guarantee anyway.
        fn validate_behavior(
            (layout, addr, bytes_len, cast_type): (DstLayout, usize, usize, CastType),
        ) {
            if let Ok((elems, split_at)) =
                layout.validate_cast_and_convert_metadata(addr, bytes_len, cast_type)
            {
                let (size_info, align) = (layout.size_info, layout.align);
                let debug_str = format!(
                    "layout({:?}, {}).validate_cast_and_convert_metadata({}, {}, {:?}) => ({}, {})",
                    size_info, align, addr, bytes_len, cast_type, elems, split_at
                );

                // If this is a sized type (no trailing slice), then `elems` is
                // meaningless, but in practice we set it to 0. Callers are not
                // allowed to rely on this, but a lot of math is nicer if
                // they're able to, and some callers might accidentally do that.
                let sized = matches!(layout.size_info, SizeInfo::Sized { .. });
                assert!(!(sized && elems != 0), "{}", debug_str);

                let resulting_size = match layout.size_info {
                    SizeInfo::Sized { size } => size,
                    SizeInfo::SliceDst(TrailingSliceLayout { offset, elem_size }) => {
                        let padded_size = |elems| {
                            let without_padding = offset + elems * elem_size;
                            without_padding + util::padding_needed_for(without_padding, align)
                        };

                        let resulting_size = padded_size(elems);
                        // Test that `validate_cast_and_convert_metadata`
                        // computed the largest possible value that fits in the
                        // given range.
                        assert!(padded_size(elems + 1) > bytes_len, "{}", debug_str);
                        resulting_size
                    }
                };

                // Test safety postconditions guaranteed by
                // `validate_cast_and_convert_metadata`.
                assert!(resulting_size <= bytes_len, "{}", debug_str);
                match cast_type {
                    CastType::Prefix => {
                        assert_eq!(addr % align, 0, "{}", debug_str);
                        assert_eq!(resulting_size, split_at, "{}", debug_str);
                    }
                    CastType::Suffix => {
                        assert_eq!(split_at, bytes_len - resulting_size, "{}", debug_str);
                        assert_eq!((addr + split_at) % align, 0, "{}", debug_str);
                    }
                }
            } else {
                let min_size = match layout.size_info {
                    SizeInfo::Sized { size } => size,
                    SizeInfo::SliceDst(TrailingSliceLayout { offset, .. }) => {
                        offset + util::padding_needed_for(offset, layout.align)
                    }
                };

                // If a cast is invalid, it is either because...
                // 1. there are insufficient bytes at the given region for type:
                let insufficient_bytes = bytes_len < min_size;
                // 2. performing the cast would misalign type:
                let base = match cast_type {
                    CastType::Prefix => 0,
                    CastType::Suffix => bytes_len,
                };
                let misaligned = (base + addr) % layout.align != 0;

                assert!(insufficient_bytes || misaligned);
            }
        }

        let sizes = 0..8;
        let elem_sizes = 1..8;
        let size_infos = sizes
            .clone()
            .map(Into::<SizeInfo>::into)
            .chain(itertools::iproduct!(sizes, elem_sizes).map(Into::<SizeInfo>::into));
        let layouts = itertools::iproduct!(size_infos, [1, 2, 4, 8, 16, 32])
                .filter(|(size_info, align)| !matches!(size_info, SizeInfo::Sized { size } if size % align != 0))
                .map(|(size_info, align)| layout(size_info, align));
        itertools::iproduct!(layouts, 0..8, 0..8, [CastType::Prefix, CastType::Suffix])
            .for_each(validate_behavior);
    }

    #[test]
    #[cfg(__ZEROCOPY_INTERNAL_USE_ONLY_NIGHTLY_FEATURES_IN_TESTS)]
    fn test_validate_rust_layout() {
        use core::{
            convert::TryInto as _,
            ptr::{self, NonNull},
        };

        use crate::util::testutil::*;

        // This test synthesizes pointers with various metadata and uses Rust's
        // built-in APIs to confirm that Rust makes decisions about type layout
        // which are consistent with what we believe is guaranteed by the
        // language. If this test fails, it doesn't just mean our code is wrong
        // - it means we're misunderstanding the language's guarantees.

        #[derive(Debug)]
        struct MacroArgs {
            offset: usize,
            align: NonZeroUsize,
            elem_size: Option<usize>,
        }

        /// # Safety
        ///
        /// `test` promises to only call `addr_of_slice_field` on a `NonNull<T>`
        /// which points to a valid `T`.
        ///
        /// `with_elems` must produce a pointer which points to a valid `T`.
        fn test<T: ?Sized, W: Fn(usize) -> NonNull<T>>(
            args: MacroArgs,
            with_elems: W,
            addr_of_slice_field: Option<fn(NonNull<T>) -> NonNull<u8>>,
        ) {
            let dst = args.elem_size.is_some();
            let layout = {
                let size_info = match args.elem_size {
                    Some(elem_size) => {
                        SizeInfo::SliceDst(TrailingSliceLayout { offset: args.offset, elem_size })
                    }
                    None => SizeInfo::Sized {
                        // Rust only supports types whose sizes are a multiple
                        // of their alignment. If the macro created a type like
                        // this:
                        //
                        //   #[repr(C, align(2))]
                        //   struct Foo([u8; 1]);
                        //
                        // ...then Rust will automatically round the type's size
                        // up to 2.
                        size: args.offset + util::padding_needed_for(args.offset, args.align),
                    },
                };
                DstLayout { size_info, align: args.align, statically_shallow_unpadded: false }
            };

            for elems in 0..128 {
                let ptr = with_elems(elems);

                if let Some(addr_of_slice_field) = addr_of_slice_field {
                    let slc_field_ptr = addr_of_slice_field(ptr).as_ptr();
                    // SAFETY: Both `slc_field_ptr` and `ptr` are pointers to
                    // the same valid Rust object.
                    // Work around https://github.com/rust-lang/rust-clippy/issues/12280
                    let offset: usize =
                        unsafe { slc_field_ptr.byte_offset_from(ptr.as_ptr()).try_into().unwrap() };
                    assert_eq!(offset, args.offset);
                }

                // SAFETY: `ptr` points to a valid `T`.
                let (size, align) = unsafe {
                    (mem::size_of_val_raw(ptr.as_ptr()), mem::align_of_val_raw(ptr.as_ptr()))
                };

                // Avoid expensive allocation when running under Miri.
                let assert_msg = if !cfg!(miri) {
                    format!("\n{:?}\nsize:{}, align:{}", args, size, align)
                } else {
                    String::new()
                };

                let without_padding =
                    args.offset + args.elem_size.map(|elem_size| elems * elem_size).unwrap_or(0);
                assert!(size >= without_padding, "{}", assert_msg);
                assert_eq!(align, args.align.get(), "{}", assert_msg);

                // This encodes the most important part of the test: our
                // understanding of how Rust determines the layout of repr(C)
                // types. Sized repr(C) types are trivial, but DST types have
                // some subtlety. Note that:
                // - For sized types, `without_padding` is just the size of the
                //   type that we constructed for `Foo`. Since we may have
                //   requested a larger alignment, `Foo` may actually be larger
                //   than this, hence `padding_needed_for`.
                // - For unsized types, `without_padding` is dynamically
                //   computed from the offset, the element size, and element
                //   count. We expect that the size of the object should be
                //   `offset + elem_size * elems` rounded up to the next
                //   alignment.
                let expected_size =
                    without_padding + util::padding_needed_for(without_padding, args.align);
                assert_eq!(expected_size, size, "{}", assert_msg);

                // For zero-sized element types,
                // `validate_cast_and_convert_metadata` just panics, so we skip
                // testing those types.
                if args.elem_size.map(|elem_size| elem_size > 0).unwrap_or(true) {
                    let addr = ptr.addr().get();
                    let (got_elems, got_split_at) = layout
                        .validate_cast_and_convert_metadata(addr, size, CastType::Prefix)
                        .unwrap();
                    // Avoid expensive allocation when running under Miri.
                    let assert_msg = if !cfg!(miri) {
                        format!(
                            "{}\nvalidate_cast_and_convert_metadata({}, {})",
                            assert_msg, addr, size,
                        )
                    } else {
                        String::new()
                    };
                    assert_eq!(got_split_at, size, "{}", assert_msg);
                    if dst {
                        assert!(got_elems >= elems, "{}", assert_msg);
                        if got_elems != elems {
                            // If `validate_cast_and_convert_metadata`
                            // returned more elements than `elems`, that
                            // means that `elems` is not the maximum number
                            // of elements that can fit in `size` - in other
                            // words, there is enough padding at the end of
                            // the value to fit at least one more element.
                            // If we use this metadata to synthesize a
                            // pointer, despite having a different element
                            // count, we still expect it to have the same
                            // size.
                            let got_ptr = with_elems(got_elems);
                            // SAFETY: `got_ptr` is a pointer to a valid `T`.
                            let size_of_got_ptr = unsafe { mem::size_of_val_raw(got_ptr.as_ptr()) };
                            assert_eq!(size_of_got_ptr, size, "{}", assert_msg);
                        }
                    } else {
                        // For sized casts, the returned element value is
                        // technically meaningless, and we don't guarantee any
                        // particular value. In practice, it's always zero.
                        assert_eq!(got_elems, 0, "{}", assert_msg)
                    }
                }
            }
        }

        macro_rules! validate_against_rust {
                ($offset:literal, $align:literal $(, $elem_size:literal)?) => {{
                    #[repr(C, align($align))]
                    struct Foo([u8; $offset]$(, [[u8; $elem_size]])?);

                    let args = MacroArgs {
                        offset: $offset,
                        align: $align.try_into().unwrap(),
                        elem_size: {
                            #[allow(unused)]
                            let ret = None::<usize>;
                            $(let ret = Some($elem_size);)?
                            ret
                        }
                    };

                    #[repr(C, align($align))]
                    struct FooAlign;
                    // Create an aligned buffer to use in order to synthesize
                    // pointers to `Foo`. We don't ever load values from these
                    // pointers - we just do arithmetic on them - so having a "real"
                    // block of memory as opposed to a validly-aligned-but-dangling
                    // pointer is only necessary to make Miri happy since we run it
                    // with "strict provenance" checking enabled.
                    let aligned_buf = Align::<_, FooAlign>::new([0u8; 1024]);
                    let with_elems = |elems| {
                        let slc = NonNull::slice_from_raw_parts(NonNull::from(&aligned_buf.t), elems);
                        #[allow(clippy::as_conversions)]
                        NonNull::new(slc.as_ptr() as *mut Foo).unwrap()
                    };
                    let addr_of_slice_field = {
                        #[allow(unused)]
                        let f = None::<fn(NonNull<Foo>) -> NonNull<u8>>;
                        $(
                            // SAFETY: `test` promises to only call `f` with a `ptr`
                            // to a valid `Foo`.
                            let f: Option<fn(NonNull<Foo>) -> NonNull<u8>> = Some(|ptr: NonNull<Foo>| unsafe {
                                NonNull::new(ptr::addr_of_mut!((*ptr.as_ptr()).1)).unwrap().cast::<u8>()
                            });
                            let _ = $elem_size;
                        )?
                        f
                    };

                    test::<Foo, _>(args, with_elems, addr_of_slice_field);
                }};
            }

        // Every permutation of:
        // - offset in [0, 4]
        // - align in [1, 16]
        // - elem_size in [0, 4] (plus no elem_size)
        validate_against_rust!(0, 1);
        validate_against_rust!(0, 1, 0);
        validate_against_rust!(0, 1, 1);
        validate_against_rust!(0, 1, 2);
        validate_against_rust!(0, 1, 3);
        validate_against_rust!(0, 1, 4);
        validate_against_rust!(0, 2);
        validate_against_rust!(0, 2, 0);
        validate_against_rust!(0, 2, 1);
        validate_against_rust!(0, 2, 2);
        validate_against_rust!(0, 2, 3);
        validate_against_rust!(0, 2, 4);
        validate_against_rust!(0, 4);
        validate_against_rust!(0, 4, 0);
        validate_against_rust!(0, 4, 1);
        validate_against_rust!(0, 4, 2);
        validate_against_rust!(0, 4, 3);
        validate_against_rust!(0, 4, 4);
        validate_against_rust!(0, 8);
        validate_against_rust!(0, 8, 0);
        validate_against_rust!(0, 8, 1);
        validate_against_rust!(0, 8, 2);
        validate_against_rust!(0, 8, 3);
        validate_against_rust!(0, 8, 4);
        validate_against_rust!(0, 16);
        validate_against_rust!(0, 16, 0);
        validate_against_rust!(0, 16, 1);
        validate_against_rust!(0, 16, 2);
        validate_against_rust!(0, 16, 3);
        validate_against_rust!(0, 16, 4);
        validate_against_rust!(1, 1);
        validate_against_rust!(1, 1, 0);
        validate_against_rust!(1, 1, 1);
        validate_against_rust!(1, 1, 2);
        validate_against_rust!(1, 1, 3);
        validate_against_rust!(1, 1, 4);
        validate_against_rust!(1, 2);
        validate_against_rust!(1, 2, 0);
        validate_against_rust!(1, 2, 1);
        validate_against_rust!(1, 2, 2);
        validate_against_rust!(1, 2, 3);
        validate_against_rust!(1, 2, 4);
        validate_against_rust!(1, 4);
        validate_against_rust!(1, 4, 0);
        validate_against_rust!(1, 4, 1);
        validate_against_rust!(1, 4, 2);
        validate_against_rust!(1, 4, 3);
        validate_against_rust!(1, 4, 4);
        validate_against_rust!(1, 8);
        validate_against_rust!(1, 8, 0);
        validate_against_rust!(1, 8, 1);
        validate_against_rust!(1, 8, 2);
        validate_against_rust!(1, 8, 3);
        validate_against_rust!(1, 8, 4);
        validate_against_rust!(1, 16);
        validate_against_rust!(1, 16, 0);
        validate_against_rust!(1, 16, 1);
        validate_against_rust!(1, 16, 2);
        validate_against_rust!(1, 16, 3);
        validate_against_rust!(1, 16, 4);
        validate_against_rust!(2, 1);
        validate_against_rust!(2, 1, 0);
        validate_against_rust!(2, 1, 1);
        validate_against_rust!(2, 1, 2);
        validate_against_rust!(2, 1, 3);
        validate_against_rust!(2, 1, 4);
        validate_against_rust!(2, 2);
        validate_against_rust!(2, 2, 0);
        validate_against_rust!(2, 2, 1);
        validate_against_rust!(2, 2, 2);
        validate_against_rust!(2, 2, 3);
        validate_against_rust!(2, 2, 4);
        validate_against_rust!(2, 4);
        validate_against_rust!(2, 4, 0);
        validate_against_rust!(2, 4, 1);
        validate_against_rust!(2, 4, 2);
        validate_against_rust!(2, 4, 3);
        validate_against_rust!(2, 4, 4);
        validate_against_rust!(2, 8);
        validate_against_rust!(2, 8, 0);
        validate_against_rust!(2, 8, 1);
        validate_against_rust!(2, 8, 2);
        validate_against_rust!(2, 8, 3);
        validate_against_rust!(2, 8, 4);
        validate_against_rust!(2, 16);
        validate_against_rust!(2, 16, 0);
        validate_against_rust!(2, 16, 1);
        validate_against_rust!(2, 16, 2);
        validate_against_rust!(2, 16, 3);
        validate_against_rust!(2, 16, 4);
        validate_against_rust!(3, 1);
        validate_against_rust!(3, 1, 0);
        validate_against_rust!(3, 1, 1);
        validate_against_rust!(3, 1, 2);
        validate_against_rust!(3, 1, 3);
        validate_against_rust!(3, 1, 4);
        validate_against_rust!(3, 2);
        validate_against_rust!(3, 2, 0);
        validate_against_rust!(3, 2, 1);
        validate_against_rust!(3, 2, 2);
        validate_against_rust!(3, 2, 3);
        validate_against_rust!(3, 2, 4);
        validate_against_rust!(3, 4);
        validate_against_rust!(3, 4, 0);
        validate_against_rust!(3, 4, 1);
        validate_against_rust!(3, 4, 2);
        validate_against_rust!(3, 4, 3);
        validate_against_rust!(3, 4, 4);
        validate_against_rust!(3, 8);
        validate_against_rust!(3, 8, 0);
        validate_against_rust!(3, 8, 1);
        validate_against_rust!(3, 8, 2);
        validate_against_rust!(3, 8, 3);
        validate_against_rust!(3, 8, 4);
        validate_against_rust!(3, 16);
        validate_against_rust!(3, 16, 0);
        validate_against_rust!(3, 16, 1);
        validate_against_rust!(3, 16, 2);
        validate_against_rust!(3, 16, 3);
        validate_against_rust!(3, 16, 4);
        validate_against_rust!(4, 1);
        validate_against_rust!(4, 1, 0);
        validate_against_rust!(4, 1, 1);
        validate_against_rust!(4, 1, 2);
        validate_against_rust!(4, 1, 3);
        validate_against_rust!(4, 1, 4);
        validate_against_rust!(4, 2);
        validate_against_rust!(4, 2, 0);
        validate_against_rust!(4, 2, 1);
        validate_against_rust!(4, 2, 2);
        validate_against_rust!(4, 2, 3);
        validate_against_rust!(4, 2, 4);
        validate_against_rust!(4, 4);
        validate_against_rust!(4, 4, 0);
        validate_against_rust!(4, 4, 1);
        validate_against_rust!(4, 4, 2);
        validate_against_rust!(4, 4, 3);
        validate_against_rust!(4, 4, 4);
        validate_against_rust!(4, 8);
        validate_against_rust!(4, 8, 0);
        validate_against_rust!(4, 8, 1);
        validate_against_rust!(4, 8, 2);
        validate_against_rust!(4, 8, 3);
        validate_against_rust!(4, 8, 4);
        validate_against_rust!(4, 16);
        validate_against_rust!(4, 16, 0);
        validate_against_rust!(4, 16, 1);
        validate_against_rust!(4, 16, 2);
        validate_against_rust!(4, 16, 3);
        validate_against_rust!(4, 16, 4);
    }
}

#[cfg(kani)]
mod proofs {
    use core::alloc::Layout;

    use super::*;

    impl kani::Arbitrary for DstLayout {
        fn any() -> Self {
            let align: NonZeroUsize = kani::any();
            let size_info: SizeInfo = kani::any();

            kani::assume(align.is_power_of_two());
            kani::assume(align < DstLayout::THEORETICAL_MAX_ALIGN);

            // For testing purposes, we most care about instantiations of
            // `DstLayout` that can correspond to actual Rust types. We use
            // `Layout` to verify that our `DstLayout` satisfies the validity
            // conditions of Rust layouts.
            kani::assume(
                match size_info {
                    SizeInfo::Sized { size } => Layout::from_size_align(size, align.get()),
                    SizeInfo::SliceDst(TrailingSliceLayout { offset, elem_size: _ }) => {
                        // `SliceDst` cannot encode an exact size, but we know
                        // it is at least `offset` bytes.
                        Layout::from_size_align(offset, align.get())
                    }
                }
                .is_ok(),
            );

            Self { align: align, size_info: size_info, statically_shallow_unpadded: kani::any() }
        }
    }

    impl kani::Arbitrary for SizeInfo {
        fn any() -> Self {
            let is_sized: bool = kani::any();

            match is_sized {
                true => {
                    let size: usize = kani::any();

                    kani::assume(size <= isize::MAX as _);

                    SizeInfo::Sized { size }
                }
                false => SizeInfo::SliceDst(kani::any()),
            }
        }
    }

    impl kani::Arbitrary for TrailingSliceLayout {
        fn any() -> Self {
            let elem_size: usize = kani::any();
            let offset: usize = kani::any();

            kani::assume(elem_size < isize::MAX as _);
            kani::assume(offset < isize::MAX as _);

            TrailingSliceLayout { elem_size, offset }
        }
    }

    #[kani::proof]
    fn prove_requires_dynamic_padding() {
        let layout: DstLayout = kani::any();

        let SizeInfo::SliceDst(size_info) = layout.size_info else {
            kani::assume(false);
            loop {}
        };

        let meta: usize = kani::any();

        let Some(trailing_slice_size) = size_info.elem_size.checked_mul(meta) else {
            // The `trailing_slice_size` exceeds `usize::MAX`; `meta` is invalid.
            kani::assume(false);
            loop {}
        };

        let Some(unpadded_size) = size_info.offset.checked_add(trailing_slice_size) else {
            // The `unpadded_size` exceeds `usize::MAX`; `meta`` is invalid.
            kani::assume(false);
            loop {}
        };

        if unpadded_size >= isize::MAX as usize {
            // The `unpadded_size` exceeds `isize::MAX`; `meta` is invalid.
            kani::assume(false);
            loop {}
        }

        let trailing_padding = util::padding_needed_for(unpadded_size, layout.align);

        if !layout.requires_dynamic_padding() {
            assert!(trailing_padding == 0);
        }
    }

    #[kani::proof]
    fn prove_dst_layout_extend() {
        use crate::util::{max, min, padding_needed_for};

        let base: DstLayout = kani::any();
        let field: DstLayout = kani::any();
        let packed: Option<NonZeroUsize> = kani::any();

        if let Some(max_align) = packed {
            kani::assume(max_align.is_power_of_two());
            kani::assume(base.align <= max_align);
        }

        // The base can only be extended if it's sized.
        kani::assume(matches!(base.size_info, SizeInfo::Sized { .. }));
        let base_size = if let SizeInfo::Sized { size } = base.size_info {
            size
        } else {
            unreachable!();
        };

        // Under the above conditions, `DstLayout::extend` will not panic.
        let composite = base.extend(field, packed);

        // The field's alignment is clamped by `max_align` (i.e., the
        // `packed` attribute, if any) [1].
        //
        // [1] Per https://doc.rust-lang.org/reference/type-layout.html#the-alignment-modifiers:
        //
        //   The alignments of each field, for the purpose of positioning
        //   fields, is the smaller of the specified alignment and the
        //   alignment of the field's type.
        let field_align = min(field.align, packed.unwrap_or(DstLayout::THEORETICAL_MAX_ALIGN));

        // The struct's alignment is the maximum of its previous alignment and
        // `field_align`.
        assert_eq!(composite.align, max(base.align, field_align));

        // Compute the minimum amount of inter-field padding needed to
        // satisfy the field's alignment, and offset of the trailing field.
        // [1]
        //
        // [1] Per https://doc.rust-lang.org/reference/type-layout.html#the-alignment-modifiers:
        //
        //   Inter-field padding is guaranteed to be the minimum required in
        //   order to satisfy each field's (possibly altered) alignment.
        let padding = padding_needed_for(base_size, field_align);
        let offset = base_size + padding;

        // For testing purposes, we'll also construct `alloc::Layout`
        // stand-ins for `DstLayout`, and show that `extend` behaves
        // comparably on both types.
        let base_analog = Layout::from_size_align(base_size, base.align.get()).unwrap();

        match field.size_info {
            SizeInfo::Sized { size: field_size } => {
                if let SizeInfo::Sized { size: composite_size } = composite.size_info {
                    // If the trailing field is sized, the resulting layout will
                    // be sized. Its size will be the sum of the preceding
                    // layout, the size of the new field, and the size of
                    // inter-field padding between the two.
                    assert_eq!(composite_size, offset + field_size);

                    let field_analog =
                        Layout::from_size_align(field_size, field_align.get()).unwrap();

                    if let Ok((actual_composite, actual_offset)) = base_analog.extend(field_analog)
                    {
                        assert_eq!(actual_offset, offset);
                        assert_eq!(actual_composite.size(), composite_size);
                        assert_eq!(actual_composite.align(), composite.align.get());
                    } else {
                        // An error here reflects that composite of `base`
                        // and `field` cannot correspond to a real Rust type
                        // fragment, because such a fragment would violate
                        // the basic invariants of a valid Rust layout. At
                        // the time of writing, `DstLayout` is a little more
                        // permissive than `Layout`, so we don't assert
                        // anything in this branch (e.g., unreachability).
                    }
                } else {
                    panic!("The composite of two sized layouts must be sized.")
                }
            }
            SizeInfo::SliceDst(TrailingSliceLayout {
                offset: field_offset,
                elem_size: field_elem_size,
            }) => {
                if let SizeInfo::SliceDst(TrailingSliceLayout {
                    offset: composite_offset,
                    elem_size: composite_elem_size,
                }) = composite.size_info
                {
                    // The offset of the trailing slice component is the sum
                    // of the offset of the trailing field and the trailing
                    // slice offset within that field.
                    assert_eq!(composite_offset, offset + field_offset);
                    // The elem size is unchanged.
                    assert_eq!(composite_elem_size, field_elem_size);

                    let field_analog =
                        Layout::from_size_align(field_offset, field_align.get()).unwrap();

                    if let Ok((actual_composite, actual_offset)) = base_analog.extend(field_analog)
                    {
                        assert_eq!(actual_offset, offset);
                        assert_eq!(actual_composite.size(), composite_offset);
                        assert_eq!(actual_composite.align(), composite.align.get());
                    } else {
                        // An error here reflects that composite of `base`
                        // and `field` cannot correspond to a real Rust type
                        // fragment, because such a fragment would violate
                        // the basic invariants of a valid Rust layout. At
                        // the time of writing, `DstLayout` is a little more
                        // permissive than `Layout`, so we don't assert
                        // anything in this branch (e.g., unreachability).
                    }
                } else {
                    panic!("The extension of a layout with a DST must result in a DST.")
                }
            }
        }
    }

    #[kani::proof]
    #[kani::should_panic]
    fn prove_dst_layout_extend_dst_panics() {
        let base: DstLayout = kani::any();
        let field: DstLayout = kani::any();
        let packed: Option<NonZeroUsize> = kani::any();

        if let Some(max_align) = packed {
            kani::assume(max_align.is_power_of_two());
            kani::assume(base.align <= max_align);
        }

        kani::assume(matches!(base.size_info, SizeInfo::SliceDst(..)));

        let _ = base.extend(field, packed);
    }

    #[kani::proof]
    fn prove_dst_layout_pad_to_align() {
        use crate::util::padding_needed_for;

        let layout: DstLayout = kani::any();

        let padded = layout.pad_to_align();

        // Calling `pad_to_align` does not alter the `DstLayout`'s alignment.
        assert_eq!(padded.align, layout.align);

        if let SizeInfo::Sized { size: unpadded_size } = layout.size_info {
            if let SizeInfo::Sized { size: padded_size } = padded.size_info {
                // If the layout is sized, it will remain sized after padding is
                // added. Its sum will be its unpadded size and the size of the
                // trailing padding needed to satisfy its alignment
                // requirements.
                let padding = padding_needed_for(unpadded_size, layout.align);
                assert_eq!(padded_size, unpadded_size + padding);

                // Prove that calling `DstLayout::pad_to_align` behaves
                // identically to `Layout::pad_to_align`.
                let layout_analog =
                    Layout::from_size_align(unpadded_size, layout.align.get()).unwrap();
                let padded_analog = layout_analog.pad_to_align();
                assert_eq!(padded_analog.align(), layout.align.get());
                assert_eq!(padded_analog.size(), padded_size);
            } else {
                panic!("The padding of a sized layout must result in a sized layout.")
            }
        } else {
            // If the layout is a DST, padding cannot be statically added.
            assert_eq!(padded.size_info, layout.size_info);
        }
    }
}