yrs/updates/encoder.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
use crate::block::ClientID;
use crate::encoding::varint::Signed;
use crate::encoding::write::Write;
use crate::*;
use std::collections::HashMap;
/// A trait that can be implemented by any other type in order to support lib0 encoding capability.
pub trait Encode {
fn encode<E: Encoder>(&self, encoder: &mut E);
/// Helper function for encoding 1st version of lib0 encoding.
fn encode_v1(&self) -> Vec<u8> {
let mut encoder = EncoderV1::new();
self.encode(&mut encoder);
encoder.to_vec()
}
/// Helper function for encoding 2nd version of lib0 encoding.
fn encode_v2(&self) -> Vec<u8> {
let mut encoder = EncoderV2::new();
self.encode(&mut encoder);
encoder.to_vec()
}
}
/// Trait used by lib0 encoders. Natively lib0 encoding supports two versions:
///
/// 1. 1st version (implemented in Yrs) uses simple optimization techniques like var int encoding.
/// 2. 2nd version optimizes bigger batches of blocks by using run-length encoding.
///
/// Both of these define a common set of operations defined in this trait.
pub trait Encoder: Write {
/// Consume current encoder and return a binary with all data encoded so far.
fn to_vec(self) -> Vec<u8>;
/// Reset the state of currently encoded [DeleteSet].
fn reset_ds_cur_val(&mut self);
/// Write a clock value of currently encoded [DeleteSet] client.
fn write_ds_clock(&mut self, clock: u32);
/// Write a number of client entries used by currently encoded [DeleteSet].
fn write_ds_len(&mut self, len: u32);
/// Write unique identifier of a currently encoded [Block]'s left origin.
fn write_left_id(&mut self, id: &block::ID);
/// Write unique identifier of a currently encoded [Block]'s right origin.
fn write_right_id(&mut self, id: &block::ID);
/// Write currently encoded client identifier.
fn write_client(&mut self, client: ClientID);
/// Write currently encoded [Block]'s info flags. These contain information about which fields
/// have been provided and which should be skipped during decoding process as well as a type of
/// block currently encoded.
fn write_info(&mut self, info: u8);
/// Write info flag about currently encoded [Block]'s parent. Is is another block or root type.
fn write_parent_info(&mut self, is_y_key: bool);
/// Writes type ref data of currently encoded [Block]'s parent.
fn write_type_ref(&mut self, info: u8);
/// Write length parameter.
fn write_len(&mut self, len: u32);
/// Encode JSON-like data type. This is a complex structure which is an extension to JavaScript
/// Object Notation with some extra cases.
fn write_any(&mut self, any: &Any);
/// Encode JSON-like data type as nested JSON string. This is a complex structure which is an
/// extension to JavaScript Object Notation with some extra cases.
fn write_json(&mut self, any: &Any);
/// Write a string key.
fn write_key(&mut self, string: &str);
}
pub struct EncoderV1 {
buf: Vec<u8>,
}
impl EncoderV1 {
pub fn new() -> Self {
EncoderV1 {
buf: Vec::with_capacity(1024),
}
}
fn write_id(&mut self, id: &ID) {
self.write_var(id.client);
self.write_var(id.clock)
}
}
impl Write for EncoderV1 {
#[inline]
fn write_all(&mut self, buf: &[u8]) {
self.buf.write_all(buf)
}
#[inline]
fn write_u8(&mut self, value: u8) {
self.buf.write_u8(value)
}
}
impl Encoder for EncoderV1 {
#[inline]
fn to_vec(self) -> Vec<u8> {
self.buf
}
#[inline]
fn reset_ds_cur_val(&mut self) {
/* no op */
}
#[inline]
fn write_ds_clock(&mut self, clock: u32) {
self.write_var(clock)
}
#[inline]
fn write_ds_len(&mut self, len: u32) {
self.write_var(len)
}
#[inline]
fn write_left_id(&mut self, id: &ID) {
self.write_id(id)
}
#[inline]
fn write_right_id(&mut self, id: &ID) {
self.write_id(id)
}
#[inline]
fn write_client(&mut self, client: ClientID) {
self.write_var(client)
}
#[inline]
fn write_info(&mut self, info: u8) {
self.write_u8(info)
}
#[inline]
fn write_parent_info(&mut self, is_y_key: bool) {
self.write_var(if is_y_key { 1 as u32 } else { 0 as u32 })
}
#[inline]
fn write_type_ref(&mut self, info: u8) {
self.write_u8(info)
}
#[inline]
fn write_len(&mut self, len: u32) {
self.write_var(len)
}
#[inline]
fn write_any(&mut self, any: &Any) {
any.encode(self)
}
fn write_json(&mut self, any: &Any) {
let mut buf = String::new();
any.to_json(&mut buf);
self.write_string(buf.as_str())
}
#[inline]
fn write_key(&mut self, key: &str) {
self.write_string(key)
}
}
pub struct EncoderV2 {
key_table: HashMap<String, u32>,
buf: Vec<u8>,
ds_curr_val: u32,
seqeuncer: u32,
key_clock_encoder: IntDiffOptRleEncoder,
client_encoder: UIntOptRleEncoder,
left_clock_encoder: IntDiffOptRleEncoder,
right_clock_encoder: IntDiffOptRleEncoder,
info_encoder: RleEncoder,
string_encoder: StringEncoder,
parent_info_encoder: RleEncoder,
type_ref_encoder: UIntOptRleEncoder,
len_encoder: UIntOptRleEncoder,
}
impl EncoderV2 {
pub fn new() -> Self {
EncoderV2 {
key_table: HashMap::new(),
buf: Vec::new(),
seqeuncer: 0,
ds_curr_val: 0,
key_clock_encoder: IntDiffOptRleEncoder::new(),
client_encoder: UIntOptRleEncoder::new(),
left_clock_encoder: IntDiffOptRleEncoder::new(),
right_clock_encoder: IntDiffOptRleEncoder::new(),
info_encoder: RleEncoder::new(),
string_encoder: StringEncoder::new(),
parent_info_encoder: RleEncoder::new(),
type_ref_encoder: UIntOptRleEncoder::new(),
len_encoder: UIntOptRleEncoder::new(),
}
}
}
impl Write for EncoderV2 {
#[inline]
fn write_all(&mut self, buf: &[u8]) {
self.buf.write_buf(buf)
}
#[inline]
fn write_u8(&mut self, value: u8) {
self.buf.write_u8(value)
}
#[inline]
fn write_string(&mut self, str: &str) {
self.string_encoder.write(str)
}
}
impl Encoder for EncoderV2 {
fn to_vec(self) -> Vec<u8> {
let key_clock = self.key_clock_encoder.to_vec();
let client = self.client_encoder.to_vec();
let left_clock = self.left_clock_encoder.to_vec();
let right_clock = self.right_clock_encoder.to_vec();
let info = self.info_encoder.to_vec();
let string = self.string_encoder.to_vec();
let parent_info = self.parent_info_encoder.to_vec();
let type_ref = self.type_ref_encoder.to_vec();
let len = self.len_encoder.to_vec();
let rest = self.buf;
let mut buf = Vec::new();
buf.write_u8(0); // this is a feature flag that we might use in the future
buf.write_buf(key_clock);
buf.write_buf(client);
buf.write_buf(left_clock);
buf.write_buf(right_clock);
buf.write_buf(info);
buf.write_buf(string);
buf.write_buf(parent_info);
buf.write_buf(type_ref);
buf.write_buf(len);
buf.write_all(rest.as_slice());
buf
}
#[inline]
fn reset_ds_cur_val(&mut self) {
self.ds_curr_val = 0;
}
fn write_ds_clock(&mut self, clock: u32) {
let diff = clock - self.ds_curr_val;
self.ds_curr_val = clock;
self.buf.write_var(diff)
}
fn write_ds_len(&mut self, len: u32) {
debug_assert!(len != 0);
self.buf.write_var(len - 1);
self.ds_curr_val += len;
}
fn write_left_id(&mut self, id: &ID) {
self.client_encoder.write_u64(id.client as u64);
self.left_clock_encoder.write_u32(id.clock)
}
fn write_right_id(&mut self, id: &ID) {
self.client_encoder.write_u64(id.client as u64);
self.right_clock_encoder.write_u32(id.clock)
}
#[inline]
fn write_client(&mut self, client: ClientID) {
self.client_encoder.write_u64(client as u64)
}
#[inline]
fn write_info(&mut self, info: u8) {
self.info_encoder.write_u8(info)
}
#[inline]
fn write_parent_info(&mut self, is_y_key: bool) {
self.parent_info_encoder
.write_u8(if is_y_key { 1 } else { 0 })
}
#[inline]
fn write_type_ref(&mut self, info: u8) {
self.type_ref_encoder.write_u64(info as u64)
}
#[inline]
fn write_len(&mut self, len: u32) {
self.len_encoder.write_u64(len as u64);
}
#[inline]
fn write_any(&mut self, any: &Any) {
let mut encoder = EncoderV1 {
buf: std::mem::take(&mut self.buf),
};
any.encode(&mut encoder);
self.buf = encoder.buf;
}
fn write_json(&mut self, any: &Any) {
self.write_any(any)
}
fn write_key(&mut self, key: &str) {
//TODO: this is wrong (key_table is never updated), but this behavior matches Yjs
self.key_clock_encoder.write_u32(self.seqeuncer);
self.seqeuncer += 1;
if self.key_table.get(key).is_none() {
self.string_encoder.write(key);
}
}
}
/// A combination of the IntDiffEncoder and the UintOptRleEncoder.
///
/// The count approach is similar to the UintDiffOptRleEncoder, but instead of using the negative bitflag, it encodes
/// in the LSB whether a count is to be read. Therefore this Encoder only supports 31 bit integers!
///
/// Encodes [1, 2, 3, 2] as [3, 1, 6, -1] (more specifically [(1 << 1) | 1, (3 << 0) | 0, -1])
///
/// Internally uses variable length encoding. Contrary to normal UintVar encoding, the first byte contains:
/// * 1 bit that denotes whether the next value is a count (LSB)
/// * 1 bit that denotes whether this value is negative (MSB - 1)
/// * 1 bit that denotes whether to continue reading the variable length integer (MSB)
///
/// Therefore, only five bits remain to encode diff ranges.
///
/// Use this Encoder only when appropriate. In most cases, this is probably a bad idea.
struct IntDiffOptRleEncoder {
buf: Vec<u8>,
last: u32,
count: u32,
diff: i32,
}
impl IntDiffOptRleEncoder {
fn new() -> Self {
IntDiffOptRleEncoder {
buf: Vec::new(),
last: 0,
count: 0,
diff: 0,
}
}
fn write_u32(&mut self, value: u32) {
let diff = value as i32 - self.last as i32;
if self.diff == diff {
self.last = value;
self.count += 1;
} else {
self.flush();
self.count = 1;
self.diff = diff;
self.last = value;
}
}
fn flush(&mut self) {
if self.count > 0 {
// 31 bit making up the diff | wether to write the counter
let encode_diff = self.diff << 1 | (if self.count == 1 { 0 } else { 1 });
// flush counter, unless this is the first value (count = 0)
// case 1: just a single value. set first bit to positive
// case 2: write several values. set first bit to negative to indicate that there is a length coming
self.buf.write_var(encode_diff as i64);
if self.count > 1 {
self.buf.write_var(self.count - 2);
}
}
}
fn to_vec(mut self) -> Vec<u8> {
self.flush();
self.buf
}
}
/// Optimized Rle encoder that does not suffer from the mentioned problem of the basic Rle encoder.
///
/// Internally uses VarInt encoder to write unsigned integers. If the input occurs multiple times, we write
/// write it as a negative number. The UintOptRleDecoder then understands that it needs to read a count.
///
/// Encodes [1,2,3,3,3] as [1,2,-3,3] (once 1, once 2, three times 3)
struct UIntOptRleEncoder {
buf: Vec<u8>,
last: u64,
count: u32,
}
impl UIntOptRleEncoder {
fn new() -> Self {
UIntOptRleEncoder {
buf: Vec::new(),
last: 0,
count: 0,
}
}
fn write_u64(&mut self, value: u64) {
if self.last == value {
self.count += 1;
} else {
self.flush();
self.count = 1;
self.last = value;
}
}
fn to_vec(mut self) -> Vec<u8> {
self.flush();
self.buf
}
fn flush(&mut self) {
if self.count > 0 {
// flush counter, unless this is the first value (count = 0)
// case 1: just a single value. set sign to positive
// case 2: write several values. set sign to negative to indicate that there is a length coming
if self.count == 1 {
self.buf.write_var(self.last as i64);
} else {
let value = Signed::new(-(self.last as i64), true);
self.buf.write_var_signed(&value);
self.buf.write_var(self.count - 2);
}
}
}
}
/// Basic Run Length Encoder - a basic compression implementation.
///
/// Encodes [1,1,1,7] to [1,3,7,1] (3 times 1, 1 time 7). This encoder might do more harm than good if there are a lot of values that are not repeated.
///
/// It was originally used for image compression. Cool .. article http://csbruce.com/cbm/transactor/pdfs/trans_v7_i06.pdf
struct RleEncoder {
buf: Vec<u8>,
last: Option<u8>,
count: u32,
}
impl RleEncoder {
fn new() -> Self {
RleEncoder {
buf: Vec::new(),
last: None,
count: 0,
}
}
fn write_u8(&mut self, value: u8) {
if self.last == Some(value) {
self.count += 1;
} else {
if self.count > 0 {
// flush counter, unless this is the first value (count = 0)
self.buf.write_var(self.count - 1);
}
self.count = 1;
self.buf.write_u8(value);
self.last = Some(value);
}
}
fn to_vec(self) -> Vec<u8> {
self.buf
}
}
/// Optimized String Encoder.
///
/// Encoding many small strings in a simple Encoder is not very efficient. The function call to decode a string takes some time and creates references that must be eventually deleted.
/// In practice, when decoding several million small strings, the GC will kick in more and more often to collect orphaned string objects (or maybe there is another reason?).
///
/// This string encoder solves the above problem. All strings are concatenated and written as a single string using a single encoding call.
///
/// The lengths are encoded using a UintOptRleEncoder.
struct StringEncoder {
buf: String,
len_encoder: UIntOptRleEncoder,
}
impl StringEncoder {
fn new() -> Self {
StringEncoder {
buf: String::new(),
len_encoder: UIntOptRleEncoder::new(),
}
}
fn write(&mut self, str: &str) {
let utf16_len = str.encode_utf16().count(); // Yjs encodes offsets using utf-16
self.buf.push_str(str);
self.len_encoder.write_u64(utf16_len as u64);
}
fn to_vec(self) -> Vec<u8> {
let lengths = self.len_encoder.to_vec();
let mut buf = Vec::with_capacity(self.buf.len() + lengths.len());
buf.write_string(&self.buf);
buf.write_all(lengths.as_slice());
buf
}
}