xsteamrs 0.1.0

IAPWS-IF97 water/steam properties with XSteam-style string-dispatch API.
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842

%h_prho beh�ver T_prho f�r samtliga regioner!!!!

%***********************************************************************************************************
%* Water and steam properties according to IAPWS IF-97                                                     *
%* By Magnus Holmgren, www.x-eng.com                                                                       *
%* The steam tables are free and provided as is.                                                           *
%* We take no responsibilities for any errors in the code or damage thereby.                               *
%* You are free to use, modify and distribute the code as long as authorship is properly acknowledged.     *
%* Please notify me at magnus@x-eng.com if the code is used in commercial applications                     *
%***********************************************************************************************************
%
% XSteam provides accurate steam and water properties from 0 - 1000 bar and from 0 - 2000 deg C according to
% the standard IAPWS IF-97. For accuracy of the functions in different regions see IF-97 (www.iapws.org)
%
% *** Using XSteam *****************************************************************************************
%XSteam take 2 or 3 arguments. The first argument must always be the steam table function you want to use.
%The other arguments are the inputs to that function.
%Example: XSteam('h_pt',1,20)  Returns the enthalpy of water at 1 bar and 20 degC
%Example: XSteam('TSat_p',1)  Returns the saturation temperature of water at 1 bar.
%For a list of valid Steam Table functions se bellow or the XSteam macros for MS Excel.
%
%*** Nomenclature ******************************************************************************************
% First the wanted property then a _ then the wanted input properties. 
% Example. T_ph is temperature as a function of pressure and enthalpy. 
% For a list of valid functions se bellow or XSteam for MS Excel.
% T     Temperature (deg C)
% p	    Pressure    (bar)
% h	    Enthalpy    (kJ/kg)
% v	    Specific volume (m3/kg)
% rho	Density
% s	    Specific entropy 
% u	    Specific internal energy 
% Cp	Specific isobaric heat capacity 
% Cv	Specific isochoric heat capacity 
% w	    Speed of sound 
% my	Viscosity
% tc	Thermal Conductivity
% st	Surface Tension
% x	    Vapour fraction
% vx	Vapour Volume Fraction
%
%*** Valid Steam table functions. ****************************************************************************
%
%Temperature	
%Tsat_p	Saturation temperature
%T_ph	Temperture as a function of pressure and enthalpy
%T_ps	Temperture as a function of pressure and entropy
%T_hs	Temperture as a function of enthalpy and entropy
%
%Pressure	
%psat_T	Saturation pressure
%p_hs	Pressure as a function of h and s. 
%p_hrho Pressure as a function of h and rho. Very unaccurate for solid water region since it's almost incompressible!
%
%Enthalpy	
%hV_p	Saturated vapour enthalpy
%hL_p	Saturated liquid enthalpy
%hV_T	Saturated vapour enthalpy
%hL_T	Saturated liquid enthalpy
%h_pT	Entalpy as a function of pressure and temperature.
%h_ps	Entalpy as a function of pressure and entropy.
%h_px	Entalpy as a function of pressure and vapour fraction
%h_prho	Entalpy as a function of pressure and density. Observe for low temperatures (liquid) this equation has 2 solutions. 
%h_Tx	Entalpy as a function of temperature and vapour fraction
%
%Specific volume	
%vV_p	Saturated vapour volume
%vL_p	Saturated liquid volume
%vV_T	Saturated vapour volume
%vL_T	Saturated liquid volume
%v_pT	Specific volume as a function of pressure and temperature.
%v_ph	Specific volume as a function of pressure and enthalpy
%v_ps	Specific volume as a function of pressure and entropy.
%
%Density	
%rhoV_p	Saturated vapour density
%rhoL_p	Saturated liquid density
%rhoV_T	Saturated vapour density
%rhoL_T	Saturated liquid density
%rho_pT	Density as a function of pressure and temperature.
%rho_ph	Density as a function of pressure and enthalpy
%rho_ps	Density as a function of pressure and entropy.
%
%Specific entropy 	
%sV_p	Saturated vapour entropy
%sL_p	Saturated liquid entropy
%sV_T	Saturated vapour entropy
%sL_T	Saturated liquid entropy
%s_pT	Specific entropy as a function of pressure and temperature (Returns saturated vapour entalpy if mixture.)
%s_ph	Specific entropy as a function of pressure and enthalpy
%
%Specific internal energy 	
%uV_p	Saturated vapour internal energy
%uL_p	Saturated liquid internal energy
%uV_T	Saturated vapour internal energy
%uL_T	Saturated liquid internal energy
%u_pT	Specific internal energy as a function of pressure and temperature.
%u_ph	Specific internal energy as a function of pressure and enthalpy
%u_ps	Specific internal energy as a function of pressure and entropy.
%
%Specific isobaric heat capacity 	
%CpV_p	Saturated vapour heat capacity 
%CpL_p	Saturated liquid heat capacity 
%CpV_T	Saturated vapour heat capacity 
%CpL_T	Saturated liquid heat capacity 
%Cp_pT	Specific isobaric heat capacity as a function of pressure and temperature.
%Cp_ph	Specific isobaric heat capacity as a function of pressure and enthalpy
%Cp_ps	Specific isobaric heat capacity as a function of pressure and entropy.
%
%Specific isochoric heat capacity 	
%CvV_p	Saturated vapour isochoric heat capacity
%CvL_p	Saturated liquid isochoric heat capacity
%CvV_T	Saturated vapour isochoric heat capacity
%CvL_T	Saturated liquid isochoric heat capacity
%Cv_pT	Specific isochoric heat capacity as a function of pressure and temperature.
%Cv_ph	Specific isochoric heat capacity as a function of pressure and enthalpy
%Cv_ps	Specific isochoric heat capacity as a function of pressure and entropy.
%
%Speed of sound 	
%wV_p	Saturated vapour speed of sound
%wL_p	Saturated liquid speed of sound
%wV_T	Saturated vapour speed of sound
%wL_T	Saturated liquid speed of sound
%w_pT	Speed of sound as a function of pressure and temperature.
%w_ph	Speed of sound as a function of pressure and enthalpy
%w_ps	Speed of sound as a function of pressure and entropy.
%
%Viscosity	
%Viscosity is not part of IAPWS Steam IF97. Equations from 
%"Revised Release on the IAPWS Formulation 1985 for the Viscosity of Ordinary Water Substance", 2003 are used.	
%Viscosity in the mixed region (4) is interpolated according to the density. This is not true since it will be two fases.	
%my_pT	Viscosity as a function of pressure and temperature.
%my_ph	Viscosity as a function of pressure and enthalpy
%my_ps	Viscosity as a function of pressure and entropy.
%
%Thermal Conductivity	
%Revised release on the IAPS Formulation 1985 for the Thermal Conductivity of ordinary water substance (IAPWS 1998)	
%tcL_p	Saturated vapour thermal conductivity
%tcV_p	Saturated liquid thermal conductivity
%tcL_T	Saturated vapour thermal conductivity
%tcV_T	Saturated liquid thermal conductivity
%tc_pT	Thermal conductivity as a function of pressure and temperature.
%tc_ph	Thermal conductivity as a function of pressure and enthalpy
%tc_hs	Thermal conductivity as a function of enthalpy and entropy
%
%Surface tension
%st_T	Surface tension for two phase water/steam as a function of T
%st_p	Surface tension for two phase water/steam as a function of T
%Vapour fraction
%x_ph	Vapour fraction as a function of pressure and enthalpy
%x_ps	Vapour fraction as a function of pressure and entropy.
%
%Vapour volume fraction
%vx_ph	Vapour volume fraction as a function of pressure and enthalpy
%vx_ps	Vapour volume fraction as a function of pressure and entropy.


function Out=XSteam(fun,In1,In2)
%*Contents.
%*1 Calling functions
%*1.1
%*1.2 Temperature (T)
%*1.3 Pressure (p)
%*1.4 Enthalpy (h)
%*1.5 Specific Volume (v)
%*1.6 Density (rho)
%*1.7 Specific entropy (s)
%*1.8 Specific internal energy (u)
%*1.9 Specific isobaric heat capacity (Cp)
%*1.10 Specific isochoric heat capacity (Cv)
%*1.11 Speed of sound
%*1.12 Viscosity
%*1.13 Prandtl
%*1.14 Kappa
%*1.15 Surface tension
%*1.16 Heat conductivity
%*1.17 Vapour fraction
%*1.18 Vapour Volume Fraction
%
%*2 IAPWS IF 97 Calling functions
%*2.1 Functions for region 1
%*2.2 Functions for region 2
%*2.3 Functions for region 3
%*2.4 Functions for region 4
%*2.5 Functions for region 5
%
%*3 Region Selection
%*3.1 Regions as a function of pT
%*3.2 Regions as a function of ph
%*3.3 Regions as a function of ps
%*3.4 Regions as a function of hs
%
%4 Region Borders
%4.1 Boundary between region 1 and 3.
%4.2 Region 3. pSat_h and pSat_s
%4.3 Region boundary 1to3 and 3to2 as a functions of s
%
%5 Transport properties
%5.1 Viscosity (IAPWS formulation 1985)
%5.2 Thermal Conductivity (IAPWS formulation 1985)
%5.3 Surface Tension
%
%6 Units
%
%7 Verification
%7.1 Verifiy region 1
%7.2 Verifiy region 2
%7.3 Verifiy region 3
%7.4 Verifiy region 4
%7.5 Verifiy region 5

%***********************************************************************************************************
%*1 Calling functions                                                                                      *
%***********************************************************************************************************

%***********************************************************************************************************
%*1.1


fun=lower(fun);

switch fun
    %***********************************************************************************************************
    %*1.2 Temperature
case 'tsat_p'
    p = toSIunit_p(In1);
    if p > 0.000611657  && p < 22.06395 
        Out = fromSIunit_T(T4_p(p));
    else
        Out = NaN;
    end
case 'tsat_s'
    s = toSIunit_s(In1);
    if s > -0.0001545495919  && s < 9.155759395 
        ps = p4_s(s);
        Out = fromSIunit_T(T4_p(ps));
    else
        Out = NaN;
    end
case 't_ph'
    p = toSIunit_p(In1);
    h = toSIunit_h(In2);
    Region = region_ph(p, h);
    switch Region
    case 1
        Out = fromSIunit_T(T1_ph(p, h));
    case 2
        Out = fromSIunit_T(T2_ph(p, h));
    case 3
        Out = fromSIunit_T(T3_ph(p, h));
    case 4
        Out = fromSIunit_T(T4_p(p));
    case 5
        Out = fromSIunit_T(T5_ph(p, h));
    otherwise
        Out = NaN;
    end
case 't_ps'
    p = toSIunit_p(In1);
    s = toSIunit_s(In2);
    Region = region_ps(p, s);
    switch Region
    case 1
        Out = fromSIunit_T(T1_ps(p, s));
    case 2
        Out = fromSIunit_T(T2_ps(p, s));
    case 3
        Out = fromSIunit_T(T3_ps(p, s));
    case 4
        Out = fromSIunit_T(T4_p(p));
    case 5
        Out = fromSIunit_T(T5_ps(p, s));
    otherwise
        Out = NaN;
    end 
    
case 't_hs'
    h = toSIunit_h(In1);
    s = toSIunit_s(In2);
    Region = region_hs(h, s);
    switch Region
    case 1
        p1 = p1_hs(h, s);
        Out = fromSIunit_T(T1_ph(p1, h));
    case 2
        p2 = p2_hs(h, s);
        Out = fromSIunit_T(T2_ph(p2, h));
    case 3
        p3 = p3_hs(h, s);
        Out = fromSIunit_T(T3_ph(p3, h));
    case 4
        Out = fromSIunit_T(T4_hs(h, s));
    case 5
        error('functions of hs is not avlaible in region 5');
    otherwise
        Out = NaN;
    end
    %***********************************************************************************************************
    %*1.3 Pressure (p)
case 'psat_t'
    T = toSIunit_T(In1);
    if T < 647.096  && T > 273.15 
        Out = fromSIunit_p(p4_T(T));
    else
        Out = NaN;
    end
    
case 'psat_s'
    s = toSIunit_s(In1);
    if s > -0.0001545495919  && s < 9.155759395 
        Out = fromSIunit_p(p4_s(s));
    else
        Out = NaN;
    end
    
case 'p_hs'
    h = toSIunit_h(In1);
    s = toSIunit_s(In2);
    Region = region_hs(h, s);
    switch Region
    case 1
        Out = fromSIunit_p(p1_hs(h, s));
    case 2
        Out = fromSIunit_p(p2_hs(h, s));
    case 3
        Out = fromSIunit_p(p3_hs(h, s));
    case 4
        tSat = T4_hs(h, s);
        Out = fromSIunit_p(p4_T(tSat));
    case 5
        error('functions of hs is not avlaible in region 5');
    otherwise
        Out = NaN;
    end
    
    case 'p_hrho'
    h=In1;
    rho=In2;
%Not valid for water or sumpercritical since water rho does not change very much with p.
%Uses iteration to find p.
  High_Bound = fromSIunit_p(100);
  Low_Bound = fromSIunit_p(0.000611657);
  ps = fromSIunit_p(10);
  rhos = 1 / XSteam('v_ph',ps, h);
  while abs(rho - rhos) > 0.0000001
    rhos = 1 / XSteam('v_ph',ps, h);
    if rhos >= rho
      High_Bound = ps;
    else
      Low_Bound = ps;
    end
    ps = (Low_Bound + High_Bound) / 2;
  end
    Out = ps;

    %***********************************************************************************************************
    %*1.4 Enthalpy (h)
case 'hv_p'
    p = toSIunit_p(In1);
    if p > 0.000611657 && p < 22.06395 
        Out = fromSIunit_h(h4V_p(p));
    else
        Out = NaN;
    end
    
case 'hl_p'
    p = toSIunit_p(In1);
    if p > 0.000611657 && p < 22.06395 
        Out = fromSIunit_h(h4L_p(p));
    else
        Out = NaN;
    end
    
case 'hv_t'
    T = toSIunit_T(In1);
    if T > 273.15 && T < 647.096 
        p = p4_T(T);
        Out = fromSIunit_h(h4V_p(p));
    else
        Out = NaN;
    end
    
case 'hl_t'
    T = toSIunit_T(In1);
    if T > 273.15 && T < 647.096 
        p = p4_T(T);
        Out = fromSIunit_h(h4L_p(p));
    else
        Out = NaN;
    end
    
    
case 'h_pt'
    p = toSIunit_p(In1);
    T = toSIunit_T(In2);
    Region = region_pT(p, T);
    switch Region
    case 1
        Out = fromSIunit_h(h1_pT(p, T));
    case 2
        Out = fromSIunit_h(h2_pT(p, T));
    case 3
        Out = fromSIunit_h(h3_pT(p, T));
    case 4
        Out = NaN;
    case 5
        Out = fromSIunit_h(h5_pT(p, T));
    otherwise
        Out = NaN;
    end
    
case 'h_ps'
    p = toSIunit_p(In1);
    s = toSIunit_s(In2);
    Region = region_ps(p, s);
    switch Region
    case 1
        Out = fromSIunit_h(h1_pT(p, T1_ps(p, s)));
    case 2
        Out = fromSIunit_h(h2_pT(p, T2_ps(p, s)));
    case 3
        Out = fromSIunit_h(h3_rhoT(1 / v3_ps(p, s), T3_ps(p, s)));
    case 4
        xs = x4_ps(p, s);
        Out = fromSIunit_h(xs * h4V_p(p) + (1 - xs) * h4L_p(p));
    case 5
        Out = fromSIunit_h(h5_pT(p, T5_ps(p, s)));
    otherwise
        Out = NaN;
    end
    
case 'h_px'
    p = toSIunit_p(In1);
    x = toSIunit_x(In2);
    if x > 1 || x < 0 || p >= 22.064 
        Out = NaN;
        return
    end
    hL = h4L_p(p);
    hV = h4V_p(p);
    Out = hL + x * (hV - hL);
    
case 'h_prho'
    p = toSIunit_p(In1);
    rho = 1 / toSIunit_v(1 / In2);
    Region = Region_prho(p, rho);
    switch Region
        case 1
            Out = fromSIunit_h(h1_pT(p, T1_prho(p, rho)));
        case 2
            Out = fromSIunit_h(h2_pT(p, T2_prho(p, rho)));
        case 3
            Out = fromSIunit_h(h3_rhoT(rho, T3_prho(p, rho)));
        case 4
            if p < 16.529
                vV = v2_pT(p, T4_p(p));
                vL = v1_pT(p, T4_p(p));
            else
                vV = v3_ph(p, h4V_p(p));
                vL = v3_ph(p, h4L_p(p));
            end
            hV = h4V_p(p);
            hL = h4L_p(p);
            x = (1 / rho - vL) / (vV - vL);
            Out = fromSIunit_h((1 - x) * hL + x * hV);
        case 5
            Out = fromSIunit_h(h5_pT(p, T5_prho(p, rho)));
        otherwise
            Out = NaN;
    end

case 'h_tx'
    T = toSIunit_T(In1);
    x = toSIunit_x(In2);
    if x > 1 || x < 0 || T >= 647.096 
        Out = NaN;
        return
    end
    p = p4_T(T);
    hL = h4L_p(p);
    hV = h4V_p(p);
    Out = hL + x * (hV - hL);
    
    %***********************************************************************************************************
    %*1.5 Specific Volume (v)
case {'vv_p','rhov_p'}
    p = toSIunit_p(In1);
    if p > 0.000611657  && p < 22.06395 
        if p < 16.529 
            Out = fromSIunit_v(v2_pT(p, T4_p(p)));
        else
            Out = fromSIunit_v(v3_ph(p, h4V_p(p)));
        end
    else
        Out = NaN;
    end
    if fun(1)=='r' 
        Out=1/Out;
    end
    
    
case {'vl_p','rhol_p'}
    p = toSIunit_p(In1);
    if p > 0.000611657  && p < 22.06395 
        if p < 16.529 
            Out = fromSIunit_v(v1_pT(p, T4_p(p)));
        else
            Out = fromSIunit_v(v3_ph(p, h4L_p(p)));
        end
    else
        Out = NaN;
    end
    if fun(1)=='r' 
        Out=1/Out;
    end
    
case {'vv_t','rhov_t'}
    T = toSIunit_T(In1);
    if T > 273.15  && T < 647.096 
        if T <= 623.15 
            Out = fromSIunit_v(v2_pT(p4_T(T), T));
        else
            Out = fromSIunit_v(v3_ph(p4_T(T), h4V_p(p4_T(T))));
        end
    else
        Out = NaN;
    end
    if fun(1)=='r' 
        Out=1/Out;
    end
    
case {'vl_t','rhol_t'}
    T = toSIunit_T(In1);
    if T > 273.15  && T < 647.096 
        if T <= 623.15 
            Out = fromSIunit_v(v1_pT(p4_T(T), T));
        else
            Out = fromSIunit_v(v3_ph(p4_T(T), h4L_p(p4_T(T))));
        end
    else
        Out = NaN;
    end
    if fun(1)=='r' 
        Out=1/Out;
    end
    
case {'v_pt','rho_pt'}
    p = toSIunit_p(In1);
    T = toSIunit_T(In2);
    Region = region_pT(p, T);
    switch Region
    case 1
        Out = fromSIunit_v(v1_pT(p, T));
    case 2
        Out = fromSIunit_v(v2_pT(p, T));
    case 3
        Out = fromSIunit_v(v3_ph(p, h3_pT(p, T)));
    case 4
        Out = NaN;
    case 5
        Out = fromSIunit_v(v5_pT(p, T));
    otherwise
        Out = NaN;
    end
    if fun(1)=='r' 
        Out=1/Out;
    end
    
    
case {'v_ph','rho_ph'}
    p = toSIunit_p(In1);
    h = toSIunit_h(In2);
    Region = region_ph(p, h);
    switch Region
    case 1
        Out = fromSIunit_v(v1_pT(p, T1_ph(p, h)));
    case 2
        Out = fromSIunit_v(v2_pT(p, T2_ph(p, h)));
    case 3
        Out = fromSIunit_v(v3_ph(p, h));
    case 4
        xs = x4_ph(p, h);
        if p < 16.529 
            v4v = v2_pT(p, T4_p(p));
            v4L = v1_pT(p, T4_p(p));
        else
            v4v = v3_ph(p, h4V_p(p));
            v4L = v3_ph(p, h4L_p(p));
        end
        Out = fromSIunit_v((xs * v4v + (1 - xs) * v4L));
    case 5
        Ts = T5_ph(p, h);
        Out = fromSIunit_v(v5_pT(p, Ts));
    otherwise
        Out = NaN;
    end
    if fun(1)=='r' 
        Out=1/Out;
    end
    
case {'v_ps','rho_ps'}
    p = toSIunit_p(In1);
    s = toSIunit_s(In2);
    Region = region_ps(p, s);
    switch Region
    case 1
        Out = fromSIunit_v(v1_pT(p, T1_ps(p, s)));
    case 2
        Out = fromSIunit_v(v2_pT(p, T2_ps(p, s)));
    case 3
        Out = fromSIunit_v(v3_ps(p, s));
    case 4
        xs = x4_ps(p, s);
        if p < 16.529 
            v4v = v2_pT(p, T4_p(p));
            v4L = v1_pT(p, T4_p(p));
        else
            v4v = v3_ph(p, h4V_p(p));
            v4L = v3_ph(p, h4L_p(p));
        end
        Out = fromSIunit_v((xs * v4v + (1 - xs) * v4L));
    case 5
        Ts = T5_ps(p, s);
        Out = fromSIunit_v(v5_pT(p, Ts));
    otherwise
        Out = NaN;
    end
    if fun(1)=='r' 
        Out=1/Out;
    end
    
    %***********************************************************************************************************
    %*1.6 Density (rho)
    % Density is calculated as 1/v. Se section 1.5 Volume
    %***********************************************************************************************************
    %*1.7 Specific entropy (s)
case 'sv_p'
    p = toSIunit_p(In1);
    if p > 0.000611657  && p < 22.06395 
        if p < 16.529 
            Out = fromSIunit_s(s2_pT(p, T4_p(p)));
        else
            Out = fromSIunit_s(s3_rhoT(1 / (v3_ph(p, h4V_p(p))), T4_p(p)));
        end
    else
        Out = NaN;
    end
    
case 'sl_p'
    p = toSIunit_p(In1);
    if p > 0.000611657  && p < 22.06395 
        if p < 16.529 
            Out = fromSIunit_s(s1_pT(p, T4_p(p)));
        else
            Out = fromSIunit_s(s3_rhoT(1 / (v3_ph(p, h4L_p(p))), T4_p(p)));
        end
    else
        Out = NaN;
    end
    
case 'sv_t'
    T = toSIunit_T(In1);
    if T > 273.15  && T < 647.096 
        if T <= 623.15 
            Out = fromSIunit_s(s2_pT(p4_T(T), T));
        else
            Out = fromSIunit_s(s3_rhoT(1 / (v3_ph(p4_T(T), h4V_p(p4_T(T)))), T));
        end
    else
        Out = NaN;
    end
    
case 'sl_t'
    T = toSIunit_T(In1);
    if T > 273.15  && T < 647.096 
        if T <= 623.15 
            Out = fromSIunit_s(s1_pT(p4_T(T), T));
        else
            Out = fromSIunit_s(s3_rhoT(1 / (v3_ph(p4_T(T), h4L_p(p4_T(T)))), T));
        end
    else
        Out = NaN;
    end
    
case 's_pt'
    p = toSIunit_p(In1);
    T = toSIunit_T(In2);
    Region = region_pT(p, T);
    switch Region
    case 1
        Out = fromSIunit_s(s1_pT(p, T));
    case 2
        Out = fromSIunit_s(s2_pT(p, T));
    case 3
        hs = h3_pT(p, T);
        rhos = 1 / v3_ph(p, hs);
        Out = fromSIunit_s(s3_rhoT(rhos, T));
    case 4
        Out = NaN;
    case 5
        Out = fromSIunit_s(s5_pT(p, T));
    otherwise
        Out = NaN;
    end
    
case 's_ph'
    p = toSIunit_p(In1);
    h = toSIunit_h(In2);
    Region = region_ph(p, h);
    switch Region
    case 1
        T = T1_ph(p, h);
        Out = fromSIunit_s(s1_pT(p, T));
    case 2
        T = T2_ph(p, h);
        Out = fromSIunit_s(s2_pT(p, T));
    case 3
        rhos = 1 / v3_ph(p, h);
        Ts = T3_ph(p, h);
        Out = fromSIunit_s(s3_rhoT(rhos, Ts));
    case 4
        Ts = T4_p(p);
        xs = x4_ph(p, h);
        if p < 16.529 
            s4v = s2_pT(p, Ts);
            s4L = s1_pT(p, Ts);
        else
            v4v = v3_ph(p, h4V_p(p));
            s4v = s3_rhoT(1 / v4v, Ts);
            v4L = v3_ph(p, h4L_p(p));
            s4L = s3_rhoT(1 / v4L, Ts);
        end
        Out = fromSIunit_s((xs * s4v + (1 - xs) * s4L));
    case 5
        T = T5_ph(p, h);
        Out = fromSIunit_s(s5_pT(p, T));
    otherwise
        Out = NaN;
    end
    
    
    %***********************************************************************************************************
    %*1.8 Specific internal energy (u)
case 'uv_p'
    p = toSIunit_p(In1);
    if p > 0.000611657  && p < 22.06395 
        if p < 16.529 
            Out = fromSIunit_u(u2_pT(p, T4_p(p)));
        else
            Out = fromSIunit_u(u3_rhoT(1 / (v3_ph(p, h4V_p(p))), T4_p(p)));
        end
    else
        Out = NaN;
    end
    
case 'ul_p'
    p = toSIunit_p(In1);
    if p > 0.000611657  && p < 22.06395 
        if p < 16.529 
            Out = fromSIunit_u(u1_pT(p, T4_p(p)));
        else
            Out = fromSIunit_u(u3_rhoT(1 / (v3_ph(p, h4L_p(p))), T4_p(p)));
        end
    else
        Out = NaN;
    end
    
case 'uv_t'
    T = toSIunit_T(In1);
    if T > 273.15  && T < 647.096 
        if T <= 623.15 
            Out = fromSIunit_u(u2_pT(p4_T(T), T));
        else
            Out = fromSIunit_u(u3_rhoT(1 / (v3_ph(p4_T(T), h4V_p(p4_T(T)))), T));
        end
    else
        Out = NaN;
    end
    
case 'ul_t'
    T = toSIunit_T(In1);
    if T > 273.15  && T < 647.096 
        if T <= 623.15 
            Out = fromSIunit_u(u1_pT(p4_T(T), T));
        else
            Out = fromSIunit_u(u3_rhoT(1 / (v3_ph(p4_T(T), h4L_p(p4_T(T)))), T));
        end
    else
        Out = NaN;
    end
    
case 'u_pt'
    p = toSIunit_p(In1);
    T = toSIunit_T(In2);
    Region = region_pT(p, T);
    switch Region
    case 1
        Out = fromSIunit_u(u1_pT(p, T));
    case 2
        Out = fromSIunit_u(u2_pT(p, T));
    case 3
        hs = h3_pT(p, T);
        rhos = 1 / v3_ph(p, hs);
        Out = fromSIunit_u(u3_rhoT(rhos, T));
    case 4
        Out = NaN;
    case 5
        Out = fromSIunit_u(u5_pT(p, T));
    otherwise
        Out = NaN;
    end
    
case 'u_ph'
    p = toSIunit_p(In1);
    h = toSIunit_h(In2);
    Region = region_ph(p, h);
    switch Region
    case 1
        Ts = T1_ph(p, h);
        Out = fromSIunit_u(u1_pT(p, Ts));
    case 2
        Ts = T2_ph(p, h);
        Out = fromSIunit_u(u2_pT(p, Ts));
    case 3
        rhos = 1 / v3_ph(p, h);
        Ts = T3_ph(p, h);
        Out = fromSIunit_u(u3_rhoT(rhos, Ts));
    case 4
        Ts = T4_p(p);
        xs = x4_ph(p, h);
        if p < 16.529 
            u4v = u2_pT(p, Ts);
            u4L = u1_pT(p, Ts);
        else
            v4v = v3_ph(p, h4V_p(p));
            u4v = u3_rhoT(1 / v4v, Ts);
            v4L = v3_ph(p, h4L_p(p));
            u4L = u3_rhoT(1 / v4L, Ts);
        end
        Out = fromSIunit_u((xs * u4v + (1 - xs) * u4L));
    case 5
        Ts = T5_ph(p, h);
        Out = fromSIunit_u(u5_pT(p, Ts));
    otherwise
        Out = NaN;
    end
    
case 'u_ps'
    p = toSIunit_p(In1);
    s = toSIunit_s(In2);
    Region = region_ps(p, s);
    switch Region
    case 1
        Ts = T1_ps(p, s);
        Out = fromSIunit_u(u1_pT(p, Ts));
    case 2
        Ts = T2_ps(p, s);
        Out = fromSIunit_u(u2_pT(p, Ts));
    case 3
        rhos = 1 / v3_ps(p, s);
        Ts = T3_ps(p, s);
        Out = fromSIunit_u(u3_rhoT(rhos, Ts));
    case 4
        if p < 16.529 
            uLp = u1_pT(p, T4_p(p));
            uVp = u2_pT(p, T4_p(p));
        else
            uLp = u3_rhoT(1 / (v3_ph(p, h4L_p(p))), T4_p(p));
            uVp = u3_rhoT(1 / (v3_ph(p, h4V_p(p))), T4_p(p));
        end
        xs = x4_ps(p, s);
        Out = fromSIunit_u((xs * uVp + (1 - xs) * uLp));
    case 5
        Ts = T5_ps(p, s);
        Out = fromSIunit_u(u5_pT(p, Ts));
    otherwise
        Out = NaN;
    end
    %***********************************************************************************************************
    %*1.9 Specific isobaric heat capacity (Cp)
case 'cpv_p'
    p = toSIunit_p(In1);
    if p > 0.000611657  && p < 22.06395 
        if p < 16.529 
            Out = fromSIunit_Cp(Cp2_pT(p, T4_p(p)));
        else
            Out = fromSIunit_Cp(Cp3_rhoT(1 / (v3_ph(p, h4V_p(p))), T4_p(p)));
        end
    else
        Out = NaN;
    end
    
case 'cpl_p'
    p = toSIunit_p(In1);
    if p > 0.000611657  && p < 22.06395 
        if p < 16.529 
            Out = fromSIunit_Cp(Cp1_pT(p, T4_p(p)));
        else
            Out = fromSIunit_Cp(Cp3_rhoT(1 / (v3_ph(p, h4L_p(p))), T4_p(p)));
        end
    else
        Out = NaN;
    end
    
case 'cpv_t'
    T = toSIunit_T(In1);
    if T > 273.15  && T < 647.096 
        if T <= 623.15 
            Out = fromSIunit_Cp(Cp2_pT(p4_T(T), T));
        else
            Out = fromSIunit_Cp(Cp3_rhoT(1 / (v3_ph(p4_T(T), h4V_p(p4_T(T)))), T));
        end
    else
        Out = NaN;
    end
    
case 'cpl_t'
    T = toSIunit_T(In1);
    if T > 273.15  && T < 647.096 
        if T <= 623.15 
            Out = fromSIunit_Cp(Cp1_pT(p4_T(T), T));
        else
            Out = fromSIunit_Cp(Cp3_rhoT(1 / (v3_ph(p4_T(T), h4L_p(p4_T(T)))), T));
        end
    else
        Out = NaN;
    end
    
case 'cp_pt'
    p = toSIunit_p(In1);
    T = toSIunit_T(In2);
    Region = region_pT(p, T);
    switch Region
    case 1
        Out = fromSIunit_Cp(Cp1_pT(p, T));
    case 2
        Out = fromSIunit_Cp(Cp2_pT(p, T));
    case 3
        hs = h3_pT(p, T);
        rhos = 1 / v3_ph(p, hs);
        Out = fromSIunit_Cp(Cp3_rhoT(rhos, T));
    case 4
        Out = NaN;
    case 5
        Out = fromSIunit_Cp(Cp5_pT(p, T));
    otherwise
        Out = NaN;
    end
    
case 'cp_ph'
    p = toSIunit_p(In1);
    h = toSIunit_h(In2);
    Region = region_ph(p, h);
    switch Region
    case 1
        Ts = T1_ph(p, h);
        Out = fromSIunit_Cp(Cp1_pT(p, Ts));
    case 2
        Ts = T2_ph(p, h);
        Out = fromSIunit_Cp(Cp2_pT(p, Ts));
    case 3
        rhos = 1 / v3_ph(p, h);
        Ts = T3_ph(p, h);
        Out = fromSIunit_Cp(Cp3_rhoT(rhos, Ts));
    case 4
        Out = NaN;
    case 5
        Ts = T5_ph(p, h);
        Out = fromSIunit_Cp(Cp5_pT(p, Ts));
    otherwise
        Out = NaN;
    end
    
case 'cp_ps'
    p = toSIunit_p(In1);
    s = toSIunit_s(In2);
    Region = region_ps(p, s);
    switch Region
    case 1
        Ts = T1_ps(p, s);
        Out = fromSIunit_Cp(Cp1_pT(p, Ts));
    case 2
        Ts = T2_ps(p, s);
        Out = fromSIunit_Cp(Cp2_pT(p, Ts));
    case 3
        rhos = 1 / v3_ps(p, s);
        Ts = T3_ps(p, s);
        Out = fromSIunit_Cp(Cp3_rhoT(rhos, Ts));
    case 4
        Out = NaN;
    case 5
        Ts = T5_ps(p, s);
        Out = fromSIunit_Cp(Cp5_pT(p, Ts));
    otherwise
        Out = NaN;
    end
    
    %***********************************************************************************************************
    %*1.10 Specific isochoric heat capacity (Cv)
case 'cvv_p'
    p = toSIunit_p(In1);
    if p > 0.000611657  && p < 22.06395 
        if p < 16.529 
            Out = fromSIunit_Cv(Cv2_pT(p, T4_p(p)));
        else
            Out = fromSIunit_Cv(Cv3_rhoT(1 / (v3_ph(p, h4V_p(p))), T4_p(p)));
        end
    else
        Out = NaN;
    end
    
case 'cvl_p'
    p = toSIunit_p(In1);
    if p > 0.000611657  && p < 22.06395 
        if p < 16.529 
            Out = fromSIunit_Cv(Cv1_pT(p, T4_p(p)));
        else
            Out = fromSIunit_Cv(Cv3_rhoT(1 / (v3_ph(p, h4L_p(p))), T4_p(p)));
        end
    else
        Out = NaN;
    end
    
case 'cvv_t'
    T = toSIunit_T(In1);
    if T > 273.15  && T < 647.096 
        if T <= 623.15 
            Out = fromSIunit_Cv(Cv2_pT(p4_T(T), T));
        else
            Out = fromSIunit_Cv(Cv3_rhoT(1 / (v3_ph(p4_T(T), h4V_p(p4_T(T)))), T));
        end
    else
        Out = NaN;
    end
    
case 'cvl_t'
    T = toSIunit_T(In1);
    if T > 273.15  && T < 647.096 
        if T <= 623.15 
            Out = fromSIunit_Cv(Cv1_pT(p4_T(T), T));
        else
            Out = fromSIunit_Cv(Cv3_rhoT(1 / (v3_ph(p4_T(T), h4L_p(p4_T(T)))), T));
        end
    else
        Out = NaN;
    end
    
case 'cv_pt'
    p = toSIunit_p(In1);
    T = toSIunit_T(In2);
    Region = region_pT(p, T);
    switch Region
    case 1
        Out = fromSIunit_Cv(Cv1_pT(p, T));
    case 2
        Out = fromSIunit_Cv(Cv2_pT(p, T));
    case 3
        hs = h3_pT(p, T);
        rhos = 1 / v3_ph(p, hs);
        Out = fromSIunit_Cv(Cv3_rhoT(rhos, T));
    case 4
        Out = NaN;
    case 5
        Out = fromSIunit_Cv(Cv5_pT(p, T));
    otherwise
        Out = NaN;
    end
    
case 'cv_ph'
    p = toSIunit_p(In1);
    h = toSIunit_h(In2);
    Region = region_ph(p, h);
    switch Region
    case 1
        Ts = T1_ph(p, h);
        Out = fromSIunit_Cv(Cv1_pT(p, Ts));
    case 2
        Ts = T2_ph(p, h);
        Out = fromSIunit_Cv(Cv2_pT(p, Ts));
    case 3
        rhos = 1 / v3_ph(p, h);
        Ts = T3_ph(p, h);
        Out = fromSIunit_Cv(Cv3_rhoT(rhos, Ts));
    case 4
        Out = NaN;
    case 5
        Ts = T5_ph(p, h);
        Out = fromSIunit_Cv(Cv5_pT(p, Ts));
    otherwise
        Out = NaN;
    end
    
    
case 'cv_ps'
    p = toSIunit_p(In1);
    s = toSIunit_s(In2);
    Region = region_ps(p, s);
    switch Region
    case 1
        Ts = T1_ps(p, s);
        Out = fromSIunit_Cv(Cv1_pT(p, Ts));
    case 2
        Ts = T2_ps(p, s);
        Out = fromSIunit_Cv(Cv2_pT(p, Ts));
    case 3
        rhos = 1 / v3_ps(p, s);
        Ts = T3_ps(p, s);
        Out = fromSIunit_Cv(Cv3_rhoT(rhos, Ts));
    case 4
        Out = NaN;  %(xs * CvVp + (1 - xs) * CvLp) / Cv_scale - Cv_offset
    case 5
        Ts = T5_ps(p, s);
        Out = fromSIunit_Cv(Cv5_pT(p, Ts));
    otherwise
        Out = CVErr(xlErrValue);
    end
    
    
    %***********************************************************************************************************
    %*1.11 Speed of sound
case 'wv_p'
    p = toSIunit_p(In1);
    if p > 0.000611657  && p < 22.06395 
        if p < 16.529 
            Out = fromSIunit_w(w2_pT(p, T4_p(p)));
        else
            Out = fromSIunit_w(w3_rhoT(1 / (v3_ph(p, h4V_p(p))), T4_p(p)));
        end
    else
        Out = NaN;
    end
    
case 'wl_p'
    p = toSIunit_p(In1);
    if p > 0.000611657  && p < 22.06395 
        if p < 16.529 
            Out = fromSIunit_w(w1_pT(p, T4_p(p)));
        else
            Out = fromSIunit_w(w3_rhoT(1 / (v3_ph(p, h4L_p(p))), T4_p(p)));
        end
    else
        Out = NaN;
    end
    
case 'wv_t'
    T = toSIunit_T(In1);
    if T > 273.15  && T < 647.096 
        if T <= 623.15 
            Out = fromSIunit_w(w2_pT(p4_T(T), T));
        else
            Out = fromSIunit_w(w3_rhoT(1 / (v3_ph(p4_T(T), h4V_p(p4_T(T)))), T));
        end
    else
        Out = NaN;
    end
    
case 'wl_t'
    T = toSIunit_T(In1);
    if T > 273.15  && T < 647.096 
        if T <= 623.15 
            Out = fromSIunit_w(w1_pT(p4_T(T), T));
        else
            Out = fromSIunit_w(w3_rhoT(1 / (v3_ph(p4_T(T), h4L_p(p4_T(T)))), T));
        end
    else
        Out = NaN;
    end
    
case 'w_pt'
    p = toSIunit_p(In1);
    T = toSIunit_T(In2);
    Region = region_pT(p, T);
    switch Region
    case 1
        Out = fromSIunit_w(w1_pT(p, T));
    case 2
        Out = fromSIunit_w(w2_pT(p, T));
    case 3
        hs = h3_pT(p, T);
        rhos = 1 / v3_ph(p, hs);
        Out = fromSIunit_w(w3_rhoT(rhos, T));
    case 4
        Out = NaN;
    case 5
        Out = fromSIunit_w(w5_pT(p, T));
    otherwise
        Out = NaN;
    end
    
    
case 'w_ph'
    p = toSIunit_p(In1);
    h = toSIunit_h(In2);
    Region = region_ph(p, h);
    switch Region
    case 1
        Ts = T1_ph(p, h);
        Out = fromSIunit_w(w1_pT(p, Ts));
    case 2
        Ts = T2_ph(p, h);
        Out = fromSIunit_w(w2_pT(p, Ts));
    case 3
        rhos = 1 / v3_ph(p, h);
        Ts = T3_ph(p, h);
        Out = fromSIunit_w(w3_rhoT(rhos, Ts));
    case 4
        Out = NaN;
    case 5
        Ts = T5_ph(p, h);
        Out = fromSIunit_w(w5_pT(p, Ts));
    otherwise
        Out = NaN;
    end
    
case 'w_ps'
    p = toSIunit_p(In1);
    s = toSIunit_s(In2);
    Region = region_ps(p, s);
    switch Region
    case 1
        Ts = T1_ps(p, s);
        Out = fromSIunit_w(w1_pT(p, Ts));
    case 2
        Ts = T2_ps(p, s);
        Out = fromSIunit_w(w2_pT(p, Ts));
    case 3
        rhos = 1 / v3_ps(p, s);
        Ts = T3_ps(p, s);
        Out = fromSIunit_w(w3_rhoT(rhos, Ts));
    case 4
        Out = NaN; %(xs * wVp + (1 - xs) * wLp) / w_scale - w_offset
    case 5
        Ts = T5_ps(p, s);
        Out = fromSIunit_w(w5_pT(p, Ts));
    otherwise
        Out = NaN;
    end
    %***********************************************************************************************************
    %*1.12 Viscosity
case 'my_pt'
    p = toSIunit_p(In1);
    T = toSIunit_T(In2);
    Region = region_pT(p, T);
    switch Region
    case 4
        Out = NaN;
    case {1, 2, 3, 5}
        Out = fromSIunit_my(my_AllRegions_pT(p, T));
    otherwise
        Out = NaN;
    end
    
case {'my_ph'}
    p = toSIunit_p(In1);
    h = toSIunit_h(In2);
    Region = region_ph(p, h);
    switch Region
    case {1, 2, 3, 5}
        Out = fromSIunit_my(my_AllRegions_ph(p, h));
    case {4}
        Out = NaN;  
    otherwise
        Out = NaN;
    end
    
case 'my_ps'
    h = XSteam('h_ps',In1, In2);
    Out = XSteam('my_ph',In1, h);
    
    %***********************************************************************************************************
    %*1.13 Prandtl
    case 'pr_pt'
  Cp = toSIunit_Cp(XSteam('Cp_pT',In1, In2));
  my = toSIunit_my(XSteam('my_pT',In1,In2));
  tc = toSIunit_tc(XSteam('tc_pT',In1,In2));
  Out = Cp * 1000 * my / tc;

    case 'pr_ph'
  Cp = toSIunit_Cp(XSteam('Cp_ph',In1, In2));
  my = toSIunit_my(XSteam('my_ph',In1,In2));
  tc = toSIunit_tc(XSteam('tc_ph',In1,In2));
  Out = Cp * 1000 * my / tc;

    %***********************************************************************************************************
    %*1.14 Kappa
    %***********************************************************************************************************
    %***********************************************************************************************************
    %*1.15 Surface tension
case 'st_t'
    T = toSIunit_T(In1);
    Out = fromSIunit_st(Surface_Tension_T(T));
    
case 'st_p'
    T = XSteam('Tsat_p',In1);
    T = toSIunit_T(T);
    Out = fromSIunit_st(Surface_Tension_T(T));
    
    %***********************************************************************************************************
    %*1.16 Thermal conductivity
case 'tcl_p'
    T = XSteam('Tsat_p',In1);
    v = XSteam('vL_p',In1);
    p = toSIunit_p(In1);
    T = toSIunit_T(T);
    v = toSIunit_v(v);
    rho = 1 / v;
    Out = fromSIunit_tc(tc_ptrho(p, T, rho));
    
    
case 'tcv_p'
    ps = In1;
    T = XSteam('Tsat_p',ps);
    v = XSteam('vV_p',ps);
    p = toSIunit_p(In1);
    T = toSIunit_T(T);
    v = toSIunit_v(v);
    rho = 1 / v;
    Out = fromSIunit_tc(tc_ptrho(p, T, rho));
    
case 'tcl_t'
    Ts = In1;
    p = XSteam('psat_T',Ts);
    v = XSteam('vL_T',Ts);
    p = toSIunit_p(p);
    T = toSIunit_T(Ts);
    v = toSIunit_v(v);
    rho = 1 / v;
    Out = fromSIunit_tc(tc_ptrho(p, T, rho));
    
case 'tcv_t'
    Ts = In1;
    p = XSteam('psat_T',Ts);
    v = XSteam('vV_T',Ts);
    p = toSIunit_p(p);
    T = toSIunit_T(Ts);
    v = toSIunit_v(v);
    rho = 1 / v;
    Out = fromSIunit_tc(tc_ptrho(p, T, rho));
    
case 'tc_pt'
    Ts = In2;
    ps = In1;
    v = XSteam('v_pT',ps, Ts);
    p = toSIunit_p(ps);
    T = toSIunit_T(Ts);
    v = toSIunit_v(v);
    rho = 1 / v;
    Out = fromSIunit_tc(tc_ptrho(p, T, rho));
    
case 'tc_ph'
    hs = In2;
    ps = In1;
    v = XSteam('v_ph',ps, hs);
    T = XSteam('T_ph',ps, hs);
    p = toSIunit_p(ps);
    T = toSIunit_T(T);
    v = toSIunit_v(v);
    rho = 1 / v;
    Out = fromSIunit_tc(tc_ptrho(p, T, rho));
    
case 'tc_hs'
    hs = In1;
    p = XSteam('p_hs',hs, In2);
    ps = p;
    v = XSteam('v_ph',ps, hs);
    T = XSteam('T_ph',ps, hs);
    p = toSIunit_p(p);
    T = toSIunit_T(T);
    v = toSIunit_v(v);
    rho = 1 / v;
    Out = fromSIunit_tc(tc_ptrho(p, T, rho));
    %***********************************************************************************************************
    %*1.17 Vapour fraction
case 'x_ph'
    p = toSIunit_p(In1);
    h = toSIunit_h(In2);
    if p > 0.000611657  && p < 22.06395 
        Out = fromSIunit_x(x4_ph(p, h));
    else
        Out = NaN;
    end
    
case 'x_ps'
    p = toSIunit_p(In1);
    s = toSIunit_s(In2);
    if p > 0.000611657  && p < 22.06395 
        Out = fromSIunit_x(x4_ps(p, s));
    else
        Out = NaN;
    end
    
    %***********************************************************************************************************
    %*1.18 Vapour Volume Fraction
case 'vx_ph'
    p = toSIunit_p(In1);
    h = toSIunit_h(In2);
    if p > 0.000611657  && p < 22.06395 
        if p < 16.529 
            vL = v1_pT(p, T4_p(p));
            vV = v2_pT(p, T4_p(p));
        else
            vL = v3_ph(p, h4L_p(p));
            vV = v3_ph(p, h4V_p(p));
        end
        xs = x4_ph(p, h);
        Out = fromSIunit_vx((xs * vV / (xs * vV + (1 - xs) * vL)));
    else
        Out = NaN;
    end
    
case 'vx_ps'
    p = toSIunit_p(In1);
    s = toSIunit_s(In2);
    if p > 0.000611657  && p < 22.06395 
        if p < 16.529 
            vL = v1_pT(p, T4_p(p));
            vV = v2_pT(p, T4_p(p));
        else
            vL = v3_ph(p, h4L_p(p));
            vV = v3_ph(p, h4V_p(p));
        end
        xs = x4_ps(p, s);
        Out = fromSIunit_vx((xs * vV / (xs * vV + (1 - xs) * vL)));
    else
        Out = NaN;
    end
 
 case 'check'
   err=check();
    
otherwise
    error(['Unknown calling function to XSteam, ',fun, ' See help XSteam for valid calling functions']);
end
%***********************************************************************************************************
%*2 IAPWS IF 97 Calling functions                                                                          *
%***********************************************************************************************************
%
%***********************************************************************************************************
%*2.1 Functions for region 1
function v1_pT = v1_pT(p, T)
%Release on the IAPWS Industrial formulation 1997 for the Thermodynamic Properties of Water and Steam, September 1997
%5 Equations for Region 1, Section. 5.1 Basic Equation
%Eqution 7, Table 3, Page 6
I1 = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 8, 8, 21, 23, 29, 30, 31, 32];
J1 = [-2, -1, 0, 1, 2, 3, 4, 5, -9, -7, -1, 0, 1, 3, -3, 0, 1, 3, 17, -4, 0, 6, -5, -2, 10, -8, -11, -6, -29, -31, -38, -39, -40, -41];
n1 = [0.14632971213167, -0.84548187169114, -3.756360367204, 3.3855169168385, -0.95791963387872, 0.15772038513228, -0.016616417199501, 8.1214629983568E-04, 2.8319080123804E-04, -6.0706301565874E-04, -0.018990068218419, -0.032529748770505, -0.021841717175414, -5.283835796993E-05, -4.7184321073267E-04, -3.0001780793026E-04, 4.7661393906987E-05, -4.4141845330846E-06, -7.2694996297594E-16, -3.1679644845054E-05, -2.8270797985312E-06, -8.5205128120103E-10, -2.2425281908E-06, -6.5171222895601E-07, -1.4341729937924E-13, -4.0516996860117E-07, -1.2734301741641E-09, -1.7424871230634E-10, -6.8762131295531E-19, 1.4478307828521E-20, 2.6335781662795E-23, -1.1947622640071E-23, 1.8228094581404E-24, -9.3537087292458E-26];
R = 0.461526; %kJ/(kg K)
Pi = p / 16.53;
tau = 1386 / T;
gamma_der_pi = 0;
for i = 1 : 34
    gamma_der_pi = gamma_der_pi - n1(i) * I1(i) * (7.1 - Pi) ^ (I1(i) - 1) * (tau - 1.222) ^ J1(i);
end
v1_pT = R * T / p * Pi * gamma_der_pi / 1000;

function h1_pT = h1_pT(p, T)
%Release on the IAPWS Industrial formulation 1997 for the Thermodynamic Properties of Water and Steam, September 1997
%5 Equations for Region 1, Section. 5.1 Basic Equation
%Eqution 7, Table 3, Page 6
I1 = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 8, 8, 21, 23, 29, 30, 31, 32];
J1 = [-2, -1, 0, 1, 2, 3, 4, 5, -9, -7, -1, 0, 1, 3, -3, 0, 1, 3, 17, -4, 0, 6, -5, -2, 10, -8, -11, -6, -29, -31, -38, -39, -40, -41];
n1 = [0.14632971213167, -0.84548187169114, -3.756360367204, 3.3855169168385, -0.95791963387872, 0.15772038513228, -0.016616417199501, 8.1214629983568E-04, 2.8319080123804E-04, -6.0706301565874E-04, -0.018990068218419, -0.032529748770505, -0.021841717175414, -5.283835796993E-05, -4.7184321073267E-04, -3.0001780793026E-04, 4.7661393906987E-05, -4.4141845330846E-06, -7.2694996297594E-16, -3.1679644845054E-05, -2.8270797985312E-06, -8.5205128120103E-10, -2.2425281908E-06, -6.5171222895601E-07, -1.4341729937924E-13, -4.0516996860117E-07, -1.2734301741641E-09, -1.7424871230634E-10, -6.8762131295531E-19, 1.4478307828521E-20, 2.6335781662795E-23, -1.1947622640071E-23, 1.8228094581404E-24, -9.3537087292458E-26];
R = 0.461526; %kJ/(kg K)
Pi = p / 16.53;
tau = 1386 / T;
gamma_der_tau = 0;
for i = 1 : 34
    gamma_der_tau = gamma_der_tau + (n1(i) * (7.1 - Pi) ^ I1(i) * J1(i) * (tau - 1.222) ^ (J1(i) - 1));
end
h1_pT = R * T * tau * gamma_der_tau;

function u1_pT = u1_pT(p, T)
%Release on the IAPWS Industrial formulation 1997 for the Thermodynamic Properties of Water and Steam, September 1997
%5 Equations for Region 1, Section. 5.1 Basic Equation
%Eqution 7, Table 3, Page 6
I1 = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 8, 8, 21, 23, 29, 30, 31, 32];
J1 = [-2, -1, 0, 1, 2, 3, 4, 5, -9, -7, -1, 0, 1, 3, -3, 0, 1, 3, 17, -4, 0, 6, -5, -2, 10, -8, -11, -6, -29, -31, -38, -39, -40, -41];
n1 = [0.14632971213167, -0.84548187169114, -3.756360367204, 3.3855169168385, -0.95791963387872, 0.15772038513228, -0.016616417199501, 8.1214629983568E-04, 2.8319080123804E-04, -6.0706301565874E-04, -0.018990068218419, -0.032529748770505, -0.021841717175414, -5.283835796993E-05, -4.7184321073267E-04, -3.0001780793026E-04, 4.7661393906987E-05, -4.4141845330846E-06, -7.2694996297594E-16, -3.1679644845054E-05, -2.8270797985312E-06, -8.5205128120103E-10, -2.2425281908E-06, -6.5171222895601E-07, -1.4341729937924E-13, -4.0516996860117E-07, -1.2734301741641E-09, -1.7424871230634E-10, -6.8762131295531E-19, 1.4478307828521E-20, 2.6335781662795E-23, -1.1947622640071E-23, 1.8228094581404E-24, -9.3537087292458E-26];
R = 0.461526; %kJ/(kg K)
Pi = p / 16.53;
tau = 1386 / T;
gamma_der_tau = 0;
gamma_der_pi = 0;
for i = 1 : 34
    gamma_der_pi = gamma_der_pi - n1(i) * I1(i) * (7.1 - Pi) ^ (I1(i) - 1) * (tau - 1.222) ^ J1(i);
    gamma_der_tau = gamma_der_tau + (n1(i) * (7.1 - Pi) ^ I1(i) * J1(i) * (tau - 1.222) ^ (J1(i) - 1));
end
u1_pT = R * T * (tau * gamma_der_tau - Pi * gamma_der_pi);

function s1_pT = s1_pT(p, T)
%Release on the IAPWS Industrial formulation 1997 for the Thermodynamic Properties of Water and Steam, September 1997
%5 Equations for Region 1, Section. 5.1 Basic Equation
%Eqution 7, Table 3, Page 6
I1 = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 8, 8, 21, 23, 29, 30, 31, 32];
J1 = [-2, -1, 0, 1, 2, 3, 4, 5, -9, -7, -1, 0, 1, 3, -3, 0, 1, 3, 17, -4, 0, 6, -5, -2, 10, -8, -11, -6, -29, -31, -38, -39, -40, -41];
n1 = [0.14632971213167, -0.84548187169114, -3.756360367204, 3.3855169168385, -0.95791963387872, 0.15772038513228, -0.016616417199501, 8.1214629983568E-04, 2.8319080123804E-04, -6.0706301565874E-04, -0.018990068218419, -0.032529748770505, -0.021841717175414, -5.283835796993E-05, -4.7184321073267E-04, -3.0001780793026E-04, 4.7661393906987E-05, -4.4141845330846E-06, -7.2694996297594E-16, -3.1679644845054E-05, -2.8270797985312E-06, -8.5205128120103E-10, -2.2425281908E-06, -6.5171222895601E-07, -1.4341729937924E-13, -4.0516996860117E-07, -1.2734301741641E-09, -1.7424871230634E-10, -6.8762131295531E-19, 1.4478307828521E-20, 2.6335781662795E-23, -1.1947622640071E-23, 1.8228094581404E-24, -9.3537087292458E-26];
R = 0.461526; %kJ/(kg K)
Pi = p / 16.53;
tau = 1386 / T;
gamma = 0;
gamma_der_tau = 0;
for i = 1 : 34
    gamma_der_tau = gamma_der_tau + (n1(i) * (7.1 - Pi) ^ I1(i) * J1(i) * (tau - 1.222) ^ (J1(i) - 1));
    gamma = gamma + n1(i) * (7.1 - Pi) ^ I1(i) * (tau - 1.222) ^ J1(i);
end
s1_pT = R * tau * gamma_der_tau - R * gamma;

function Cp1_pT = Cp1_pT(p, T)
%Release on the IAPWS Industrial formulation 1997 for the Thermodynamic Properties of Water and Steam, September 1997
%5 Equations for Region 1, Section. 5.1 Basic Equation
%Eqution 7, Table 3, Page 6
I1 = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 8, 8, 21, 23, 29, 30, 31, 32];
J1 = [-2, -1, 0, 1, 2, 3, 4, 5, -9, -7, -1, 0, 1, 3, -3, 0, 1, 3, 17, -4, 0, 6, -5, -2, 10, -8, -11, -6, -29, -31, -38, -39, -40, -41];
n1 = [0.14632971213167, -0.84548187169114, -3.756360367204, 3.3855169168385, -0.95791963387872, 0.15772038513228, -0.016616417199501, 8.1214629983568E-04, 2.8319080123804E-04, -6.0706301565874E-04, -0.018990068218419, -0.032529748770505, -0.021841717175414, -5.283835796993E-05, -4.7184321073267E-04, -3.0001780793026E-04, 4.7661393906987E-05, -4.4141845330846E-06, -7.2694996297594E-16, -3.1679644845054E-05, -2.8270797985312E-06, -8.5205128120103E-10, -2.2425281908E-06, -6.5171222895601E-07, -1.4341729937924E-13, -4.0516996860117E-07, -1.2734301741641E-09, -1.7424871230634E-10, -6.8762131295531E-19, 1.4478307828521E-20, 2.6335781662795E-23, -1.1947622640071E-23, 1.8228094581404E-24, -9.3537087292458E-26];
R = 0.461526; %kJ/(kg K)
Pi = p / 16.53;
tau = 1386 / T;
gamma_der_tautau = 0;
for i = 1 :34
    gamma_der_tautau = gamma_der_tautau + (n1(i) * (7.1 - Pi) ^ I1(i) * J1(i) * (J1(i) - 1) * (tau - 1.222) ^ (J1(i) - 2));
end
Cp1_pT = -R * tau ^ 2 * gamma_der_tautau;

function Cv1_pT = Cv1_pT(p, T)
%Release on the IAPWS Industrial formulation 1997 for the Thermodynamic Properties of Water and Steam, September 1997
%5 Equations for Region 1, Section. 5.1 Basic Equation
%Eqution 7, Table 3, Page 6
I1 = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 8, 8, 21, 23, 29, 30, 31, 32];
J1 = [-2, -1, 0, 1, 2, 3, 4, 5, -9, -7, -1, 0, 1, 3, -3, 0, 1, 3, 17, -4, 0, 6, -5, -2, 10, -8, -11, -6, -29, -31, -38, -39, -40, -41];
n1 = [0.14632971213167, -0.84548187169114, -3.756360367204, 3.3855169168385, -0.95791963387872, 0.15772038513228, -0.016616417199501, 8.1214629983568E-04, 2.8319080123804E-04, -6.0706301565874E-04, -0.018990068218419, -0.032529748770505, -0.021841717175414, -5.283835796993E-05, -4.7184321073267E-04, -3.0001780793026E-04, 4.7661393906987E-05, -4.4141845330846E-06, -7.2694996297594E-16, -3.1679644845054E-05, -2.8270797985312E-06, -8.5205128120103E-10, -2.2425281908E-06, -6.5171222895601E-07, -1.4341729937924E-13, -4.0516996860117E-07, -1.2734301741641E-09, -1.7424871230634E-10, -6.8762131295531E-19, 1.4478307828521E-20, 2.6335781662795E-23, -1.1947622640071E-23, 1.8228094581404E-24, -9.3537087292458E-26];
R = 0.461526; %kJ/(kg K)
Pi = p / 16.53;
tau = 1386 / T;
gamma_der_pi = 0;
gamma_der_pipi = 0;
gamma_der_pitau = 0;
gamma_der_tautau = 0;
for i = 1 : 34
    gamma_der_pi = gamma_der_pi - n1(i) * I1(i) * (7.1 - Pi) ^ (I1(i) - 1) * (tau - 1.222) ^ J1(i);
    gamma_der_pipi = gamma_der_pipi + n1(i) * I1(i) * (I1(i) - 1) * (7.1 - Pi) ^ (I1(i) - 2) * (tau - 1.222) ^ J1(i);
    gamma_der_pitau = gamma_der_pitau - n1(i) * I1(i) * (7.1 - Pi) ^ (I1(i) - 1) * J1(i) * (tau - 1.222) ^ (J1(i) - 1);
    gamma_der_tautau = gamma_der_tautau + n1(i) * (7.1 - Pi) ^ I1(i) * J1(i) * (J1(i) - 1) * (tau - 1.222) ^ (J1(i) - 2);
end
Cv1_pT = R * (-tau ^ 2 * gamma_der_tautau + (gamma_der_pi - tau * gamma_der_pitau) ^ 2 / gamma_der_pipi);

function w1_pT = w1_pT(p, T)
%Release on the IAPWS Industrial formulation 1997 for the Thermodynamic Properties of Water and Steam, September 1997
%5 Equations for Region 1, Section. 5.1 Basic Equation
%Eqution 7, Table 3, Page 6
I1 = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 8, 8, 21, 23, 29, 30, 31, 32];
J1 = [-2, -1, 0, 1, 2, 3, 4, 5, -9, -7, -1, 0, 1, 3, -3, 0, 1, 3, 17, -4, 0, 6, -5, -2, 10, -8, -11, -6, -29, -31, -38, -39, -40, -41];
n1 = [0.14632971213167, -0.84548187169114, -3.756360367204, 3.3855169168385, -0.95791963387872, 0.15772038513228, -0.016616417199501, 8.1214629983568E-04, 2.8319080123804E-04, -6.0706301565874E-04, -0.018990068218419, -0.032529748770505, -0.021841717175414, -5.283835796993E-05, -4.7184321073267E-04, -3.0001780793026E-04, 4.7661393906987E-05, -4.4141845330846E-06, -7.2694996297594E-16, -3.1679644845054E-05, -2.8270797985312E-06, -8.5205128120103E-10, -2.2425281908E-06, -6.5171222895601E-07, -1.4341729937924E-13, -4.0516996860117E-07, -1.2734301741641E-09, -1.7424871230634E-10, -6.8762131295531E-19, 1.4478307828521E-20, 2.6335781662795E-23, -1.1947622640071E-23, 1.8228094581404E-24, -9.3537087292458E-26];
R = 0.461526; %kJ/(kg K)
Pi = p / 16.53;
tau = 1386 / T;
gamma_der_pi = 0;
gamma_der_pipi = 0;
gamma_der_pitau = 0;
gamma_der_tautau = 0;
for i = 1 : 34
    gamma_der_pi = gamma_der_pi - n1(i) * I1(i) * (7.1 - Pi) ^ (I1(i) - 1) * (tau - 1.222) ^ J1(i);
    gamma_der_pipi = gamma_der_pipi + n1(i) * I1(i) * (I1(i) - 1) * (7.1 - Pi) ^ (I1(i) - 2) * (tau - 1.222) ^ J1(i);
    gamma_der_pitau = gamma_der_pitau - n1(i) * I1(i) * (7.1 - Pi) ^ (I1(i) - 1) * J1(i) * (tau - 1.222) ^ (J1(i) - 1);
    gamma_der_tautau = gamma_der_tautau + n1(i) * (7.1 - Pi) ^ I1(i) * J1(i) * (J1(i) - 1) * (tau - 1.222) ^ (J1(i) - 2);
end
w1_pT = (1000 * R * T * gamma_der_pi ^ 2 / ((gamma_der_pi - tau * gamma_der_pitau) ^ 2 / (tau ^ 2 * gamma_der_tautau) - gamma_der_pipi)) ^ 0.5;

function T1_ph = T1_ph(p, h)
%Release on the IAPWS Industrial formulation 1997 for the Thermodynamic Properties of Water and Steam, September 1997
%5 Equations for Region 1, Section. 5.1 Basic Equation, 5.2.1 The Backward Equation T ( p,h )
%Eqution 11, Table 6, Page 10
I1 = [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 5, 6];
J1 = [0, 1, 2, 6, 22, 32, 0, 1, 2, 3, 4, 10, 32, 10, 32, 10, 32, 32, 32, 32];
n1 = [-238.72489924521, 404.21188637945, 113.49746881718, -5.8457616048039, -1.528548241314E-04, -1.0866707695377E-06, -13.391744872602, 43.211039183559, -54.010067170506, 30.535892203916, -6.5964749423638, 9.3965400878363E-03, 1.157364750534E-07, -2.5858641282073E-05, -4.0644363084799E-09, 6.6456186191635E-08, 8.0670734103027E-11, -9.3477771213947E-13, 5.8265442020601E-15, -1.5020185953503E-17];
Pi = p / 1;
eta = h / 2500;
T = 0;
for i = 1 : 20
    T = T + n1(i) * Pi ^ I1(i) * (eta + 1) ^ J1(i);
end
T1_ph = T;

function T1_ps = T1_ps(p, s)
%Release on the IAPWS Industrial formulation 1997 for the Thermodynamic Properties of Water and Steam, September 1997
%5 Equations for Region 1, Section. 5.1 Basic Equation, 5.2.2 The Backward Equation T ( p, s )
%Eqution 13, Table 8, Page 11
I1 = [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 4];
J1 = [0, 1, 2, 3, 11, 31, 0, 1, 2, 3, 12, 31, 0, 1, 2, 9, 31, 10, 32, 32];
n1 = [174.78268058307, 34.806930892873, 6.5292584978455, 0.33039981775489, -1.9281382923196E-07, -2.4909197244573E-23, -0.26107636489332, 0.22592965981586, -0.064256463395226, 7.8876289270526E-03, 3.5672110607366E-10, 1.7332496994895E-24, 5.6608900654837E-04, -3.2635483139717E-04, 4.4778286690632E-05, -5.1322156908507E-10, -4.2522657042207E-26, 2.6400441360689E-13, 7.8124600459723E-29, -3.0732199903668E-31];
Pi = p / 1;
Sigma = s / 1;
T = 0;
for i = 1 : 20
    T = T + n1(i) * Pi ^ I1(i) * (Sigma + 2) ^ J1(i);
end
T1_ps = T;

function p1_hs = p1_hs(h, s)
%Supplementary Release on Backward Equations for Pressure as a Function of Enthalpy and Entropy p(h,s) to the IAPWS Industrial formulation 1997 for the Thermodynamic Properties of Water and Steam
%5 Backward Equation p(h,s) for Region 1
%Eqution 1, Table 2, Page 5
I1 = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 3, 4, 4, 5];
J1 = [0, 1, 2, 4, 5, 6, 8, 14, 0, 1, 4, 6, 0, 1, 10, 4, 1, 4, 0];
n1 = [-0.691997014660582, -18.361254878756, -9.28332409297335, 65.9639569909906, -16.2060388912024, 450.620017338667, 854.68067822417, 6075.23214001162, 32.6487682621856, -26.9408844582931, -319.9478483343, -928.35430704332, 30.3634537455249, -65.0540422444146, -4309.9131651613, -747.512324096068, 730.000345529245, 1142.84032569021, -436.407041874559];
eta = h / 3400;
Sigma = s / 7.6;
p = 0;
for i = 1 : 19
    p = p + n1(i) * (eta + 0.05) ^ I1(i) * (Sigma + 0.05) ^ J1(i);
end
p1_hs = p * 100;

function T1_prho = T1_prho(p ,rho)
  %Solve by iteration. Observe that for low temperatures this equation has 2 solutions.
  %Solve with half interval method
  Low_Bound = 273.15;
  High_Bound = T4_p(p);
  rhos=-1000;
  while abs(rho - rhos) > 0.00001
    Ts = (Low_Bound + High_Bound) / 2;
    rhos = 1 / v1_pT(p, Ts);
    if rhos < rho
      High_Bound = Ts;
    else
      Low_Bound = Ts;
    end
  end
  T1_prho = Ts;

%***********************************************************************************************************
%*2.2 functions for region 2

function v2_pT = v2_pT(p, T)
%Release on the IAPWS Industrial formulation 1997 for the Thermodynamic Properties of Water and Steam, September 1997
%6 Equations for Region 2, Section. 6.1 Basic Equation
%Table 11 and 12, Page 14 and 15
J0 = [0, 1, -5, -4, -3, -2, -1, 2, 3];
n0 = [-9.6927686500217, 10.086655968018, -0.005608791128302, 0.071452738081455, -0.40710498223928, 1.4240819171444, -4.383951131945, -0.28408632460772, 0.021268463753307];
Ir = [1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 5, 6, 6, 6, 7, 7, 7, 8, 8, 9, 10, 10, 10, 16, 16, 18, 20, 20, 20, 21, 22, 23, 24, 24, 24];
Jr = [0, 1, 2, 3, 6, 1, 2, 4, 7, 36, 0, 1, 3, 6, 35, 1, 2, 3, 7, 3, 16, 35, 0, 11, 25, 8, 36, 13, 4, 10, 14, 29, 50, 57, 20, 35, 48, 21, 53, 39, 26, 40, 58];
nr = [-1.7731742473213E-03, -0.017834862292358, -0.045996013696365, -0.057581259083432, -0.05032527872793, -3.3032641670203E-05, -1.8948987516315E-04, -3.9392777243355E-03, -0.043797295650573, -2.6674547914087E-05, 2.0481737692309E-08, 4.3870667284435E-07, -3.227767723857E-05, -1.5033924542148E-03, -0.040668253562649, -7.8847309559367E-10, 1.2790717852285E-08, 4.8225372718507E-07, 2.2922076337661E-06, -1.6714766451061E-11, -2.1171472321355E-03, -23.895741934104, -5.905956432427E-18, -1.2621808899101E-06, -0.038946842435739, 1.1256211360459E-11, -8.2311340897998, 1.9809712802088E-08, 1.0406965210174E-19, -1.0234747095929E-13, -1.0018179379511E-09, -8.0882908646985E-11, 0.10693031879409, -0.33662250574171, 8.9185845355421E-25, 3.0629316876232E-13, -4.2002467698208E-06, -5.9056029685639E-26, 3.7826947613457E-06, -1.2768608934681E-15, 7.3087610595061E-29, 5.5414715350778E-17, -9.436970724121E-07];
R = 0.461526; %kJ/(kg K)
Pi = p;
tau = 540 / T;
g0_pi = 1 / Pi;
gr_pi = 0;
for i = 1 : 43
    gr_pi = gr_pi + nr(i) * Ir(i) * Pi ^ (Ir(i) - 1) * (tau - 0.5) ^ Jr(i);
end
v2_pT = R * T / p * Pi * (g0_pi + gr_pi) / 1000;

function h2_pT = h2_pT(p, T)
%Release on the IAPWS Industrial formulation 1997 for the Thermodynamic Properties of Water and Steam, September 1997
%6 Equations for Region 2, Section. 6.1 Basic Equation
%Table 11 and 12, Page 14 and 15
J0 = [0, 1, -5, -4, -3, -2, -1, 2, 3];
n0 = [-9.6927686500217, 10.086655968018, -0.005608791128302, 0.071452738081455, -0.40710498223928, 1.4240819171444, -4.383951131945, -0.28408632460772, 0.021268463753307];
Ir = [1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 5, 6, 6, 6, 7, 7, 7, 8, 8, 9, 10, 10, 10, 16, 16, 18, 20, 20, 20, 21, 22, 23, 24, 24, 24];
Jr = [0, 1, 2, 3, 6, 1, 2, 4, 7, 36, 0, 1, 3, 6, 35, 1, 2, 3, 7, 3, 16, 35, 0, 11, 25, 8, 36, 13, 4, 10, 14, 29, 50, 57, 20, 35, 48, 21, 53, 39, 26, 40, 58];
nr = [-1.7731742473213E-03, -0.017834862292358, -0.045996013696365, -0.057581259083432, -0.05032527872793, -3.3032641670203E-05, -1.8948987516315E-04, -3.9392777243355E-03, -0.043797295650573, -2.6674547914087E-05, 2.0481737692309E-08, 4.3870667284435E-07, -3.227767723857E-05, -1.5033924542148E-03, -0.040668253562649, -7.8847309559367E-10, 1.2790717852285E-08, 4.8225372718507E-07, 2.2922076337661E-06, -1.6714766451061E-11, -2.1171472321355E-03, -23.895741934104, -5.905956432427E-18, -1.2621808899101E-06, -0.038946842435739, 1.1256211360459E-11, -8.2311340897998, 1.9809712802088E-08, 1.0406965210174E-19, -1.0234747095929E-13, -1.0018179379511E-09, -8.0882908646985E-11, 0.10693031879409, -0.33662250574171, 8.9185845355421E-25, 3.0629316876232E-13, -4.2002467698208E-06, -5.9056029685639E-26, 3.7826947613457E-06, -1.2768608934681E-15, 7.3087610595061E-29, 5.5414715350778E-17, -9.436970724121E-07];
R = 0.461526; %kJ/(kg K)
Pi = p;
tau = 540 / T;
g0_tau = 0;
for i = 1 : 9
    g0_tau = g0_tau + n0(i) * J0(i) * tau ^ (J0(i) - 1);
end
gr_tau = 0;
for i = 1 : 43
    gr_tau = gr_tau + nr(i) * Pi ^ Ir(i) * Jr(i) * (tau - 0.5) ^ (Jr(i) - 1);
end
h2_pT = R * T * tau * (g0_tau + gr_tau);

function u2_pT = u2_pT(p, T)
%Release on the IAPWS Industrial formulation 1997 for the Thermodynamic Properties of Water and Steam, September 1997
%6 Equations for Region 2, Section. 6.1 Basic Equation
%Table 11 and 12, Page 14 and 15
J0 = [0, 1, -5, -4, -3, -2, -1, 2, 3];
n0 = [-9.6927686500217, 10.086655968018, -0.005608791128302, 0.071452738081455, -0.40710498223928, 1.4240819171444, -4.383951131945, -0.28408632460772, 0.021268463753307];
Ir = [1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 5, 6, 6, 6, 7, 7, 7, 8, 8, 9, 10, 10, 10, 16, 16, 18, 20, 20, 20, 21, 22, 23, 24, 24, 24];
Jr = [0, 1, 2, 3, 6, 1, 2, 4, 7, 36, 0, 1, 3, 6, 35, 1, 2, 3, 7, 3, 16, 35, 0, 11, 25, 8, 36, 13, 4, 10, 14, 29, 50, 57, 20, 35, 48, 21, 53, 39, 26, 40, 58];
nr = [-1.7731742473213E-03, -0.017834862292358, -0.045996013696365, -0.057581259083432, -0.05032527872793, -3.3032641670203E-05, -1.8948987516315E-04, -3.9392777243355E-03, -0.043797295650573, -2.6674547914087E-05, 2.0481737692309E-08, 4.3870667284435E-07, -3.227767723857E-05, -1.5033924542148E-03, -0.040668253562649, -7.8847309559367E-10, 1.2790717852285E-08, 4.8225372718507E-07, 2.2922076337661E-06, -1.6714766451061E-11, -2.1171472321355E-03, -23.895741934104, -5.905956432427E-18, -1.2621808899101E-06, -0.038946842435739, 1.1256211360459E-11, -8.2311340897998, 1.9809712802088E-08, 1.0406965210174E-19, -1.0234747095929E-13, -1.0018179379511E-09, -8.0882908646985E-11, 0.10693031879409, -0.33662250574171, 8.9185845355421E-25, 3.0629316876232E-13, -4.2002467698208E-06, -5.9056029685639E-26, 3.7826947613457E-06, -1.2768608934681E-15, 7.3087610595061E-29, 5.5414715350778E-17, -9.436970724121E-07];
R = 0.461526; %kJ/(kg K)
Pi = p;
tau = 540 / T;
g0_pi = 1 / Pi;
g0_tau = 0;
for i = 1 : 9
    g0_tau = g0_tau + n0(i) * J0(i) * tau ^ (J0(i) - 1);
end
gr_pi = 0;
gr_tau = 0;
for i = 1 : 43
    gr_pi = gr_pi + nr(i) * Ir(i) * Pi ^ (Ir(i) - 1) * (tau - 0.5) ^ Jr(i);
    gr_tau = gr_tau + nr(i) * Pi ^ Ir(i) * Jr(i) * (tau - 0.5) ^ (Jr(i) - 1);
end
u2_pT = R * T * (tau * (g0_tau + gr_tau) - Pi * (g0_pi + gr_pi));


function s2_pT = s2_pT(p, T)
%Release on the IAPWS Industrial formulation 1997 for the Thermodynamic Properties of Water and Steam, September 1997
%6 Equations for Region 2, Section. 6.1 Basic Equation
%Table 11 and 12, Page 14 and 15
J0 = [0, 1, -5, -4, -3, -2, -1, 2, 3];
n0 = [-9.6927686500217, 10.086655968018, -0.005608791128302, 0.071452738081455, -0.40710498223928, 1.4240819171444, -4.383951131945, -0.28408632460772, 0.021268463753307];
Ir = [1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 5, 6, 6, 6, 7, 7, 7, 8, 8, 9, 10, 10, 10, 16, 16, 18, 20, 20, 20, 21, 22, 23, 24, 24, 24];
Jr = [0, 1, 2, 3, 6, 1, 2, 4, 7, 36, 0, 1, 3, 6, 35, 1, 2, 3, 7, 3, 16, 35, 0, 11, 25, 8, 36, 13, 4, 10, 14, 29, 50, 57, 20, 35, 48, 21, 53, 39, 26, 40, 58];
nr = [-1.7731742473213E-03, -0.017834862292358, -0.045996013696365, -0.057581259083432, -0.05032527872793, -3.3032641670203E-05, -1.8948987516315E-04, -3.9392777243355E-03, -0.043797295650573, -2.6674547914087E-05, 2.0481737692309E-08, 4.3870667284435E-07, -3.227767723857E-05, -1.5033924542148E-03, -0.040668253562649, -7.8847309559367E-10, 1.2790717852285E-08, 4.8225372718507E-07, 2.2922076337661E-06, -1.6714766451061E-11, -2.1171472321355E-03, -23.895741934104, -5.905956432427E-18, -1.2621808899101E-06, -0.038946842435739, 1.1256211360459E-11, -8.2311340897998, 1.9809712802088E-08, 1.0406965210174E-19, -1.0234747095929E-13, -1.0018179379511E-09, -8.0882908646985E-11, 0.10693031879409, -0.33662250574171, 8.9185845355421E-25, 3.0629316876232E-13, -4.2002467698208E-06, -5.9056029685639E-26, 3.7826947613457E-06, -1.2768608934681E-15, 7.3087610595061E-29, 5.5414715350778E-17, -9.436970724121E-07];
R = 0.461526; %kJ/(kg K)
Pi = p;
tau = 540 / T;
g0 = log(Pi);
g0_tau = 0;
for i = 1 : 9
    g0 = g0 + n0(i) * tau ^ J0(i);
    g0_tau = g0_tau + n0(i) * J0(i) * tau ^ (J0(i) - 1);
end
gr = 0;
gr_tau = 0;
for i = 1 : 43
    gr = gr + nr(i) * Pi ^ Ir(i) * (tau - 0.5) ^ Jr(i);
    gr_tau = gr_tau + nr(i) * Pi ^ Ir(i) * Jr(i) * (tau - 0.5) ^ (Jr(i) - 1);
end
s2_pT = R * (tau * (g0_tau + gr_tau) - (g0 + gr));

function Cp2_pT = Cp2_pT(p, T)
%Release on the IAPWS Industrial formulation 1997 for the Thermodynamic Properties of Water and Steam, September 1997
%6 Equations for Region 2, Section. 6.1 Basic Equation
%Table 11 and 12, Page 14 and 15
J0 = [0, 1, -5, -4, -3, -2, -1, 2, 3];
n0 = [-9.6927686500217, 10.086655968018, -0.005608791128302, 0.071452738081455, -0.40710498223928, 1.4240819171444, -4.383951131945, -0.28408632460772, 0.021268463753307];
Ir = [1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 5, 6, 6, 6, 7, 7, 7, 8, 8, 9, 10, 10, 10, 16, 16, 18, 20, 20, 20, 21, 22, 23, 24, 24, 24];
Jr = [0, 1, 2, 3, 6, 1, 2, 4, 7, 36, 0, 1, 3, 6, 35, 1, 2, 3, 7, 3, 16, 35, 0, 11, 25, 8, 36, 13, 4, 10, 14, 29, 50, 57, 20, 35, 48, 21, 53, 39, 26, 40, 58];
nr = [-1.7731742473213E-03, -0.017834862292358, -0.045996013696365, -0.057581259083432, -0.05032527872793, -3.3032641670203E-05, -1.8948987516315E-04, -3.9392777243355E-03, -0.043797295650573, -2.6674547914087E-05, 2.0481737692309E-08, 4.3870667284435E-07, -3.227767723857E-05, -1.5033924542148E-03, -0.040668253562649, -7.8847309559367E-10, 1.2790717852285E-08, 4.8225372718507E-07, 2.2922076337661E-06, -1.6714766451061E-11, -2.1171472321355E-03, -23.895741934104, -5.905956432427E-18, -1.2621808899101E-06, -0.038946842435739, 1.1256211360459E-11, -8.2311340897998, 1.9809712802088E-08, 1.0406965210174E-19, -1.0234747095929E-13, -1.0018179379511E-09, -8.0882908646985E-11, 0.10693031879409, -0.33662250574171, 8.9185845355421E-25, 3.0629316876232E-13, -4.2002467698208E-06, -5.9056029685639E-26, 3.7826947613457E-06, -1.2768608934681E-15, 7.3087610595061E-29, 5.5414715350778E-17, -9.436970724121E-07];
R = 0.461526; %kJ/(kg K)
Pi = p;
tau = 540 / T;
g0_tautau = 0;
for i = 1 : 9
    g0_tautau = g0_tautau + n0(i) * J0(i) * (J0(i) - 1) * tau ^ (J0(i) - 2);
end
gr_tautau = 0;
for i = 1 : 43
    gr_tautau = gr_tautau + nr(i) * Pi ^ Ir(i) * Jr(i) * (Jr(i) - 1) * (tau - 0.5) ^ (Jr(i) - 2);
end
Cp2_pT = -R * tau ^ 2 * (g0_tautau + gr_tautau);

function Cv2_pT = Cv2_pT(p, T)
%Release on the IAPWS Industrial formulation 1997 for the Thermodynamic Properties of Water and Steam, September 1997
%6 Equations for Region 2, Section. 6.1 Basic Equation
%Table 11 and 12, Page 14 and 15
J0 = [0, 1, -5, -4, -3, -2, -1, 2, 3];
n0 = [-9.6927686500217, 10.086655968018, -0.005608791128302, 0.071452738081455, -0.40710498223928, 1.4240819171444, -4.383951131945, -0.28408632460772, 0.021268463753307];
Ir = [1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 5, 6, 6, 6, 7, 7, 7, 8, 8, 9, 10, 10, 10, 16, 16, 18, 20, 20, 20, 21, 22, 23, 24, 24, 24];
Jr = [0, 1, 2, 3, 6, 1, 2, 4, 7, 36, 0, 1, 3, 6, 35, 1, 2, 3, 7, 3, 16, 35, 0, 11, 25, 8, 36, 13, 4, 10, 14, 29, 50, 57, 20, 35, 48, 21, 53, 39, 26, 40, 58];
nr = [-1.7731742473213E-03, -0.017834862292358, -0.045996013696365, -0.057581259083432, -0.05032527872793, -3.3032641670203E-05, -1.8948987516315E-04, -3.9392777243355E-03, -0.043797295650573, -2.6674547914087E-05, 2.0481737692309E-08, 4.3870667284435E-07, -3.227767723857E-05, -1.5033924542148E-03, -0.040668253562649, -7.8847309559367E-10, 1.2790717852285E-08, 4.8225372718507E-07, 2.2922076337661E-06, -1.6714766451061E-11, -2.1171472321355E-03, -23.895741934104, -5.905956432427E-18, -1.2621808899101E-06, -0.038946842435739, 1.1256211360459E-11, -8.2311340897998, 1.9809712802088E-08, 1.0406965210174E-19, -1.0234747095929E-13, -1.0018179379511E-09, -8.0882908646985E-11, 0.10693031879409, -0.33662250574171, 8.9185845355421E-25, 3.0629316876232E-13, -4.2002467698208E-06, -5.9056029685639E-26, 3.7826947613457E-06, -1.2768608934681E-15, 7.3087610595061E-29, 5.5414715350778E-17, -9.436970724121E-07];
R = 0.461526; %kJ/(kg K)
Pi = p;
tau = 540 / T;
g0_tautau = 0;
for i =  1 : 9
    g0_tautau = g0_tautau + n0(i) * J0(i) * (J0(i) - 1) * tau ^ (J0(i) - 2);
end
gr_pi = 0;
gr_pitau = 0;
gr_pipi = 0;
gr_tautau = 0;
for i = 1 : 43
    gr_pi = gr_pi + nr(i) * Ir(i) * Pi ^ (Ir(i) - 1) * (tau - 0.5) ^ Jr(i);
    gr_pipi = gr_pipi + nr(i) * Ir(i) * (Ir(i) - 1) * Pi ^ (Ir(i) - 2) * (tau - 0.5) ^ Jr(i);
    gr_pitau = gr_pitau + nr(i) * Ir(i) * Pi ^ (Ir(i) - 1) * Jr(i) * (tau - 0.5) ^ (Jr(i) - 1);
    gr_tautau = gr_tautau + nr(i) * Pi ^ Ir(i) * Jr(i) * (Jr(i) - 1) * (tau - 0.5) ^ (Jr(i) - 2);
end
Cv2_pT = R * (-tau ^ 2 * (g0_tautau + gr_tautau) - (1 + Pi * gr_pi - tau * Pi * gr_pitau) ^ 2 / (1 - Pi ^ 2 * gr_pipi));

function w2_pT = w2_pT(p, T)
%Release on the IAPWS Industrial formulation 1997 for the Thermodynamic Properties of Water and Steam, September 1997
%6 Equations for Region 2, Section. 6.1 Basic Equation
%Table 11 and 12, Page 14 and 15
J0 = [0, 1, -5, -4, -3, -2, -1, 2, 3];
n0 = [-9.6927686500217, 10.086655968018, -0.005608791128302, 0.071452738081455, -0.40710498223928, 1.4240819171444, -4.383951131945, -0.28408632460772, 0.021268463753307];
Ir = [1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 5, 6, 6, 6, 7, 7, 7, 8, 8, 9, 10, 10, 10, 16, 16, 18, 20, 20, 20, 21, 22, 23, 24, 24, 24];
Jr = [0, 1, 2, 3, 6, 1, 2, 4, 7, 36, 0, 1, 3, 6, 35, 1, 2, 3, 7, 3, 16, 35, 0, 11, 25, 8, 36, 13, 4, 10, 14, 29, 50, 57, 20, 35, 48, 21, 53, 39, 26, 40, 58];
nr = [-1.7731742473213E-03, -0.017834862292358, -0.045996013696365, -0.057581259083432, -0.05032527872793, -3.3032641670203E-05, -1.8948987516315E-04, -3.9392777243355E-03, -0.043797295650573, -2.6674547914087E-05, 2.0481737692309E-08, 4.3870667284435E-07, -3.227767723857E-05, -1.5033924542148E-03, -0.040668253562649, -7.8847309559367E-10, 1.2790717852285E-08, 4.8225372718507E-07, 2.2922076337661E-06, -1.6714766451061E-11, -2.1171472321355E-03, -23.895741934104, -5.905956432427E-18, -1.2621808899101E-06, -0.038946842435739, 1.1256211360459E-11, -8.2311340897998, 1.9809712802088E-08, 1.0406965210174E-19, -1.0234747095929E-13, -1.0018179379511E-09, -8.0882908646985E-11, 0.10693031879409, -0.33662250574171, 8.9185845355421E-25, 3.0629316876232E-13, -4.2002467698208E-06, -5.9056029685639E-26, 3.7826947613457E-06, -1.2768608934681E-15, 7.3087610595061E-29, 5.5414715350778E-17, -9.436970724121E-07];
R = 0.461526; %kJ/(kg K)
Pi = p;
tau = 540 / T;
g0_tautau = 0;
for i =  1 : 9
    g0_tautau = g0_tautau + n0(i) * J0(i) * (J0(i) - 1) * tau ^ (J0(i) - 2);
end
gr_pi = 0;
gr_pitau = 0;
gr_pipi = 0;
gr_tautau = 0;
for i = 1 : 43
    gr_pi = gr_pi + nr(i) * Ir(i) * Pi ^ (Ir(i) - 1) * (tau - 0.5) ^ Jr(i);
    gr_pipi = gr_pipi + nr(i) * Ir(i) * (Ir(i) - 1) * Pi ^ (Ir(i) - 2) * (tau - 0.5) ^ Jr(i);
    gr_pitau = gr_pitau + nr(i) * Ir(i) * Pi ^ (Ir(i) - 1) * Jr(i) * (tau - 0.5) ^ (Jr(i) - 1);
    gr_tautau = gr_tautau + nr(i) * Pi ^ Ir(i) * Jr(i) * (Jr(i) - 1) * (tau - 0.5) ^ (Jr(i) - 2);
end
w2_pT = (1000 * R * T * (1 + 2 * Pi * gr_pi + Pi ^ 2 * gr_pi ^ 2) / ((1 - Pi ^ 2 * gr_pipi) + (1 + Pi * gr_pi - tau * Pi * gr_pitau) ^ 2 / (tau ^ 2 * (g0_tautau + gr_tautau)))) ^ 0.5;

function T2_ph = T2_ph(p, h)
%Release on the IAPWS Industrial formulation 1997 for the Thermodynamic Properties of Water and Steam, September 1997
%6 Equations for Region 2,6.3.1 The Backward Equations T( p, h ) for Subregions 2a, 2b, and 2c
if p < 4 
    sub_reg = 1;
else
    if p < (905.84278514723 - 0.67955786399241 * h + 1.2809002730136E-04 * h ^ 2) 
        sub_reg = 2;
    else
        sub_reg = 3;
    end
end

switch sub_reg
case 1
    %Subregion A
    %Table 20, Eq 22, page 22
    Ji = [0, 1, 2, 3, 7, 20, 0, 1, 2, 3, 7, 9, 11, 18, 44, 0, 2, 7, 36, 38, 40, 42, 44, 24, 44, 12, 32, 44, 32, 36, 42, 34, 44, 28];
    Ii = [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 7];
    ni = [1089.8952318288, 849.51654495535, -107.81748091826, 33.153654801263, -7.4232016790248, 11.765048724356, 1.844574935579, -4.1792700549624, 6.2478196935812, -17.344563108114, -200.58176862096, 271.96065473796, -455.11318285818, 3091.9688604755, 252266.40357872, -6.1707422868339E-03, -0.31078046629583, 11.670873077107, 128127984.04046, -985549096.23276, 2822454697.3002, -3594897141.0703, 1722734991.3197, -13551.334240775, 12848734.66465, 1.3865724283226, 235988.32556514, -13105236.545054, 7399.9835474766, -551966.9703006, 3715408.5996233, 19127.72923966, -415351.64835634, -62.459855192507];
    Ts = 0;
    hs = h / 2000;
    for i = 1 : 34
        Ts = Ts + ni(i) * p ^ (Ii(i)) * (hs - 2.1) ^ Ji(i);
    end
    T2_ph = Ts;
case 2
    %Subregion B
    %Table 21, Eq 23, page 23
    Ji = [0, 1, 2, 12, 18, 24, 28, 40, 0, 2, 6, 12, 18, 24, 28, 40, 2, 8, 18, 40, 1, 2, 12, 24, 2, 12, 18, 24, 28, 40, 18, 24, 40, 28, 2, 28, 1, 40];
    Ii = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 6, 7, 7, 9, 9];
    ni = [1489.5041079516, 743.07798314034, -97.708318797837, 2.4742464705674, -0.63281320016026, 1.1385952129658, -0.47811863648625, 8.5208123431544E-03, 0.93747147377932, 3.3593118604916, 3.3809355601454, 0.16844539671904, 0.73875745236695, -0.47128737436186, 0.15020273139707, -0.002176411421975, -0.021810755324761, -0.10829784403677, -0.046333324635812, 7.1280351959551E-05, 1.1032831789999E-04, 1.8955248387902E-04, 3.0891541160537E-03, 1.3555504554949E-03, 2.8640237477456E-07, -1.0779857357512E-05, -7.6462712454814E-05, 1.4052392818316E-05, -3.1083814331434E-05, -1.0302738212103E-06, 2.821728163504E-07, 1.2704902271945E-06, 7.3803353468292E-08, -1.1030139238909E-08, -8.1456365207833E-14, -2.5180545682962E-11, -1.7565233969407E-18, 8.6934156344163E-15];
    Ts = 0;
    hs = h / 2000;
    for i = 1 : 38
        Ts = Ts + ni(i) * (p - 2) ^ (Ii(i)) * (hs - 2.6) ^ Ji(i);
    end
    T2_ph = Ts;
otherwise
    %Subregion C
    %Table 22, Eq 24, page 24
    Ji = [0, 4, 0, 2, 0, 2, 0, 1, 0, 2, 0, 1, 4, 8, 4, 0, 1, 4, 10, 12, 16, 20, 22];
    Ii = [-7, -7, -6, -6, -5, -5, -2, -2, -1, -1, 0, 0, 1, 1, 2, 6, 6, 6, 6, 6, 6, 6, 6];
    ni = [-3236839855524.2, 7326335090218.1, 358250899454.47, -583401318515.9, -10783068217.47, 20825544563.171, 610747.83564516, 859777.2253558, -25745.72360417, 31081.088422714, 1208.2315865936, 482.19755109255, 3.7966001272486, -10.842984880077, -0.04536417267666, 1.4559115658698E-13, 1.126159740723E-12, -1.7804982240686E-11, 1.2324579690832E-07, -1.1606921130984E-06, 2.7846367088554E-05, -5.9270038474176E-04, 1.2918582991878E-03];
    Ts = 0;
    hs = h / 2000;
    for i = 1 : 23
        Ts = Ts + ni(i) * (p + 25) ^ (Ii(i)) * (hs - 1.8) ^ Ji(i);
    end
    T2_ph = Ts;
end

function T2_ps = T2_ps(p, s)
%Release on the IAPWS Industrial formulation 1997 for the Thermodynamic Properties of Water and Steam, September 1997
%6 Equations for Region 2,6.3.2 The Backward Equations T( p, s ) for Subregions 2a, 2b, and 2c
%Page 26
if p < 4 
    sub_reg = 1;
else
    if s < 5.85 
        sub_reg = 3;
    else
        sub_reg = 2;
    end
end
switch sub_reg
case 1
    %Subregion A
    %Table 25, Eq 25, page 26
    Ii = [-1.5, -1.5, -1.5, -1.5, -1.5, -1.5, -1.25, -1.25, -1.25, -1, -1, -1, -1, -1, -1, -0.75, -0.75, -0.5, -0.5, -0.5, -0.5, -0.25, -0.25, -0.25, -0.25, 0.25, 0.25, 0.25, 0.25, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.75, 0.75, 0.75, 0.75, 1, 1, 1.25, 1.25, 1.5, 1.5];
    Ji = [-24, -23, -19, -13, -11, -10, -19, -15, -6, -26, -21, -17, -16, -9, -8, -15, -14, -26, -13, -9, -7, -27, -25, -11, -6, 1, 4, 8, 11, 0, 1, 5, 6, 10, 14, 16, 0, 4, 9, 17, 7, 18, 3, 15, 5, 18];
    ni = [-392359.83861984, 515265.7382727, 40482.443161048, -321.93790923902, 96.961424218694, -22.867846371773, -449429.14124357, -5011.8336020166, 0.35684463560015, 44235.33584819, -13673.388811708, 421632.60207864, 22516.925837475, 474.42144865646, -149.31130797647, -197811.26320452, -23554.39947076, -19070.616302076, 55375.669883164, 3829.3691437363, -603.91860580567, 1936.3102620331, 4266.064369861, -5978.0638872718, -704.01463926862, 338.36784107553, 20.862786635187, 0.033834172656196, -4.3124428414893E-05, 166.53791356412, -139.86292055898, -0.78849547999872, 0.072132411753872, -5.9754839398283E-03, -1.2141358953904E-05, 2.3227096733871E-07, -10.538463566194, 2.0718925496502, -0.072193155260427, 2.074988708112E-07, -0.018340657911379, 2.9036272348696E-07, 0.21037527893619, 2.5681239729999E-04, -0.012799002933781, -8.2198102652018E-06];
    Pi = p;
    Sigma = s / 2;
    teta = 0;
    for i = 1 : 46
        teta = teta + ni(i) * Pi ^ Ii(i) * (Sigma - 2) ^ Ji(i);
    end
    T2_ps = teta;
case 2
    %Subregion B
    %Table 26, Eq 26, page 27
    Ii = [-6, -6, -5, -5, -4, -4, -4, -3, -3, -3, -3, -2, -2, -2, -2, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 5, 5, 5];
    Ji = [0, 11, 0, 11, 0, 1, 11, 0, 1, 11, 12, 0, 1, 6, 10, 0, 1, 5, 8, 9, 0, 1, 2, 4, 5, 6, 9, 0, 1, 2, 3, 7, 8, 0, 1, 5, 0, 1, 3, 0, 1, 0, 1, 2];
    ni = [316876.65083497, 20.864175881858, -398593.99803599, -21.816058518877, 223697.85194242, -2784.1703445817, 9.920743607148, -75197.512299157, 2970.8605951158, -3.4406878548526, 0.38815564249115, 17511.29508575, -1423.7112854449, 1.0943803364167, 0.89971619308495, -3375.9740098958, 471.62885818355, -1.9188241993679, 0.41078580492196, -0.33465378172097, 1387.0034777505, -406.63326195838, 41.72734715961, 2.1932549434532, -1.0320050009077, 0.35882943516703, 5.2511453726066E-03, 12.838916450705, -2.8642437219381, 0.56912683664855, -0.099962954584931, -3.2632037778459E-03, 2.3320922576723E-04, -0.1533480985745, 0.029072288239902, 3.7534702741167E-04, 1.7296691702411E-03, -3.8556050844504E-04, -3.5017712292608E-05, -1.4566393631492E-05, 5.6420857267269E-06, 4.1286150074605E-08, -2.0684671118824E-08, 1.6409393674725E-09];
    Pi = p;
    Sigma = s / 0.7853;
    teta = 0;
    for i = 1 : 44
        teta = teta + ni(i) * Pi ^ Ii(i) * (10 - Sigma) ^ Ji(i);
    end
    T2_ps = teta;
otherwise
    %Subregion C
    %Table 27, Eq 27, page 28
    Ii = [-2, -2, -1, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 7, 7, 7, 7, 7];
    Ji = [0, 1, 0, 0, 1, 2, 3, 0, 1, 3, 4, 0, 1, 2, 0, 1, 5, 0, 1, 4, 0, 1, 2, 0, 1, 0, 1, 3, 4, 5];
    ni = [909.68501005365, 2404.566708842, -591.6232638713, 541.45404128074, -270.98308411192, 979.76525097926, -469.66772959435, 14.399274604723, -19.104204230429, 5.3299167111971, -21.252975375934, -0.3114733441376, 0.60334840894623, -0.042764839702509, 5.8185597255259E-03, -0.014597008284753, 5.6631175631027E-03, -7.6155864584577E-05, 2.2440342919332E-04, -1.2561095013413E-05, 6.3323132660934E-07, -2.0541989675375E-06, 3.6405370390082E-08, -2.9759897789215E-09, 1.0136618529763E-08, 5.9925719692351E-12, -2.0677870105164E-11, -2.0874278181886E-11, 1.0162166825089E-10, -1.6429828281347E-10];
    Pi = p;
    Sigma = s / 2.9251;
    teta = 0;
    for i = 1 : 30
        teta = teta + ni(i) * Pi ^ Ii(i) * (2 - Sigma) ^ Ji(i);
    end
    T2_ps = teta;
end

function p2_hs = p2_hs(h, s)
%Supplementary Release on Backward Equations for Pressure as a function of Enthalpy and Entropy p(h,s) to the IAPWS Industrial formulation 1997 for the Thermodynamic Properties of Water and Steam
%Chapter 6:Backward Equations p(h,s) for Region 2
if h < (-3498.98083432139 + 2575.60716905876 * s - 421.073558227969 * s ^ 2 + 27.6349063799944 * s ^ 3) 
    sub_reg = 1;
else
    if s < 5.85 
        sub_reg = 3;
    else
        sub_reg = 2;
    end
end
switch sub_reg
case 1
    %Subregion A
    %Table 6, Eq 3, page 8
    Ii = [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 4, 5, 5, 6, 7];
    Ji = [1, 3, 6, 16, 20, 22, 0, 1, 2, 3, 5, 6, 10, 16, 20, 22, 3, 16, 20, 0, 2, 3, 6, 16, 16, 3, 16, 3, 1];
    ni = [-1.82575361923032E-02, -0.125229548799536, 0.592290437320145, 6.04769706185122, 238.624965444474, -298.639090222922, 0.051225081304075, -0.437266515606486, 0.413336902999504, -5.16468254574773, -5.57014838445711, 12.8555037824478, 11.414410895329, -119.504225652714, -2847.7798596156, 4317.57846408006, 1.1289404080265, 1974.09186206319, 1516.12444706087, 1.41324451421235E-02, 0.585501282219601, -2.97258075863012, 5.94567314847319, -6236.56565798905, 9659.86235133332, 6.81500934948134, -6332.07286824489, -5.5891922446576, 4.00645798472063E-02];
    eta = h / 4200;
    Sigma = s / 12;
    Pi = 0;
    for i = 1 : 29
        Pi = Pi + ni(i) * (eta - 0.5) ^ Ii(i) * (Sigma - 1.2) ^ Ji(i);
    end
    p2_hs = Pi ^ 4 * 4;
case 2
    %Subregion B
    %Table 7, Eq 4, page 9
    Ii = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 4, 4, 5, 5, 6, 6, 6, 7, 7, 8, 8, 8, 8, 12, 14];
    Ji = [0, 1, 2, 4, 8, 0, 1, 2, 3, 5, 12, 1, 6, 18, 0, 1, 7, 12, 1, 16, 1, 12, 1, 8, 18, 1, 16, 1, 3, 14, 18, 10, 16];
    ni = [8.01496989929495E-02, -0.543862807146111, 0.337455597421283, 8.9055545115745, 313.840736431485, 0.797367065977789, -1.2161697355624, 8.72803386937477, -16.9769781757602, -186.552827328416, 95115.9274344237, -18.9168510120494, -4334.0703719484, 543212633.012715, 0.144793408386013, 128.024559637516, -67230.9534071268, 33697238.0095287, -586.63419676272, -22140322476.9889, 1716.06668708389, -570817595.806302, -3121.09693178482, -2078413.8463301, 3056059461577.86, 3221.57004314333, 326810259797.295, -1441.04158934487, 410.694867802691, 109077066873.024, -24796465425889.3, 1888019068.65134, -123651009018773];
    eta = h / 4100;
    Sigma = s / 7.9;
    Pi = 0;
    for i = 1 : 33
        Pi = Pi + ni(i) * (eta - 0.6) ^ Ii(i) * (Sigma - 1.01) ^ Ji(i);
    end
    p2_hs = Pi ^ 4 * 100;
otherwise
    %Subregion C
    %Table 8, Eq 5, page 10
    Ii = [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 5, 5, 5, 5, 6, 6, 10, 12, 16];
    Ji = [0, 1, 2, 3, 4, 8, 0, 2, 5, 8, 14, 2, 3, 7, 10, 18, 0, 5, 8, 16, 18, 18, 1, 4, 6, 14, 8, 18, 7, 7, 10];
    ni = [0.112225607199012, -3.39005953606712, -32.0503911730094, -197.5973051049, -407.693861553446, 13294.3775222331, 1.70846839774007, 37.3694198142245, 3581.44365815434, 423014.446424664, -751071025.760063, 52.3446127607898, -228.351290812417, -960652.417056937, -80705929.2526074, 1626980172256.69, 0.772465073604171, 46392.9973837746, -13731788.5134128, 1704703926305.12, -25110462818730.8, 31774883083552, 53.8685623675312, -55308.9094625169, -1028615.22421405, 2042494187562.34, 273918446.626977, -2.63963146312685E+15, -1078908541.08088, -29649262098.0124, -1.11754907323424E+15];
    eta = h / 3500;
    Sigma = s / 5.9;
    Pi = 0;
    for i = 1 : 31
        Pi = Pi + ni(i) * (eta - 0.7) ^ Ii(i) * (Sigma - 1.1) ^ Ji(i);
    end
    p2_hs = Pi ^ 4 * 100;
end

function T2_prho=T2_prho(p,rho) 
  %Solve by iteration. Observe that fo low temperatures this equation has 2 solutions.
  %Solve with half interval method

  if p < 16.5292 
    Low_Bound = T4_p(p);
  else
    Low_Bound = B23T_p(p);
  end
  High_Bound = 1073.15;
  rhos=-1000;
  while abs(rho - rhos) > 0.000001
    Ts = (Low_Bound + High_Bound) / 2;
    rhos = 1 / v2_pT(p, Ts);
    if rhos < rho
      High_Bound = Ts;
    else
      Low_Bound = Ts;
    end
  end
    T2_prho = Ts;

%***********************************************************************************************************
%*2.3 functions for region 3

function p3_rhoT = p3_rhoT(rho, T)
%Release on the IAPWS Industrial formulation 1997 for the Thermodynamic Properties of Water and Steam, September 1997
%7 Basic Equation for Region 3, Section. 6.1 Basic Equation
%Table 30 and 31, Page 30 and 31
Ii = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 8, 9, 9, 10, 10, 11];
Ji = [0, 0, 1, 2, 7, 10, 12, 23, 2, 6, 15, 17, 0, 2, 6, 7, 22, 26, 0, 2, 4, 16, 26, 0, 2, 4, 26, 1, 3, 26, 0, 2, 26, 2, 26, 2, 26, 0, 1, 26];
ni = [1.0658070028513, -15.732845290239, 20.944396974307, -7.6867707878716, 2.6185947787954, -2.808078114862, 1.2053369696517, -8.4566812812502E-03, -1.2654315477714, -1.1524407806681, 0.88521043984318, -0.64207765181607, 0.38493460186671, -0.85214708824206, 4.8972281541877, -3.0502617256965, 0.039420536879154, 0.12558408424308, -0.2799932969871, 1.389979956946, -2.018991502357, -8.2147637173963E-03, -0.47596035734923, 0.0439840744735, -0.44476435428739, 0.90572070719733, 0.70522450087967, 0.10770512626332, -0.32913623258954, -0.50871062041158, -0.022175400873096, 0.094260751665092, 0.16436278447961, -0.013503372241348, -0.014834345352472, 5.7922953628084E-04, 3.2308904703711E-03, 8.0964802996215E-05, -1.6557679795037E-04, -4.4923899061815E-05];
R = 0.461526; %kJ/(KgK)
tc = 647.096; %K
pc = 22.064; %MPa
rhoc = 322; %kg/m3
delta = rho / rhoc;
tau = tc / T;
fidelta = 0;
for i = 2 : 40
    fidelta = fidelta + ni(i) * Ii(i) * delta ^ (Ii(i) - 1) * tau ^ Ji(i);
end
fidelta = fidelta + ni(1) / delta;
p3_rhoT = rho * R * T * delta * fidelta / 1000;

function u3_rhoT = u3_rhoT(rho, T)
%Release on the IAPWS Industrial formulation 1997 for the Thermodynamic Properties of Water and Steam, September 1997
%7 Basic Equation for Region 3, Section. 6.1 Basic Equation
%Table 30 and 31, Page 30 and 31
Ii = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 8, 9, 9, 10, 10, 11];
Ji = [0, 0, 1, 2, 7, 10, 12, 23, 2, 6, 15, 17, 0, 2, 6, 7, 22, 26, 0, 2, 4, 16, 26, 0, 2, 4, 26, 1, 3, 26, 0, 2, 26, 2, 26, 2, 26, 0, 1, 26];
ni = [1.0658070028513, -15.732845290239, 20.944396974307, -7.6867707878716, 2.6185947787954, -2.808078114862, 1.2053369696517, -8.4566812812502E-03, -1.2654315477714, -1.1524407806681, 0.88521043984318, -0.64207765181607, 0.38493460186671, -0.85214708824206, 4.8972281541877, -3.0502617256965, 0.039420536879154, 0.12558408424308, -0.2799932969871, 1.389979956946, -2.018991502357, -8.2147637173963E-03, -0.47596035734923, 0.0439840744735, -0.44476435428739, 0.90572070719733, 0.70522450087967, 0.10770512626332, -0.32913623258954, -0.50871062041158, -0.022175400873096, 0.094260751665092, 0.16436278447961, -0.013503372241348, -0.014834345352472, 5.7922953628084E-04, 3.2308904703711E-03, 8.0964802996215E-05, -1.6557679795037E-04, -4.4923899061815E-05];
R = 0.461526; %kJ/(KgK)
tc = 647.096; %K
pc = 22.064; %MPa
rhoc = 322; %kg/m3
delta = rho / rhoc;
tau = tc / T;
fitau = 0;
for i = 2 : 40
    fitau = fitau + ni(i) * delta ^ Ii(i) * Ji(i) * tau ^ (Ji(i) - 1);
end
u3_rhoT = R * T * (tau * fitau);


function h3_rhoT = h3_rhoT(rho, T)
%Release on the IAPWS Industrial formulation 1997 for the Thermodynamic Properties of Water and Steam, September 1997
%7 Basic Equation for Region 3, Section. 6.1 Basic Equation
%Table 30 and 31, Page 30 and 31
Ii = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 8, 9, 9, 10, 10, 11];
Ji = [0, 0, 1, 2, 7, 10, 12, 23, 2, 6, 15, 17, 0, 2, 6, 7, 22, 26, 0, 2, 4, 16, 26, 0, 2, 4, 26, 1, 3, 26, 0, 2, 26, 2, 26, 2, 26, 0, 1, 26];
ni = [1.0658070028513, -15.732845290239, 20.944396974307, -7.6867707878716, 2.6185947787954, -2.808078114862, 1.2053369696517, -8.4566812812502E-03, -1.2654315477714, -1.1524407806681, 0.88521043984318, -0.64207765181607, 0.38493460186671, -0.85214708824206, 4.8972281541877, -3.0502617256965, 0.039420536879154, 0.12558408424308, -0.2799932969871, 1.389979956946, -2.018991502357, -8.2147637173963E-03, -0.47596035734923, 0.0439840744735, -0.44476435428739, 0.90572070719733, 0.70522450087967, 0.10770512626332, -0.32913623258954, -0.50871062041158, -0.022175400873096, 0.094260751665092, 0.16436278447961, -0.013503372241348, -0.014834345352472, 5.7922953628084E-04, 3.2308904703711E-03, 8.0964802996215E-05, -1.6557679795037E-04, -4.4923899061815E-05];
R = 0.461526; %kJ/(KgK)
tc = 647.096; %K
pc = 22.064; %MPa
rhoc = 322; %kg/m3
delta = rho / rhoc;
tau = tc / T;
fidelta = 0;
fitau = 0;
for i = 2 : 40
    fidelta = fidelta + ni(i) * Ii(i) * delta ^ (Ii(i) - 1) * tau ^ Ji(i);
    fitau = fitau + ni(i) * delta ^ Ii(i) * Ji(i) * tau ^ (Ji(i) - 1);
end
fidelta = fidelta + ni(1) / delta;
h3_rhoT = R * T * (tau * fitau + delta * fidelta);

function s3_rhoT = s3_rhoT(rho, T)
%Release on the IAPWS Industrial formulation 1997 for the Thermodynamic Properties of Water and Steam, September 1997
%7 Basic Equation for Region 3, Section. 6.1 Basic Equation
%Table 30 and 31, Page 30 and 31
Ii = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 8, 9, 9, 10, 10, 11];
Ji = [0, 0, 1, 2, 7, 10, 12, 23, 2, 6, 15, 17, 0, 2, 6, 7, 22, 26, 0, 2, 4, 16, 26, 0, 2, 4, 26, 1, 3, 26, 0, 2, 26, 2, 26, 2, 26, 0, 1, 26];
ni = [1.0658070028513, -15.732845290239, 20.944396974307, -7.6867707878716, 2.6185947787954, -2.808078114862, 1.2053369696517, -8.4566812812502E-03, -1.2654315477714, -1.1524407806681, 0.88521043984318, -0.64207765181607, 0.38493460186671, -0.85214708824206, 4.8972281541877, -3.0502617256965, 0.039420536879154, 0.12558408424308, -0.2799932969871, 1.389979956946, -2.018991502357, -8.2147637173963E-03, -0.47596035734923, 0.0439840744735, -0.44476435428739, 0.90572070719733, 0.70522450087967, 0.10770512626332, -0.32913623258954, -0.50871062041158, -0.022175400873096, 0.094260751665092, 0.16436278447961, -0.013503372241348, -0.014834345352472, 5.7922953628084E-04, 3.2308904703711E-03, 8.0964802996215E-05, -1.6557679795037E-04, -4.4923899061815E-05];
R = 0.461526; %kJ/(KgK)
tc = 647.096; %K
pc = 22.064; %MPa
rhoc = 322; %kg/m3
delta = rho / rhoc;
tau = tc / T;
fi = 0;
fitau = 0;
for i = 2 : 40
    fi = fi + ni(i) * delta ^ Ii(i) * tau ^ Ji(i);
    fitau = fitau + ni(i) * delta ^ Ii(i) * Ji(i) * tau ^ (Ji(i) - 1);
end
fi = fi + ni(1) * log(delta);
s3_rhoT = R * (tau * fitau - fi);

function Cp3_rhoT = Cp3_rhoT(rho, T)
%Release on the IAPWS Industrial formulation 1997 for the Thermodynamic Properties of Water and Steam, September 1997
%7 Basic Equation for Region 3, Section. 6.1 Basic Equation
%Table 30 and 31, Page 30 and 31
Ii = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 8, 9, 9, 10, 10, 11];
Ji = [0, 0, 1, 2, 7, 10, 12, 23, 2, 6, 15, 17, 0, 2, 6, 7, 22, 26, 0, 2, 4, 16, 26, 0, 2, 4, 26, 1, 3, 26, 0, 2, 26, 2, 26, 2, 26, 0, 1, 26];
ni = [1.0658070028513, -15.732845290239, 20.944396974307, -7.6867707878716, 2.6185947787954, -2.808078114862, 1.2053369696517, -8.4566812812502E-03, -1.2654315477714, -1.1524407806681, 0.88521043984318, -0.64207765181607, 0.38493460186671, -0.85214708824206, 4.8972281541877, -3.0502617256965, 0.039420536879154, 0.12558408424308, -0.2799932969871, 1.389979956946, -2.018991502357, -8.2147637173963E-03, -0.47596035734923, 0.0439840744735, -0.44476435428739, 0.90572070719733, 0.70522450087967, 0.10770512626332, -0.32913623258954, -0.50871062041158, -0.022175400873096, 0.094260751665092, 0.16436278447961, -0.013503372241348, -0.014834345352472, 5.7922953628084E-04, 3.2308904703711E-03, 8.0964802996215E-05, -1.6557679795037E-04, -4.4923899061815E-05];
R = 0.461526; %kJ/(KgK)
tc = 647.096; %K
pc = 22.064; %MPa
rhoc = 322; %kg/m3
delta = rho / rhoc;
tau = tc / T;
fitautau = 0;
fidelta = 0;
fideltatau = 0;
fideltadelta = 0;
for i = 2 : 40
    fitautau = fitautau + ni(i) * delta ^ Ii(i) * Ji(i) * (Ji(i) - 1) * tau ^ (Ji(i) - 2);
    fidelta = fidelta + ni(i) * Ii(i) * delta ^ (Ii(i) - 1) * tau ^ Ji(i);
    fideltatau = fideltatau + ni(i) * Ii(i) * delta ^ (Ii(i) - 1) * Ji(i) * tau ^ (Ji(i) - 1);
    fideltadelta = fideltadelta + ni(i) * Ii(i) * (Ii(i) - 1) * delta ^ (Ii(i) - 2) * tau ^ Ji(i);
end
fidelta = fidelta + ni(1) / delta;
fideltadelta = fideltadelta - ni(1) / (delta ^ 2);
Cp3_rhoT = R * (-tau ^ 2 * fitautau + (delta * fidelta - delta * tau * fideltatau) ^ 2 / (2 * delta * fidelta + delta ^ 2 * fideltadelta));

function Cv3_rhoT = Cv3_rhoT(rho, T)
%Release on the IAPWS Industrial formulation 1997 for the Thermodynamic Properties of Water and Steam, September 1997
%7 Basic Equation for Region 3, Section. 6.1 Basic Equation
%Table 30 and 31, Page 30 and 31
Ii = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 8, 9, 9, 10, 10, 11];
Ji = [0, 0, 1, 2, 7, 10, 12, 23, 2, 6, 15, 17, 0, 2, 6, 7, 22, 26, 0, 2, 4, 16, 26, 0, 2, 4, 26, 1, 3, 26, 0, 2, 26, 2, 26, 2, 26, 0, 1, 26];
ni = [1.0658070028513, -15.732845290239, 20.944396974307, -7.6867707878716, 2.6185947787954, -2.808078114862, 1.2053369696517, -8.4566812812502E-03, -1.2654315477714, -1.1524407806681, 0.88521043984318, -0.64207765181607, 0.38493460186671, -0.85214708824206, 4.8972281541877, -3.0502617256965, 0.039420536879154, 0.12558408424308, -0.2799932969871, 1.389979956946, -2.018991502357, -8.2147637173963E-03, -0.47596035734923, 0.0439840744735, -0.44476435428739, 0.90572070719733, 0.70522450087967, 0.10770512626332, -0.32913623258954, -0.50871062041158, -0.022175400873096, 0.094260751665092, 0.16436278447961, -0.013503372241348, -0.014834345352472, 5.7922953628084E-04, 3.2308904703711E-03, 8.0964802996215E-05, -1.6557679795037E-04, -4.4923899061815E-05];
R = 0.461526; %kJ/(KgK)
tc = 647.096; %K
pc = 22.064; %MPa
rhoc = 322; %kg/m3
delta = rho / rhoc;
tau = tc / T;
fitautau = 0;
for i = 1 : 40
    fitautau = fitautau + ni(i) * delta ^ Ii(i) * Ji(i) * (Ji(i) - 1) * tau ^ (Ji(i) - 2);
end
Cv3_rhoT = R * -(tau * tau * fitautau);

function w3_rhoT = w3_rhoT(rho, T)
%Release on the IAPWS Industrial formulation 1997 for the Thermodynamic Properties of Water and Steam, September 1997
%7 Basic Equation for Region 3, Section. 6.1 Basic Equation
%Table 30 and 31, Page 30 and 31
Ii = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 8, 9, 9, 10, 10, 11];
Ji = [0, 0, 1, 2, 7, 10, 12, 23, 2, 6, 15, 17, 0, 2, 6, 7, 22, 26, 0, 2, 4, 16, 26, 0, 2, 4, 26, 1, 3, 26, 0, 2, 26, 2, 26, 2, 26, 0, 1, 26];
ni = [1.0658070028513, -15.732845290239, 20.944396974307, -7.6867707878716, 2.6185947787954, -2.808078114862, 1.2053369696517, -8.4566812812502E-03, -1.2654315477714, -1.1524407806681, 0.88521043984318, -0.64207765181607, 0.38493460186671, -0.85214708824206, 4.8972281541877, -3.0502617256965, 0.039420536879154, 0.12558408424308, -0.2799932969871, 1.389979956946, -2.018991502357, -8.2147637173963E-03, -0.47596035734923, 0.0439840744735, -0.44476435428739, 0.90572070719733, 0.70522450087967, 0.10770512626332, -0.32913623258954, -0.50871062041158, -0.022175400873096, 0.094260751665092, 0.16436278447961, -0.013503372241348, -0.014834345352472, 5.7922953628084E-04, 3.2308904703711E-03, 8.0964802996215E-05, -1.6557679795037E-04, -4.4923899061815E-05];
R = 0.461526; %kJ/(KgK)
tc = 647.096; %K
pc = 22.064; %MPa
rhoc = 322; %kg/m3
delta = rho / rhoc;
tau = tc / T;
fitautau = 0;
fidelta = 0;
fideltatau = 0;
fideltadelta = 0;
for i = 2 : 40
    fitautau = fitautau + ni(i) * delta ^ Ii(i) * Ji(i) * (Ji(i) - 1) * tau ^ (Ji(i) - 2);
    fidelta = fidelta + ni(i) * Ii(i) * delta ^ (Ii(i) - 1) * tau ^ Ji(i);
    fideltatau = fideltatau + ni(i) * Ii(i) * delta ^ (Ii(i) - 1) * Ji(i) * tau ^ (Ji(i) - 1);
    fideltadelta = fideltadelta + ni(i) * Ii(i) * (Ii(i) - 1) * delta ^ (Ii(i) - 2) * tau ^ Ji(i);
end
fidelta = fidelta + ni(1) / delta;
fideltadelta = fideltadelta - ni(1) / (delta ^ 2);
w3_rhoT = (1000 * R * T * (2 * delta * fidelta + delta ^ 2 * fideltadelta - (delta * fidelta - delta * tau * fideltatau) ^ 2 / (tau ^ 2 * fitautau))) ^ 0.5;

function T3_ph = T3_ph(p, h)
%Revised Supplementary Release on Backward Equations for the functions T(p,h), v(p,h) and T(p,s), v(p,s) for Region 3 of the IAPWS Industrial formulation 1997 for the Thermodynamic Properties of Water and Steam
%2004
%Section 3.3 Backward Equations T(p,h) and v(p,h) for Subregions 3a and 3b
%Boundary equation, Eq 1 Page 5
h3ab = 2014.64004206875 + 3.74696550136983 * p - 2.19921901054187E-02 * p ^ 2 + 8.7513168600995E-05 * p ^ 3;
if h < h3ab 
    %Subregion 3a
    %Eq 2, Table 3, Page 7
    Ii = [-12, -12, -12, -12, -12, -12, -12, -12, -10, -10, -10, -8, -8, -8, -8, -5, -3, -2, -2, -2, -1, -1, 0, 0, 1, 3, 3, 4, 4, 10, 12];
    Ji = [0, 1, 2, 6, 14, 16, 20, 22, 1, 5, 12, 0, 2, 4, 10, 2, 0, 1, 3, 4, 0, 2, 0, 1, 1, 0, 1, 0, 3, 4, 5];
    ni = [-1.33645667811215E-07, 4.55912656802978E-06, -1.46294640700979E-05, 6.3934131297008E-03, 372.783927268847, -7186.54377460447, 573494.7521034, -2675693.29111439, -3.34066283302614E-05, -2.45479214069597E-02, 47.8087847764996, 7.64664131818904E-06, 1.28350627676972E-03, 1.71219081377331E-02, -8.51007304583213, -1.36513461629781E-02, -3.84460997596657E-06, 3.37423807911655E-03, -0.551624873066791, 0.72920227710747, -9.92522757376041E-03, -0.119308831407288, 0.793929190615421, 0.454270731799386, 0.20999859125991, -6.42109823904738E-03, -0.023515586860454, 2.52233108341612E-03, -7.64885133368119E-03, 1.36176427574291E-02, -1.33027883575669E-02];
    ps = p / 100;
    hs = h / 2300;
    Ts = 0;
    for i = 1 : 31
        Ts = Ts + ni(i) * (ps + 0.24) ^ Ii(i) * (hs - 0.615) ^ Ji(i);
    end
    T3_ph = Ts * 760;
else
    %Subregion 3b
    %Eq 3, Table 4, Page 7,8
    Ii = [-12, -12, -10, -10, -10, -10, -10, -8, -8, -8, -8, -8, -6, -6, -6, -4, -4, -3, -2, -2, -1, -1, -1, -1, -1, -1, 0, 0, 1, 3, 5, 6, 8];
    Ji = [0, 1, 0, 1, 5, 10, 12, 0, 1, 2, 4, 10, 0, 1, 2, 0, 1, 5, 0, 4, 2, 4, 6, 10, 14, 16, 0, 2, 1, 1, 1, 1, 1];
    ni = [3.2325457364492E-05, -1.27575556587181E-04, -4.75851877356068E-04, 1.56183014181602E-03, 0.105724860113781, -85.8514221132534, 724.140095480911, 2.96475810273257E-03, -5.92721983365988E-03, -1.26305422818666E-02, -0.115716196364853, 84.9000969739595, -1.08602260086615E-02, 1.54304475328851E-02, 7.50455441524466E-02, 2.52520973612982E-02, -6.02507901232996E-02, -3.07622221350501, -5.74011959864879E-02, 5.03471360939849, -0.925081888584834, 3.91733882917546, -77.314600713019, 9493.08762098587, -1410437.19679409, 8491662.30819026, 0.861095729446704, 0.32334644281172, 0.873281936020439, -0.436653048526683, 0.286596714529479, -0.131778331276228, 6.76682064330275E-03];
    hs = h / 2800;
    ps = p / 100;
    Ts = 0;
    for i = 1 : 33
        Ts = Ts + ni(i) * (ps + 0.298) ^ Ii(i) * (hs - 0.72) ^ Ji(i);
    end
    T3_ph = Ts * 860;
end

function v3_ph = v3_ph(p, h)
%Revised Supplementary Release on Backward Equations for the functions T(p,h), v(p,h) and T(p,s), v(p,s) for Region 3 of the IAPWS Industrial formulation 1997 for the Thermodynamic Properties of Water and Steam
%2004
%Section 3.3 Backward Equations T(p,h) and v(p,h) for Subregions 3a and 3b
%Boundary equation, Eq 1 Page 5
h3ab = 2014.64004206875 + 3.74696550136983 * p - 2.19921901054187E-02 * p ^ 2 + 8.7513168600995E-05 * p ^ 3;
if h < h3ab 
    %Subregion 3a
    %Eq 4, Table 6, Page 9
    Ii = [-12, -12, -12, -12, -10, -10, -10, -8, -8, -6, -6, -6, -4, -4, -3, -2, -2, -1, -1, -1, -1, 0, 0, 1, 1, 1, 2, 2, 3, 4, 5, 8];
    Ji = [6, 8, 12, 18, 4, 7, 10, 5, 12, 3, 4, 22, 2, 3, 7, 3, 16, 0, 1, 2, 3, 0, 1, 0, 1, 2, 0, 2, 0, 2, 2, 2];
    ni = [5.29944062966028E-03, -0.170099690234461, 11.1323814312927, -2178.98123145125, -5.06061827980875E-04, 0.556495239685324, -9.43672726094016, -0.297856807561527, 93.9353943717186, 1.92944939465981E-02, 0.421740664704763, -3689141.2628233, -7.37566847600639E-03, -0.354753242424366, -1.99768169338727, 1.15456297059049, 5683.6687581596, 8.08169540124668E-03, 0.172416341519307, 1.04270175292927, -0.297691372792847, 0.560394465163593, 0.275234661176914, -0.148347894866012, -6.51142513478515E-02, -2.92468715386302, 6.64876096952665E-02, 3.52335014263844, -1.46340792313332E-02, -2.24503486668184, 1.10533464706142, -4.08757344495612E-02];
    ps = p / 100;
    hs = h / 2100;
    vs = 0;
    for i = 1 : 32
        vs = vs + ni(i) * (ps + 0.128) ^ Ii(i) * (hs - 0.727) ^ Ji(i);
    end
    v3_ph = vs * 0.0028;
else
    %Subregion 3b
    %Eq 5, Table 7, Page 9
    Ii = [-12, -12, -8, -8, -8, -8, -8, -8, -6, -6, -6, -6, -6, -6, -4, -4, -4, -3, -3, -2, -2, -1, -1, -1, -1, 0, 1, 1, 2, 2];
    Ji = [0, 1, 0, 1, 3, 6, 7, 8, 0, 1, 2, 5, 6, 10, 3, 6, 10, 0, 2, 1, 2, 0, 1, 4, 5, 0, 0, 1, 2, 6];
    ni = [-2.25196934336318E-09, 1.40674363313486E-08, 2.3378408528056E-06, -3.31833715229001E-05, 1.07956778514318E-03, -0.271382067378863, 1.07202262490333, -0.853821329075382, -2.15214194340526E-05, 7.6965608822273E-04, -4.31136580433864E-03, 0.453342167309331, -0.507749535873652, -100.475154528389, -0.219201924648793, -3.21087965668917, 607.567815637771, 5.57686450685932E-04, 0.18749904002955, 9.05368030448107E-03, 0.285417173048685, 3.29924030996098E-02, 0.239897419685483, 4.82754995951394, -11.8035753702231, 0.169490044091791, -1.79967222507787E-02, 3.71810116332674E-02, -5.36288335065096E-02, 1.6069710109252];
    ps = p / 100;
    hs = h / 2800;
    vs = 0;
    for i = 1 : 30
        vs = vs + ni(i) * (ps + 0.0661) ^ Ii(i) * (hs - 0.72) ^ Ji(i);
    end
    v3_ph = vs * 0.0088;
end

function T3_ps = T3_ps(p, s)
%Revised Supplementary Release on Backward Equations for the functions T(p,h), v(p,h) and T(p,s), v(p,s) for Region 3 of the IAPWS Industrial formulation 1997 for the Thermodynamic Properties of Water and Steam
%2004
%3.4 Backward Equations T(p,s) and v(p,s) for Subregions 3a and 3b
%Boundary equation, Eq 6 Page 11
if s <= 4.41202148223476 
    %Subregion 3a
    %Eq 6, Table 10, Page 11
    Ii = [-12, -12, -10, -10, -10, -10, -8, -8, -8, -8, -6, -6, -6, -5, -5, -5, -4, -4, -4, -2, -2, -1, -1, 0, 0, 0, 1, 2, 2, 3, 8, 8, 10];
    Ji = [28, 32, 4, 10, 12, 14, 5, 7, 8, 28, 2, 6, 32, 0, 14, 32, 6, 10, 36, 1, 4, 1, 6, 0, 1, 4, 0, 0, 3, 2, 0, 1, 2];
    ni = [1500420082.63875, -159397258480.424, 5.02181140217975E-04, -67.2057767855466, 1450.58545404456, -8238.8953488889, -0.154852214233853, 11.2305046746695, -29.7000213482822, 43856513263.5495, 1.37837838635464E-03, -2.97478527157462, 9717779473494.13, -5.71527767052398E-05, 28830.794977842, -74442828926270.3, 12.8017324848921, -368.275545889071, 6.64768904779177E+15, 0.044935925195888, -4.22897836099655, -0.240614376434179, -4.74341365254924, 0.72409399912611, 0.923874349695897, 3.99043655281015, 3.84066651868009E-02, -3.59344365571848E-03, -0.735196448821653, 0.188367048396131, 1.41064266818704E-04, -2.57418501496337E-03, 1.23220024851555E-03];
    Sigma = s / 4.4;
    Pi = p / 100;
    teta = 0;
    for i = 1 : 33
        teta = teta + ni(i) * (Pi + 0.24) ^ Ii(i) * (Sigma - 0.703) ^ Ji(i);
    end
    T3_ps = teta * 760;
else
    %Subregion 3b
    %Eq 7, Table 11, Page 11
    Ii = [-12, -12, -12, -12, -8, -8, -8, -6, -6, -6, -5, -5, -5, -5, -5, -4, -3, -3, -2, 0, 2, 3, 4, 5, 6, 8, 12, 14];
    Ji = [1, 3, 4, 7, 0, 1, 3, 0, 2, 4, 0, 1, 2, 4, 6, 12, 1, 6, 2, 0, 1, 1, 0, 24, 0, 3, 1, 2];
    ni = [0.52711170160166, -40.1317830052742, 153.020073134484, -2247.99398218827, -0.193993484669048, -1.40467557893768, 42.6799878114024, 0.752810643416743, 22.6657238616417, -622.873556909932, -0.660823667935396, 0.841267087271658, -25.3717501764397, 485.708963532948, 880.531517490555, 2650155.92794626, -0.359287150025783, -656.991567673753, 2.41768149185367, 0.856873461222588, 0.655143675313458, -0.213535213206406, 5.62974957606348E-03, -316955725450471, -6.99997000152457E-04, 1.19845803210767E-02, 1.93848122022095E-05, -2.15095749182309E-05];
    Sigma = s / 5.3;
    Pi = p / 100;
    teta = 0;
    for i = 1 : 28
        teta = teta + ni(i) * (Pi + 0.76) ^ Ii(i) * (Sigma - 0.818) ^ Ji(i);
    end
    T3_ps = teta * 860;
end

function v3_ps = v3_ps(p, s)
%Revised Supplementary Release on Backward Equations for the functions T(p,h), v(p,h) and T(p,s), v(p,s) for Region 3 of the IAPWS Industrial formulation 1997 for the Thermodynamic Properties of Water and Steam
%2004
%3.4 Backward Equations T(p,s) and v(p,s) for Subregions 3a and 3b
%Boundary equation, Eq 6 Page 11
if s <= 4.41202148223476 
    %Subregion 3a
    %Eq 8, Table 13, Page 14
    Ii = [-12, -12, -12, -10, -10, -10, -10, -8, -8, -8, -8, -6, -5, -4, -3, -3, -2, -2, -1, -1, 0, 0, 0, 1, 2, 4, 5, 6];
    Ji = [10, 12, 14, 4, 8, 10, 20, 5, 6, 14, 16, 28, 1, 5, 2, 4, 3, 8, 1, 2, 0, 1, 3, 0, 0, 2, 2, 0];
    ni = [79.5544074093975, -2382.6124298459, 17681.3100617787, -1.10524727080379E-03, -15.3213833655326, 297.544599376982, -35031520.6871242, 0.277513761062119, -0.523964271036888, -148011.182995403, 1600148.99374266, 1708023226634.27, 2.46866996006494E-04, 1.6532608479798, -0.118008384666987, 2.537986423559, 0.965127704669424, -28.2172420532826, 0.203224612353823, 1.10648186063513, 0.52612794845128, 0.277000018736321, 1.08153340501132, -7.44127885357893E-02, 1.64094443541384E-02, -6.80468275301065E-02, 0.025798857610164, -1.45749861944416E-04];
    Pi = p / 100;
    Sigma = s / 4.4;
    omega = 0;
    for i = 1 : 28
        omega = omega + ni(i) * (Pi + 0.187) ^ Ii(i) * (Sigma - 0.755) ^ Ji(i);
    end
    v3_ps = omega * 0.0028;
else
    %Subregion 3b
    %Eq 9, Table 14, Page 14
    Ii = [-12, -12, -12, -12, -12, -12, -10, -10, -10, -10, -8, -5, -5, -5, -4, -4, -4, -4, -3, -2, -2, -2, -2, -2, -2, 0, 0, 0, 1, 1, 2];
    Ji = [0, 1, 2, 3, 5, 6, 0, 1, 2, 4, 0, 1, 2, 3, 0, 1, 2, 3, 1, 0, 1, 2, 3, 4, 12, 0, 1, 2, 0, 2, 2];
    ni = [5.91599780322238E-05, -1.85465997137856E-03, 1.04190510480013E-02, 5.9864730203859E-03, -0.771391189901699, 1.72549765557036, -4.67076079846526E-04, 1.34533823384439E-02, -8.08094336805495E-02, 0.508139374365767, 1.28584643361683E-03, -1.63899353915435, 5.86938199318063, -2.92466667918613, -6.14076301499537E-03, 5.76199014049172, -12.1613320606788, 1.67637540957944, -7.44135838773463, 3.78168091437659E-02, 4.01432203027688, 16.0279837479185, 3.17848779347728, -3.58362310304853, -1159952.60446827, 0.199256573577909, -0.122270624794624, -19.1449143716586, -1.50448002905284E-02, 14.6407900162154, -3.2747778718823];
    Pi = p / 100;
    Sigma = s / 5.3;
    omega = 0;
    for i = 1 : 31
        omega = omega + ni(i) * (Pi + 0.298) ^ Ii(i) * (Sigma - 0.816) ^ Ji(i);
    end
    v3_ps = omega * 0.0088;
end


function p3_hs = p3_hs(h, s)
%Supplementary Release on Backward Equations ( ) , p h s for Region 3,
%Equations as a function of h and s for the Region Boundaries, and an Equation
%( ) sat , T hs for Region 4 of the IAPWS Industrial formulation 1997 for the
%Thermodynamic Properties of Water and Steam
%2004
%Section 3 Backward functions p(h,s), T(h,s), and v(h,s) for Region 3
if s < 4.41202148223476 
    %Subregion 3a
    %Eq 1, Table 3, Page 8
    Ii = [0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 6, 7, 8, 10, 10, 14, 18, 20, 22, 22, 24, 28, 28, 32, 32];
    Ji = [0, 1, 5, 0, 3, 4, 8, 14, 6, 16, 0, 2, 3, 0, 1, 4, 5, 28, 28, 24, 1, 32, 36, 22, 28, 36, 16, 28, 36, 16, 36, 10, 28];
    ni = [7.70889828326934, -26.0835009128688, 267.416218930389, 17.2221089496844, -293.54233214597, 614.135601882478, -61056.2757725674, -65127225.1118219, 73591.9313521937, -11664650591.4191, 35.5267086434461, -596.144543825955, -475.842430145708, 69.6781965359503, 335.674250377312, 25052.6809130882, 146997.380630766, 5.38069315091534E+19, 1.43619827291346E+21, 3.64985866165994E+19, -2547.41561156775, 2.40120197096563E+27, -3.93847464679496E+29, 1.47073407024852E+24, -4.26391250432059E+31, 1.94509340621077E+38, 6.66212132114896E+23, 7.06777016552858E+33, 1.75563621975576E+41, 1.08408607429124E+28, 7.30872705175151E+43, 1.5914584739887E+24, 3.77121605943324E+40];
    Sigma = s / 4.4;
    eta = h / 2300;
    Pi = 0;
    for i = 1 : 33
        Pi = Pi + ni(i) * (eta - 1.01) ^ Ii(i) * (Sigma - 0.75) ^ Ji(i);
    end
    p3_hs = Pi * 99;
else
    %Subregion 3b
    %Eq 2, Table 4, Page 8
    Ii = [-12, -12, -12, -12, -12, -10, -10, -10, -10, -8, -8, -6, -6, -6, -6, -5, -4, -4, -4, -3, -3, -3, -3, -2, -2, -1, 0, 2, 2, 5, 6, 8, 10, 14, 14];
    Ji = [2, 10, 12, 14, 20, 2, 10, 14, 18, 2, 8, 2, 6, 7, 8, 10, 4, 5, 8, 1, 3, 5, 6, 0, 1, 0, 3, 0, 1, 0, 1, 1, 1, 3, 7];
    ni = [1.25244360717979E-13, -1.26599322553713E-02, 5.06878030140626, 31.7847171154202, -391041.161399932, -9.75733406392044E-11, -18.6312419488279, 510.973543414101, 373847.005822362, 2.99804024666572E-08, 20.0544393820342, -4.98030487662829E-06, -10.230180636003, 55.2819126990325, -206.211367510878, -7940.12232324823, 7.82248472028153, -58.6544326902468, 3550.73647696481, -1.15303107290162E-04, -1.75092403171802, 257.98168774816, -727.048374179467, 1.21644822609198E-04, 3.93137871762692E-02, 7.04181005909296E-03, -82.910820069811, -0.26517881813125, 13.7531682453991, -52.2394090753046, 2405.56298941048, -22736.1631268929, 89074.6343932567, -23923456.5822486, 5687958081.29714];
    Sigma = s / 5.3;
    eta = h / 2800;
    Pi = 0;
    for i = 1 : 35
        Pi = Pi + ni(i) * (eta - 0.681) ^ Ii(i) * (Sigma - 0.792) ^ Ji(i);
    end
    p3_hs = 16.6 / Pi;
end

function h3_pT = h3_pT(p, T)
%Not avalible with if 97
%Solve function T3_ph-T=0 with half interval method.
%ver2.6 Start corrected bug
if p < 22.06395    %Bellow tripple point
  Ts = T4_p(p);    %Saturation temperature
  if T <= Ts      %Liquid side
    High_Bound = h4L_p(p); %Max h �r liauid h.
    Low_Bound = h1_pT(p, 623.15);
  else
    Low_Bound = h4V_p(p);  %Min h �r Vapour h.
    High_Bound = h2_pT(p, B23T_p(p));
  end 
else                  %Above tripple point. R3 from R2 till R3.
  Low_Bound = h1_pT(p, 623.15);
  High_Bound = h2_pT(p, B23T_p(p));
end
%ver2.6 End corrected bug
Ts = T+1;
while abs(T - Ts) > 0.00001
    hs = (Low_Bound + High_Bound) / 2;
    Ts = T3_ph(p, hs);
    if Ts > T 
        High_Bound = hs;
    else
        Low_Bound = hs;
    end
end
h3_pT = hs;

function T3_prho = T3_prho(p, rho)
  %Solve by iteration. Observe that fo low temperatures this equation has 2 solutions.
  %Solve with half interval method
  Low_Bound = 623.15;
  High_Bound = 1073.15;
  ps=-1000;
  while abs(p - ps) > 0.00000001
    Ts = (Low_Bound + High_Bound) / 2;
    ps = p3_rhoT(rho, Ts);
    if ps > p
      High_Bound = Ts;
    else
      Low_Bound = Ts;
    end
  end
  T3_prho = Ts;
  


%***********************************************************************************************************
%*2.4 functions for region 4
function p4_T = p4_T(T)
%Release on the IAPWS Industrial formulation 1997 for the Thermodynamic Properties of Water and Steam, September 1997
%Section 8.1 The Saturation-Pressure Equation
%Eq 30, Page 33
teta = T - 0.23855557567849 / (T - 650.17534844798);
a = teta ^ 2 + 1167.0521452767 * teta - 724213.16703206;
B = -17.073846940092 * teta ^ 2 + 12020.82470247 * teta - 3232555.0322333;
C = 14.91510861353 * teta ^ 2 - 4823.2657361591 * teta + 405113.40542057;
p4_T = (2 * C / (-B + (B ^ 2 - 4 * a * C) ^ 0.5)) ^ 4;


function T4_p = T4_p(p)
%Release on the IAPWS Industrial formulation 1997 for the Thermodynamic Properties of Water and Steam, September 1997
%Section 8.2 The Saturation-Temperature Equation
%Eq 31, Page 34
beta = p ^ 0.25;
E = beta ^ 2 - 17.073846940092 * beta + 14.91510861353;
f = 1167.0521452767 * beta ^ 2 + 12020.82470247 * beta - 4823.2657361591;
G = -724213.16703206 * beta ^ 2 - 3232555.0322333 * beta + 405113.40542057;
D = 2 * G / (-f - (f ^ 2 - 4 * E * G) ^ 0.5);
T4_p = (650.17534844798 + D - ((650.17534844798 + D) ^ 2 - 4 * (-0.23855557567849 + 650.17534844798 * D)) ^ 0.5) / 2;

function h4_s = h4_s(s)
%Supplementary Release on Backward Equations ( ) , p h s for Region 3,Equations as a function of h and s for the Region Boundaries, and an Equation( ) sat , T hs for Region 4 of the IAPWS Industrial formulation 1997 for the Thermodynamic Properties of Water and Steam
%4 Equations for Region Boundaries Given Enthalpy and Entropy
% Se picture page 14
if (s > -0.0001545495919 & s <= 3.77828134)==1
    %hL1_s
    %Eq 3,Table 9,Page 16
    Ii = [0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 4, 5, 5, 7, 8, 12, 12, 14, 14, 16, 20, 20, 22, 24, 28, 32, 32];
    Ji = [14, 36, 3, 16, 0, 5, 4, 36, 4, 16, 24, 18, 24, 1, 4, 2, 4, 1, 22, 10, 12, 28, 8, 3, 0, 6, 8];
    ni = [0.332171191705237, 6.11217706323496E-04, -8.82092478906822, -0.45562819254325, -2.63483840850452E-05, -22.3949661148062, -4.28398660164013, -0.616679338856916, -14.682303110404, 284.523138727299, -113.398503195444, 1156.71380760859, 395.551267359325, -1.54891257229285, 19.4486637751291, -3.57915139457043, -3.35369414148819, -0.66442679633246, 32332.1885383934, 3317.66744667084, -22350.1257931087, 5739538.75852936, 173.226193407919, -3.63968822121321E-02, 8.34596332878346E-07, 5.03611916682674, 65.5444787064505];
    Sigma = s / 3.8;
    eta = 0;
    for i = 1 : 27
        eta = eta + ni(i) * (Sigma - 1.09) ^ Ii(i) * (Sigma + 0.0000366) ^ Ji(i);
    end
    h4_s = eta * 1700;
elseif (s > 3.77828134 & s <= 4.41202148223476 )==1
    %hL3_s
    %Eq 4,Table 10,Page 16
    Ii = [0, 0, 0, 0, 2, 3, 4, 4, 5, 5, 6, 7, 7, 7, 10, 10, 10, 32, 32];
    Ji = [1, 4, 10, 16, 1, 36, 3, 16, 20, 36, 4, 2, 28, 32, 14, 32, 36, 0, 6];
    ni = [0.822673364673336, 0.181977213534479, -0.011200026031362, -7.46778287048033E-04, -0.179046263257381, 4.24220110836657E-02, -0.341355823438768, -2.09881740853565, -8.22477343323596, -4.99684082076008, 0.191413958471069, 5.81062241093136E-02, -1655.05498701029, 1588.70443421201, -85.0623535172818, -31771.4386511207, -94589.0406632871, -1.3927384708869E-06, 0.63105253224098];
    Sigma = s / 3.8;
    eta = 0;
    for i = 1 : 19
        eta = eta + ni(i) * (Sigma - 1.09) ^ Ii(i) * (Sigma + 0.0000366) ^ Ji(i);
    end
    h4_s = eta * 1700;
elseif (s > 4.41202148223476 & s <= 5.85 )==1
    %Section 4.4 Equations ( ) 2ab " h s and ( ) 2c3b "h s for the Saturated Vapor Line
    %Page 19, Eq 5
    %hV2c3b_s(s)
    Ii = [0, 0, 0, 1, 1, 5, 6, 7, 8, 8, 12, 16, 22, 22, 24, 36];
    Ji = [0, 3, 4, 0, 12, 36, 12, 16, 2, 20, 32, 36, 2, 32, 7, 20];
    ni = [1.04351280732769, -2.27807912708513, 1.80535256723202, 0.420440834792042, -105721.24483466, 4.36911607493884E+24, -328032702839.753, -6.7868676080427E+15, 7439.57464645363, -3.56896445355761E+19, 1.67590585186801E+31, -3.55028625419105E+37, 396611982166.538, -4.14716268484468E+40, 3.59080103867382E+18, -1.16994334851995E+40];
    Sigma = s / 5.9;
    eta = 0;
    for i = 1 : 16
        eta = eta + ni(i) * (Sigma - 1.02) ^ Ii(i) * (Sigma - 0.726) ^ Ji(i);
    end
    h4_s = eta ^ 4 * 2800;
elseif (s > 5.85 & s < 9.155759395)==1
    %Section 4.4 Equations ( ) 2ab " h s and ( ) 2c3b "h s for the Saturated Vapor Line
    %Page 20, Eq 6
    Ii = [1, 1, 2, 2, 4, 4, 7, 8, 8, 10, 12, 12, 18, 20, 24, 28, 28, 28, 28, 28, 32, 32, 32, 32, 32, 36, 36, 36, 36, 36];
    Ji = [8, 24, 4, 32, 1, 2, 7, 5, 12, 1, 0, 7, 10, 12, 32, 8, 12, 20, 22, 24, 2, 7, 12, 14, 24, 10, 12, 20, 22, 28];
    ni = [-524.581170928788, -9269472.18142218, -237.385107491666, 21077015581.2776, -23.9494562010986, 221.802480294197, -5104725.33393438, 1249813.96109147, 2000084369.96201, -815.158509791035, -157.612685637523, -11420042233.2791, 6.62364680776872E+15, -2.27622818296144E+18, -1.71048081348406E+31, 6.60788766938091E+15, 1.66320055886021E+22, -2.18003784381501E+29, -7.87276140295618E+29, 1.51062329700346E+31, 7957321.70300541, 1.31957647355347E+15, -3.2509706829914E+23, -4.18600611419248E+25, 2.97478906557467E+34, -9.53588761745473E+19, 1.66957699620939E+24, -1.75407764869978E+32, 3.47581490626396E+34, -7.10971318427851E+38];
    Sigma1 = s / 5.21;
    Sigma2 = s / 9.2;
    eta = 0;
    for i = 1 : 30
        eta = eta + ni(i) * (1 / Sigma1 - 0.513) ^ Ii(i) * (Sigma2 - 0.524) ^ Ji(i);
    end
    h4_s = exp(eta) * 2800;
else
    h4_s = -99999;
end

function p4_s = p4_s(s)
%Uses h4_s and p_hs for the diffrent regions to determine p4_s
h_sat = h4_s(s);
if (s > -0.0001545495919 & s <= 3.77828134)==1
    p4_s = p1_hs(h_sat, s);
elseif (s > 3.77828134 & s <= 5.210887663)==1
    p4_s = p3_hs(h_sat, s);
elseif (s > 5.210887663 & s < 9.155759395)==1
    p4_s = p2_hs(h_sat, s);
else
    p4_s = -99999;
end

function h4L_p = h4L_p(p)
if (p > 0.000611657 & p < 22.06395)==1
    Ts = T4_p(p);
    if p < 16.529 
        h4L_p = h1_pT(p, Ts);
    else
        %Iterate to find the the backward solution of p3sat_h
        Low_Bound = 1670.858218;
        High_Bound = 2087.23500164864;
        ps=-1000;
        while abs(p - ps) > 0.00001
            hs = (Low_Bound + High_Bound) / 2;
            ps = p3sat_h(hs);
            if ps > p 
                High_Bound = hs;
            else
                Low_Bound = hs;
            end
        end
        
        h4L_p = hs;
    end
else
    h4L_p = -99999;
end

function h4V_p = h4V_p(p)
if (p > 0.000611657 & p < 22.06395)==1
    Ts = T4_p(p);
    if p < 16.529 
        h4V_p = h2_pT(p, Ts);
    else
        %Iterate to find the the backward solution of p3sat_h
        Low_Bound = 2087.23500164864;
        High_Bound = 2563.592004+5;
        ps=-1000;
        while abs(p - ps) > 0.000001
            hs = (Low_Bound + High_Bound) / 2;
            ps = p3sat_h(hs);
            if ps < p 
                High_Bound = hs;
            else
                Low_Bound = hs;
            end
        end
        h4V_p = hs;
    end
else
    h4V_p = -99999;
end

function x4_ph = x4_ph(p, h)
%Calculate vapour fraction from hL and hV for given p
h4v = h4V_p(p);
h4L = h4L_p(p);
if h > h4v 
    x4_ph = 1;
elseif h < h4L 
    x4_ph = 0;
else
    x4_ph = (h - h4L) / (h4v - h4L);
end

function x4_ps = x4_ps(p, s)
if p < 16.529 
    ssv = s2_pT(p, T4_p(p));
    ssL = s1_pT(p, T4_p(p));
else
    ssv = s3_rhoT(1 / (v3_ph(p, h4V_p(p))), T4_p(p));
    ssL = s3_rhoT(1 / (v3_ph(p, h4L_p(p))), T4_p(p));
end
if s < ssL 
    x4_ps = 0;
elseif s > ssv 
    x4_ps = 1;
else
    x4_ps = (s - ssL) / (ssv - ssL);
end

function T4_hs = T4_hs(h, s)
%Supplementary Release on Backward Equations ( ) , p h s for Region 3,
%Chapter 5.3 page 30.
%The if 97 function is only valid for part of region4. Use iteration outsida.
Ii = [0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 4, 4, 5, 5, 5, 5, 6, 6, 6, 8, 10, 10, 12, 14, 14, 16, 16, 18, 18, 18, 20, 28];
Ji = [0, 3, 12, 0, 1, 2, 5, 0, 5, 8, 0, 2, 3, 4, 0, 1, 1, 2, 4, 16, 6, 8, 22, 1, 20, 36, 24, 1, 28, 12, 32, 14, 22, 36, 24, 36];
ni = [0.179882673606601, -0.267507455199603, 1.162767226126, 0.147545428713616, -0.512871635973248, 0.421333567697984, 0.56374952218987, 0.429274443819153, -3.3570455214214, 10.8890916499278, -0.248483390456012, 0.30415322190639, -0.494819763939905, 1.07551674933261, 7.33888415457688E-02, 1.40170545411085E-02, -0.106110975998808, 1.68324361811875E-02, 1.25028363714877, 1013.16840309509, -1.51791558000712, 52.4277865990866, 23049.5545563912, 2.49459806365456E-02, 2107964.67412137, 366836848.613065, -144814105.365163, -1.7927637300359E-03, 4899556021.00459, 471.262212070518, -82929439019.8652, -1715.45662263191, 3557776.82973575, 586062760258.436, -12988763.5078195, 31724744937.1057];
if (s > 5.210887825 & s < 9.15546555571324)==1
    Sigma = s / 9.2;
    eta = h / 2800;
    teta = 0;
    for i = 1 : 36
        teta = teta + ni(i) * (eta - 0.119) ^ Ii(i) * (Sigma - 1.07) ^ Ji(i);
    end
    T4_hs = teta * 550;
else
    %function psat_h
    if (s > -0.0001545495919 && s <= 3.77828134)==1
        Low_Bound = 0.000611;
        High_Bound = 165.291642526045;
        hL=-1000;
        while abs(hL - h) > 0.00001 && abs(High_Bound - Low_Bound) > 0.0001
            PL = (Low_Bound + High_Bound) / 2;
            Ts = T4_p(PL);
            hL = h1_pT(PL, Ts);
            if hL > h 
                High_Bound = PL;
            else
                Low_Bound = PL;
            end
        end
    elseif s > 3.77828134 && s <= 4.41202148223476 
        PL = p3sat_h(h);
    elseif s > 4.41202148223476 && s <= 5.210887663 
        PL = p3sat_h(h);
    end
    Low_Bound = 0.000611;
    High_Bound = PL;
    sss=-1000;
    while (abs(s - sss) > 0.000001 & abs(High_Bound - Low_Bound) > 0.0000001)==1
        p = (Low_Bound + High_Bound) / 2;
        %Calculate s4_ph
        Ts = T4_p(p);
        xs = x4_ph(p, h);
        if p < 16.529 
            s4v = s2_pT(p, Ts);
            s4L = s1_pT(p, Ts);
        else
            v4v = v3_ph(p, h4V_p(p));
            s4v = s3_rhoT(1 / v4v, Ts);
            v4L = v3_ph(p, h4L_p(p));
            s4L = s3_rhoT(1 / v4L, Ts);
        end
        sss = (xs * s4v + (1 - xs) * s4L);
        
        if sss < s 
            High_Bound = p;
        else
            Low_Bound = p;
        end
    end
    T4_hs = T4_p(p);
end
%***********************************************************************************************************
%*2.5 functions for region 5
function h5_pT = h5_pT(p, T)
%Release on the IAPWS Industrial formulation 1997 for the Thermodynamic Properties of Water and Steam, September 1997
%Basic Equation for Region 5
%Eq 32,33, Page 36, Tables 37-41
Ji0 = [0, 1, -3, -2, -1, 2];
ni0 = [-13.179983674201, 6.8540841634434, -0.024805148933466, 0.36901534980333, -3.1161318213925, -0.32961626538917];
Iir = [1, 1, 1, 2, 3];
Jir = [0, 1, 3, 9, 3];
nir = [-1.2563183589592E-04, 2.1774678714571E-03, -0.004594282089991, -3.9724828359569E-06, 1.2919228289784E-07];
R = 0.461526; %kJ/(kg K)
tau = 1000 / T;
Pi = p;
gamma0_tau = 0;
for i = 1 : 6
    gamma0_tau = gamma0_tau + ni0(i) * Ji0(i) * tau ^ (Ji0(i) - 1);
end
gammar_tau = 0;
for i = 1 : 5
    gammar_tau = gammar_tau + nir(i) * Pi ^ Iir(i) * Jir(i) * tau ^ (Jir(i) - 1);
end
h5_pT = R * T * tau * (gamma0_tau + gammar_tau);



function v5_pT = v5_pT(p, T)
%Release on the IAPWS Industrial formulation 1997 for the Thermodynamic Properties of Water and Steam, September 1997
%Basic Equation for Region 5
%Eq 32,33, Page 36, Tables 37-41
Ji0 = [0, 1, -3, -2, -1, 2];
ni0 = [-13.179983674201, 6.8540841634434, -0.024805148933466, 0.36901534980333, -3.1161318213925, -0.32961626538917];
Iir = [1, 1, 1, 2, 3];
Jir = [0, 1, 3, 9, 3];
nir = [-1.2563183589592E-04, 2.1774678714571E-03, -0.004594282089991, -3.9724828359569E-06, 1.2919228289784E-07];
R = 0.461526; %kJ/(kg K)
tau = 1000 / T;
Pi = p;
gamma0_pi = 1 / Pi;
gammar_pi = 0;
for i = 1 : 5
    gammar_pi = gammar_pi + nir(i) * Iir(i) * Pi ^ (Iir(i) - 1) * tau ^ Jir(i);
end
v5_pT = R * T / p * Pi * (gamma0_pi + gammar_pi) / 1000;


function u5_pT = u5_pT(p, T)
%Release on the IAPWS Industrial formulation 1997 for the Thermodynamic Properties of Water and Steam, September 1997
%Basic Equation for Region 5
%Eq 32,33, Page 36, Tables 37-41
Ji0 = [0, 1, -3, -2, -1, 2];
ni0 = [-13.179983674201, 6.8540841634434, -0.024805148933466, 0.36901534980333, -3.1161318213925, -0.32961626538917];
Iir = [1, 1, 1, 2, 3];
Jir = [0, 1, 3, 9, 3];
nir = [-1.2563183589592E-04, 2.1774678714571E-03, -0.004594282089991, -3.9724828359569E-06, 1.2919228289784E-07];
R = 0.461526; %kJ/(kg K)
tau = 1000 / T;
Pi = p;
gamma0_pi = 1 / Pi;
gamma0_tau = 0;
for i = 1 : 6
    gamma0_tau = gamma0_tau + ni0(i) * Ji0(i) * tau ^ (Ji0(i) - 1);
end
gammar_pi = 0;
gammar_tau = 0;
for i = 1 : 5
    gammar_pi = gammar_pi + nir(i) * Iir(i) * Pi ^ (Iir(i) - 1) * tau ^ Jir(i);
    gammar_tau = gammar_tau + nir(i) * Pi ^ Iir(i) * Jir(i) * tau ^ (Jir(i) - 1);
end
u5_pT = R * T * (tau * (gamma0_tau + gammar_tau) - Pi * (gamma0_pi + gammar_pi));

function Cp5_pT = Cp5_pT(p, T)
%Release on the IAPWS Industrial formulation 1997 for the Thermodynamic Properties of Water and Steam, September 1997
%Basic Equation for Region 5
%Eq 32,33, Page 36, Tables 37-41
Ji0 = [0, 1, -3, -2, -1, 2];
ni0 = [-13.179983674201, 6.8540841634434, -0.024805148933466, 0.36901534980333, -3.1161318213925, -0.32961626538917];
Iir = [1, 1, 1, 2, 3];
Jir = [0, 1, 3, 9, 3];
nir = [-1.2563183589592E-04, 2.1774678714571E-03, -0.004594282089991, -3.9724828359569E-06, 1.2919228289784E-07];
R = 0.461526; %kJ/(kg K)
tau = 1000 / T;
Pi = p;
gamma0_tautau = 0;
for i = 1 : 6
    gamma0_tautau = gamma0_tautau + ni0(i) * Ji0(i) * (Ji0(i) - 1) * tau ^ (Ji0(i) - 2);
end
gammar_tautau = 0;
for i = 1 : 5
    gammar_tautau = gammar_tautau + nir(i) * Pi ^ Iir(i) * Jir(i) * (Jir(i) - 1) * tau ^ (Jir(i) - 2);
end
Cp5_pT = -R * tau ^ 2 * (gamma0_tautau + gammar_tautau);


function s5_pT = s5_pT(p, T)
%Release on the IAPWS Industrial formulation 1997 for the Thermodynamic Properties of Water and Steam, September 1997
%Basic Equation for Region 5
%Eq 32,33, Page 36, Tables 37-41
Ji0 = [0, 1, -3, -2, -1, 2];
ni0 = [-13.179983674201, 6.8540841634434, -0.024805148933466, 0.36901534980333, -3.1161318213925, -0.32961626538917];
Iir = [1, 1, 1, 2, 3];
Jir = [0, 1, 3, 9, 3];
nir = [-1.2563183589592E-04, 2.1774678714571E-03, -0.004594282089991, -3.9724828359569E-06, 1.2919228289784E-07];
R = 0.461526; %kJ/(kg K)
tau = 1000 / T;
Pi = p;
gamma0 = log(Pi);
gamma0_tau = 0;
for i = 1 : 6
    gamma0_tau = gamma0_tau + ni0(i) * Ji0(i) * tau ^ (Ji0(i) - 1);
    gamma0 = gamma0 + ni0(i) * tau ^ Ji0(i);
end
gammar = 0;
gammar_tau = 0;
for i = 1 : 5
    gammar = gammar + nir(i) * Pi ^ Iir(i) * tau ^ Jir(i);
    gammar_tau = gammar_tau + nir(i) * Pi ^ Iir(i) * Jir(i) * tau ^ (Jir(i) - 1);
end
s5_pT = R * (tau * (gamma0_tau + gammar_tau) - (gamma0 + gammar));

function Cv5_pT = Cv5_pT(p, T)
%Release on the IAPWS Industrial formulation 1997 for the Thermodynamic Properties of Water and Steam, September 1997
%Basic Equation for Region 5
%Eq 32,33, Page 36, Tables 37-41
Ji0 = [0, 1, -3, -2, -1, 2];
ni0 = [-13.179983674201, 6.8540841634434, -0.024805148933466, 0.36901534980333, -3.1161318213925, -0.32961626538917];
Iir = [1, 1, 1, 2, 3];
Jir = [0, 1, 3, 9, 3];
nir = [-1.2563183589592E-04, 2.1774678714571E-03, -0.004594282089991, -3.9724828359569E-06, 1.2919228289784E-07];
R = 0.461526; %kJ/(kg K)
tau = 1000 / T;
Pi = p;
gamma0_tautau = 0;
for i = 1 : 6
    gamma0_tautau = gamma0_tautau + ni0(i) * (Ji0(i) - 1) * Ji0(i) * tau ^ (Ji0(i) - 2);
end
gammar_pi = 0;
gammar_pitau = 0;
gammar_pipi = 0;
gammar_tautau = 0;
for i = 1 : 5
    gammar_pi = gammar_pi + nir(i) * Iir(i) * Pi ^ (Iir(i) - 1) * tau ^ Jir(i);
    gammar_pitau = gammar_pitau + nir(i) * Iir(i) * Pi ^ (Iir(i) - 1) * Jir(i) * tau ^ (Jir(i) - 1);
    gammar_pipi = gammar_pipi + nir(i) * Iir(i) * (Iir(i) - 1) * Pi ^ (Iir(i) - 2) * tau ^ Jir(i);
    gammar_tautau = gammar_tautau + nir(i) * Pi ^ Iir(i) * Jir(i) * (Jir(i) - 1) * tau ^ (Jir(i) - 2);
end
Cv5_pT = R * (-(tau ^ 2 *(gamma0_tautau + gammar_tautau)) - (1 + Pi * gammar_pi - tau * Pi * gammar_pitau)^2 / (1 - Pi ^ 2 * gammar_pipi));

function w5_pT = w5_pT(p, T)
%Release on the IAPWS Industrial formulation 1997 for the Thermodynamic Properties of Water and Steam, September 1997
%Basic Equation for Region 5
%Eq 32,33, Page 36, Tables 37-41
Ji0 = [0, 1, -3, -2, -1, 2];
ni0 = [-13.179983674201, 6.8540841634434, -0.024805148933466, 0.36901534980333, -3.1161318213925, -0.32961626538917];
Iir = [1, 1, 1, 2, 3];
Jir = [0, 1, 3, 9, 3];
nir = [-1.2563183589592E-04, 2.1774678714571E-03, -0.004594282089991, -3.9724828359569E-06, 1.2919228289784E-07];
R = 0.461526; %kJ/(kg K)
tau = 1000 / T;
Pi = p;
gamma0_tautau = 0;
for i = 1 : 6
    gamma0_tautau = gamma0_tautau + ni0(i) * (Ji0(i) - 1) * Ji0(i) * tau ^ (Ji0(i) - 2);
end
gammar_pi = 0;
gammar_pitau = 0;
gammar_pipi = 0;
gammar_tautau = 0;
for i = 1 : 5
    gammar_pi = gammar_pi + nir(i) * Iir(i) * Pi ^ (Iir(i) - 1) * tau ^ Jir(i);
    gammar_pitau = gammar_pitau + nir(i) * Iir(i) * Pi ^ (Iir(i) - 1) * Jir(i) * tau ^ (Jir(i) - 1);
    gammar_pipi = gammar_pipi + nir(i) * Iir(i) * (Iir(i) - 1) * Pi ^ (Iir(i) - 2) * tau ^ Jir(i);
    gammar_tautau = gammar_tautau + nir(i) * Pi ^ Iir(i) * Jir(i) * (Jir(i) - 1) * tau ^ (Jir(i) - 2);
end
w5_pT = (1000 * R * T * (1 + 2 * Pi * gammar_pi + Pi ^ 2 * gammar_pi ^ 2) / ((1 - Pi ^ 2 * gammar_pipi) + (1 + Pi * gammar_pi - tau * Pi * gammar_pitau) ^ 2 / (tau ^ 2 * (gamma0_tautau + gammar_tautau)))) ^ 0.5;


function T5_ph = T5_ph(p, h)
%Solve with half interval method
Low_Bound = 1073.15;
High_Bound = 2273.15;
hs=h-1;
while abs(h - hs) > 0.00001
    Ts = (Low_Bound + High_Bound) / 2;
    hs = h5_pT(p, Ts);
    if hs > h 
        High_Bound = Ts;
    else
        Low_Bound = Ts;
    end
end
T5_ph = Ts;


function T5_ps = T5_ps(p, s)
%Solve with half interval method
Low_Bound = 1073.15;
High_Bound = 2273.15;
ss=s-1;
while abs(s - ss) > 0.00001
    Ts = (Low_Bound + High_Bound) / 2;
    ss = s5_pT(p, Ts);
    if ss > s 
        High_Bound = Ts;
    else
        Low_Bound = Ts;
    end
end
T5_ps = Ts;

function T5_prho=T5_prho(p,rho)
  %Solve by iteration. Observe that fo low temperatures this equation has 2 solutions.
  %Solve with half interval method
  
    Low_Bound = 1073.15;
    High_Bound = 2073.15;
    rhos=-1000;
  while abs(rho - rhos) > 0.000001
    Ts = (Low_Bound + High_Bound) / 2;
    rhos = 1 / v2_pT(p, Ts);
    if rhos < rho
      High_Bound = Ts;
    else
      Low_Bound = Ts;
    end
  end
    T5_prho = Ts;

%***********************************************************************************************************
%*3 Region Selection
%***********************************************************************************************************
%*3.1 Regions as a function of pT
function region_pT = region_pT(p, T)
if T > 1073.15 && p < 10 && T < 2273.15 && p > 0.000611 
    region_pT = 5;
elseif T <= 1073.15 && T > 273.15 && p <= 100 && p > 0.000611 
    if T > 623.15 
        if p > B23p_T(T) 
            region_pT = 3;
            if T < 647.096 
                ps = p4_T(T);
                if abs(p - ps) < 0.00001
                    region_pT = 4;
                end
            end
        else
            region_pT = 2;
        end
    else
        ps = p4_T(T);
        if abs(p - ps) < 0.00001 
            region_pT = 4;
        elseif p > ps
            region_pT = 1;
        else
            region_pT = 2;
        end
    end
else
    region_pT = 0; %**Error, Outside valid area
end
%***********************************************************************************************************
%*3.2 Regions as a function of ph
function region_ph = region_ph(  p,   h)
%Check if outside pressure limits
if p < 0.000611657 || p > 100 
    region_ph = 0;
    return
end

%Check if outside low h.
if h < 0.963 * p + 2.2  %Linear adaption to h1_pt()+2 to speed up calcualations.
    if h < h1_pT(p, 273.15) 
        region_ph = 0;
        return
    end
end

if p < 16.5292  %Bellow region 3,Check  region 1,4,2,5
    %Check Region 1
    Ts = T4_p(p);
    hL = 109.6635 * log(p) + 40.3481 * p + 734.58; %Approximate function for hL_p
    if abs(h - hL) < 100  %if approximate is not god enough use real function
        hL = h1_pT(p, Ts);
    end
    if h <= hL 
        region_ph = 1;
        return
    end
    %Check Region 4
    hV = 45.1768 * log(p) - 20.158 * p + 2804.4; %Approximate function for hV_p
    if abs(h - hV) < 50  %if approximate is not god enough use real function
        hV = h2_pT(p, Ts);
    end
    if h < hV 
        region_ph = 4;
        return
    end
    %Check upper limit of region 2 Quick Test
    if h < 4000 
        region_ph = 2;
        return
    end
    %Check region 2 (Real value)
    h_45 = h2_pT(p, 1073.15);
    if h <= h_45 
        region_ph = 2;
        return
    end
    %Check region 5
    if p > 10 
        region_ph = 0;
        return
    end
    h_5u = h5_pT(p, 2273.15);
    if h < h_5u 
        region_ph = 5;
        return
    end
    region_ph = 0;
    return
else %for p>16.5292
    %Check if in region1
    if h < h1_pT(p, 623.15) 
        region_ph = 1;
        return
    end
    %Check if in region 3 or 4 (Bellow Reg 2)
    if h < h2_pT(p, B23T_p(p)) 
        %Region 3 or 4
        if p > p3sat_h(h) 
            region_ph = 3;
            return
        else
            region_ph = 4;
            return
        end
    end
    %Check if region 2
    if h < h2_pT(p, 1073.15) 
        region_ph = 2;
        return
    end
end
region_ph = 0;


%***********************************************************************************************************
%*3.3 Regions as a function of ps
function region_ps = region_ps(  p,   s)
if p < 0.000611657 || p > 100 || s < 0 || s > s5_pT(p, 2273.15) 
    region_ps = 0;
    return
end

%Check region 5
if s > s2_pT(p, 1073.15) 
    if p <= 10 
        region_ps = 5;
        return
    else
        region_ps = 0;
        return
    end
end

%Check region 2
if p > 16.529 
    ss = s2_pT(p, B23T_p(p)); %Between 5.047  & 5.261. Use to speed up!
else
    ss = s2_pT(p, T4_p(p));
end
if s > ss 
    region_ps = 2;
    return
end

%Check region 3
ss = s1_pT(p, 623.15);
if p > 16.529  && s > ss 
    if p > p3sat_s(s) 
        region_ps = 3;
        return
    else
        region_ps = 4;
        return
    end
end

%Check region 4 (Not inside region 3)
if p < 16.529  && s > s1_pT(p, T4_p(p)) 
    region_ps = 4;
    return
end

%Check region 1
if p > 0.000611657  && s > s1_pT(p, 273.15) 
    region_ps = 1;
    return
end
region_ps = 1;

%***********************************************************************************************************
%*3.4 Regions as a function of hs
function region_hs = region_hs(  h,   s)
if s < -0.0001545495919 
    region_hs = 0;
    return
end
%Check linear adaption to p=0.000611. if bellow region 4.
hMin = (((-0.0415878 - 2500.89262) / (-0.00015455 - 9.155759)) * s);
if s < 9.155759395  && h < hMin 
    region_hs = 0;
    return
end

%******Kolla 1 eller 4. (+liten bit �ver B13)
if s >= -0.0001545495919  && s <= 3.77828134 
    if h < h4_s(s) 
        region_hs = 4;
        return
    elseif s < 3.397782955  %100MPa line is limiting
        TMax = T1_ps(100, s);
        hMax = h1_pT(100, TMax);
        if h < hMax 
            region_hs = 1;
            return
        else
            region_hs = 0;
            return
        end
    else %The point is either in region 4,1,3. Check B23
        hB = hB13_s(s);
        if h < hB 
            region_hs = 1;
            return
        end
        TMax = T3_ps(100, s);
        vmax = v3_ps(100, s);
        hMax = h3_rhoT(1 / vmax, TMax);
        if h < hMax 
            region_hs = 3;
            return
        else
            region_hs = 0;
            return
        end
    end
end

%******Kolla region 2 eller 4. (�vre delen av omr�de b23-> max)
if s >= 5.260578707  && s <= 11.9212156897728 
    if s > 9.155759395  %Above region 4
        Tmin = T2_ps(0.000611, s);
        hMin = h2_pT(0.000611, Tmin);
        %function adapted to h(1073.15,s)
        hMax = -0.07554022 * s ^ 4 + 3.341571 * s ^ 3 - 55.42151 * s ^ 2 + 408.515 * s + 3031.338;
        if h > hMin  && h < hMax 
            region_hs = 2;
            return
        else
            region_hs = 0;
            return
        end
    end
    
    hV = h4_s(s);
    
    if h < hV   %Region 4. Under region 3.
        region_hs = 4;
        return
    end
    if s < 6.04048367171238 
        TMax = T2_ps(100, s);
        hMax = h2_pT(100, TMax);
    else
        %function adapted to h(1073.15,s)
        hMax = -2.988734 * s ^ 4 + 121.4015 * s ^ 3 - 1805.15 * s ^ 2 + 11720.16 * s - 23998.33;
    end
    if h < hMax   %Region 2. �ver region 4.
        region_hs = 2;
        return
    else
        region_hs = 0;
        return
    end
end

%Kolla region 3 eller 4. Under kritiska punkten.
if s >= 3.77828134  && s <= 4.41202148223476 
    hL = h4_s(s);
    if h < hL 
        region_hs = 4;
        return
    end
    TMax = T3_ps(100, s);
    vmax = v3_ps(100, s);
    hMax = h3_rhoT(1 / vmax, TMax);
    if h < hMax 
        region_hs = 3;
        return
    else
        region_hs = 0;
        return
    end
end

%Kolla region 3 eller 4 fr�n kritiska punkten till �vre delen av b23
if s >= 4.41202148223476  && s <= 5.260578707 
    hV = h4_s(s);
    if h < hV 
        region_hs = 4;
        return
    end
    %Kolla om vi �r under b23 giltighetsomr�de.
    if s <= 5.048096828 
        TMax = T3_ps(100, s);
        vmax = v3_ps(100, s);
        hMax = h3_rhoT(1 / vmax, TMax);
        if h < hMax 
            region_hs = 3;
            return
        else
            region_hs = 0;
            return
        end
    else %Inom omr�det f�r B23 i s led.
        if (h > 2812.942061)  %Ovanf�r B23 i h_led
            if s > 5.09796573397125 
                TMax = T2_ps(100, s);
                hMax = h2_pT(100, TMax);
                if h < hMax 
                    region_hs = 2;
                    return
                else
                    region_hs = 0;
                    return
                end
            else
                region_hs = 0;
                return
            end
        end
        if (h < 2563.592004)    %Nedanf�r B23 i h_led men vi har redan kollat ovanf�r hV2c3b
            region_hs = 3;
            return
        end
        %Vi �r inom b23 omr�det i b�de s och h led.
        Tact = TB23_hs(h, s);
        pact = p2_hs(h, s);
        pBound = B23p_T(Tact);
        if pact > pBound 
            region_hs = 3;
            return
        else
            region_hs = 2;
            return
        end
    end
end
region_hs = 0;

%***********************************************************************************************************
%*3.5 Regions as a function of p and rho
function Region_prho = Region_prho(p,rho)
v = 1 / rho;
if p < 0.000611657 || p > 100
    Region_prho = 0;
    return
end
if p < 16.5292  %Bellow region 3, Check region 1,4,2
    if v < v1_pT(p, 273.15) %Observe that this is not actually min of v. Not valid Water of 4�C is ligther.
        Region_prho = 0;
        return
    end
    if v <= v1_pT(p, T4_p(p))
        Region_prho = 1;
        return
    end
    if v < v2_pT(p, T4_p(p)) 
        Region_prho = 4;
        return
    end
    if v <= v2_pT(p, 1073.15)
        Region_prho = 2;
        return
    end 
    if p > 10 %Above region 5
        Region_prho = 0;
        return
    end 
    if v <= v5_pT(p, 2073.15) 
        Region_prho = 5;
        return
    end
else %Check region 1,3,4,3,2 (Above the lowest point of region 3.)
    if v < v1_pT(p, 273.15) %Observe that this is not actually min of v. Not valid Water of 4�C is ligther.
        Region_prho = 0;
        return
    end
    if v < v1_pT(p, 623.15)
        Region_prho = 1;
        return
    end
    %Check if in region 3 or 4 (Bellow Reg 2)
    if v < v2_pT(p, B23T_p(p))
        %Region 3 or 4
        if p > 22.064 %Above region 4
            Region_prho = 3;
            return
        end
        if v < v3_ph(p, h4L_p(p)) || v > v3_ph(p, h4V_p(p)) %Uses iteration!!
            Region_prho = 3;
            return
        else
            Region_prho = 4;
            return
        end 
    end 
    %Check if region 2
    if v < v2_pT(p, 1073.15)
        Region_prho = 2;
        return
    end
end 
Region_prho = 0;



%***********************************************************************************************************
%*4 Region Borders
%***********************************************************************************************************
%***********************************************************************************************************
%*4.1 Boundary between region 2 and 3.
function B23p_T = B23p_T(T)
%Release on the IAPWS Industrial formulation 1997 for the Thermodynamic Properties of Water and Steam
%1997
%Section 4 Auxiliary Equation for the Boundary between Regions 2 and 3
%Eq 5, Page 5
B23p_T = 348.05185628969 - 1.1671859879975 * T + 1.0192970039326E-03 * T ^ 2;

function B23T_p = B23T_p(p)
%Release on the IAPWS Industrial formulation 1997 for the Thermodynamic Properties of Water and Steam
%1997
%Section 4 Auxiliary Equation for the Boundary between Regions 2 and 3
%Eq 6, Page 6
B23T_p = 572.54459862746 + ((p - 13.91883977887) / 1.0192970039326E-03) ^ 0.5;


%***********************************************************************************************************
%*4.2 Region 3. pSat_h  & pSat_s
function p3sat_h = p3sat_h(h)
%Revised Supplementary Release on Backward Equations for the functions T(p,h), v(p,h)  & T(p,s), v(p,s) for Region 3 of the IAPWS Industrial formulation 1997 for the Thermodynamic Properties of Water  & Steam
%2004
%Section 4 Boundary Equations psat(h)  & psat(s) for the Saturation Lines of Region 3
%Se pictures Page 17, Eq 10, Table 17, Page 18
Ii = [0, 1, 1, 1, 1, 5, 7, 8, 14, 20, 22, 24, 28, 36];
Ji = [0, 1, 3, 4, 36, 3, 0, 24, 16, 16, 3, 18, 8, 24];
ni = [0.600073641753024, -9.36203654849857, 24.6590798594147, -107.014222858224, -91582131580576.8, -8623.32011700662, -23.5837344740032, 2.52304969384128E+17, -3.89718771997719E+18, -3.33775713645296E+22, 35649946963.6328, -1.48547544720641E+26, 3.30611514838798E+18, 8.13641294467829E+37];
hs = h / 2600;
ps = 0;
for i = 1:14
    ps = ps + ni(i) * (hs - 1.02) ^ Ii(i) * (hs - 0.608) ^ Ji(i);
end
p3sat_h = ps * 22;


function p3sat_s = p3sat_s(s)
Ii = [0, 1, 1, 4, 12, 12, 16, 24, 28, 32];
Ji = [0, 1, 32, 7, 4, 14, 36, 10, 0, 18];
ni = [0.639767553612785, -12.9727445396014, -2.24595125848403E+15, 1774667.41801846, 7170793495.71538, -3.78829107169011E+17, -9.55586736431328E+34, 1.87269814676188E+23, 119254746466.473, 1.10649277244882E+36];
Sigma = s / 5.2;
Pi = 0;
for i = 1:10
    Pi = Pi + ni(i) * (Sigma - 1.03) ^ Ii(i) * (Sigma - 0.699) ^ Ji(i);
end
p3sat_s = Pi * 22;


%***********************************************************************************************************
%4.3 Region boundary 1to3  & 3to2 as a functions of s
function hB13_s = hB13_s(s)
%Supplementary Release on Backward Equations ( ) , p h s for Region 3,
%Chapter 4.5 page 23.
Ii = [0, 1, 1, 3, 5, 6];
Ji = [0, -2, 2, -12, -4, -3];
ni = [0.913965547600543, -4.30944856041991E-05, 60.3235694765419, 1.17518273082168E-18, 0.220000904781292, -69.0815545851641];
Sigma = s / 3.8;
eta = 0;
for i = 1 : 6
    eta = eta + ni(i) * (Sigma - 0.884) ^ Ii(i) * (Sigma - 0.864) ^ Ji(i);
end
hB13_s = eta * 1700;


function TB23_hs = TB23_hs(h, s)
%Supplementary Release on Backward Equations ( ) , p h s for Region 3,
%Chapter 4.6 page 25.
Ii = [-12, -10, -8, -4, -3, -2, -2, -2, -2, 0, 1, 1, 1, 3, 3, 5, 6, 6, 8, 8, 8, 12, 12, 14, 14];
Ji = [10, 8, 3, 4, 3, -6, 2, 3, 4, 0, -3, -2, 10, -2, -1, -5, -6, -3, -8, -2, -1, -12, -1, -12, 1];
ni = [6.2909626082981E-04, -8.23453502583165E-04, 5.15446951519474E-08, -1.17565945784945, 3.48519684726192, -5.07837382408313E-12, -2.84637670005479, -2.36092263939673, 6.01492324973779, 1.48039650824546, 3.60075182221907E-04, -1.26700045009952E-02, -1221843.32521413, 0.149276502463272, 0.698733471798484, -2.52207040114321E-02, 1.47151930985213E-02, -1.08618917681849, -9.36875039816322E-04, 81.9877897570217, -182.041861521835, 2.61907376402688E-06, -29162.6417025961, 1.40660774926165E-05, 7832370.62349385];
Sigma = s / 5.3;
eta = h / 3000;
teta = 0;
for i = 1 : 25
    teta = teta + ni(i) * (eta - 0.727) ^ Ii(i) * (Sigma - 0.864) ^ Ji(i);
end
TB23_hs = teta * 900;


%***********************************************************************************************************
%*5 Transport properties
%***********************************************************************************************************
%*5.1 Viscosity (IAPWS formulation 1985, Revised 2003)
%***********************************************************************************************************
function my_AllRegions_pT = my_AllRegions_pT(  p,   T)
h0 = [0.5132047, 0.3205656, 0, 0, -0.7782567, 0.1885447];
h1 = [0.2151778, 0.7317883, 1.241044, 1.476783, 0, 0];
h2 = [-0.2818107, -1.070786, -1.263184, 0, 0, 0];
h3 = [0.1778064, 0.460504, 0.2340379, -0.4924179, 0, 0];
h4 = [-0.0417661, 0, 0, 0.1600435, 0, 0];
h5 = [0, -0.01578386, 0, 0, 0, 0];
h6 = [0, 0, 0, -0.003629481, 0, 0];

%Calcualte density.
switch region_pT(p, T)
case 1
    rho = 1 / v1_pT(p, T);
case 2
    rho = 1 / v2_pT(p, T);
case 3
    hs = h3_pT(p, T);
    rho = 1 / v3_ph(p, hs);
case 4
    rho = NaN;
case 5
    rho = 1 / v5_pT(p, T);
otherwise
    my_AllRegions_pT = NaN;
    return
end

rhos = rho / 317.763;
Ts = T / 647.226;
ps = p / 22.115;

%Check valid area
if T > 900 + 273.15 || (T > 600 + 273.15  && p > 300) || (T > 150 + 273.15  && p > 350) || p > 500 
    my_AllRegions_pT = NaN;
    return
end
my0 = Ts ^ 0.5 / (1 + 0.978197 / Ts + 0.579829 / (Ts ^ 2) - 0.202354 / (Ts ^ 3));
Sum = 0;
for i = 0 : 5
    Sum = Sum + h0(i+1) * (1 / Ts - 1) ^ i + h1(i+1) * (1 / Ts - 1) ^ i * (rhos - 1) ^ 1 + h2(i+1) * (1 / Ts - 1) ^ i * (rhos - 1) ^ 2 + h3(i+1) * (1 / Ts - 1) ^ i * (rhos - 1) ^ 3 + h4(i+1) * (1 / Ts - 1) ^ i * (rhos - 1) ^ 4 + h5(i+1) * (1 / Ts - 1) ^ i * (rhos - 1) ^ 5 + h6(i+1) * (1 / Ts - 1) ^ i * (rhos - 1) ^ 6;
end
my1 = exp(rhos * Sum);
mys = my0 * my1;
my_AllRegions_pT = mys * 0.000055071;


function my_AllRegions_ph = my_AllRegions_ph(  p,   h)
h0 = [0.5132047, 0.3205656, 0, 0, -0.7782567, 0.1885447];
h1 = [0.2151778, 0.7317883, 1.241044, 1.476783, 0, 0];
h2 = [-0.2818107, -1.070786, -1.263184, 0, 0, 0];
h3 = [0.1778064, 0.460504, 0.2340379, -0.4924179, 0, 0];
h4 = [-0.0417661, 0, 0, 0.1600435, 0, 0];
h5 = [0, -0.01578386, 0, 0, 0, 0];
h6 = [0, 0, 0, -0.003629481, 0, 0];

%Calcualte density.
switch region_ph(p, h)
case 1
    Ts = T1_ph(p, h);
    T = Ts;
    rho = 1 / v1_pT(p, Ts);
case 2
    Ts = T2_ph(p, h);
    T = Ts;
    rho = 1 / v2_pT(p, Ts);
case 3
    rho = 1 / v3_ph(p, h);
    T = T3_ph(p, h);
case 4
    xs = x4_ph(p, h);
    if p < 16.529 
        v4v = v2_pT(p, T4_p(p));
        v4L = v1_pT(p, T4_p(p));
    else
        v4v = v3_ph(p, h4V_p(p));
        v4L = v3_ph(p, h4L_p(p));
    end
    rho = 1 / (xs * v4v + (1 - xs) * v4L);
    T = T4_p(p);
case 5
    Ts = T5_ph(p, h);
    T = Ts;
    rho = 1 / v5_pT(p, Ts);
otherwise
    my_AllRegions_ph = NaN;
    return
end
rhos = rho / 317.763;
Ts = T / 647.226;
ps = p / 22.115;
%Check valid area
if T > 900 + 273.15 || (T > 600 + 273.15  && p > 300) || (T > 150 + 273.15  && p > 350) || p > 500 
    my_AllRegions_ph = NaN;
    return
end
my0 = Ts ^ 0.5 / (1 + 0.978197 / Ts + 0.579829 / (Ts ^ 2) - 0.202354 / (Ts ^ 3));

Sum = 0;
for i = 0 : 5
    Sum = Sum + h0(i+1) * (1 / Ts - 1) ^ i + h1(i+1) * (1 / Ts - 1) ^ i * (rhos - 1) ^ 1 + h2(i+1) * (1 / Ts - 1) ^ i * (rhos - 1) ^ 2 + h3(i+1) * (1 / Ts - 1) ^ i * (rhos - 1) ^ 3 + h4(i+1) * (1 / Ts - 1) ^ i * (rhos - 1) ^ 4 + h5(i+1) * (1 / Ts - 1) ^ i * (rhos - 1) ^ 5 + h6(i+1) * (1 / Ts - 1) ^ i * (rhos - 1) ^ 6;
end
my1 = exp(rhos * Sum);
mys = my0 * my1;
my_AllRegions_ph = mys * 0.000055071;

%***********************************************************************************************************
%*5.2 Thermal Conductivity (IAPWS formulation 1985)
function tc_ptrho = tc_ptrho(  p,   T,   rho)
%Revised release on the IAPWS formulation 1985 for the Thermal Conductivity of ordinary water
%IAPWS September 1998
%Page 8
%ver2.6 Start corrected bug
 if T < 273.15
   tc_ptrho = NaN; %Out of range of validity (para. B4)
   return
 elseif T < 500 + 273.15
   if p > 100
     tc_ptrho = NaN; %Out of range of validity (para. B4)
     return
   end
 elseif T <= 650 + 273.15
   if p > 70
     tc_ptrho = NaN; %Out of range of validity (para. B4)
     return
   end
 else T <= 800 + 273.15
   if p > 40
      tc_ptrho = NaN; %Out of range of validity (para. B4)
      return
   end
 end
%ver2.6 End corrected bug
T = T / 647.26;
rho = rho / 317.7;
tc0 = T ^ 0.5 * (0.0102811 + 0.0299621 * T + 0.0156146 * T ^ 2 - 0.00422464 * T ^ 3);
tc1 = -0.39707 + 0.400302 * rho + 1.06 * exp(-0.171587 * (rho + 2.39219) ^ 2);
dT = abs(T - 1) + 0.00308976;
Q = 2 + 0.0822994 / dT ^ (3 / 5);
if T >= 1 
    s = 1 / dT;
else
    s = 10.0932 / dT ^ (3 / 5);
end
tc2 = (0.0701309 / T ^ 10 + 0.011852) * rho ^ (9 / 5) * exp(0.642857 * (1 - rho ^ (14 / 5))) + 0.00169937 * s * rho ^ Q * exp((Q / (1 + Q)) * (1 - rho ^ (1 + Q))) - 1.02 * exp(-4.11717 * T ^ (3 / 2) - 6.17937 / rho ^ 5);
tc_ptrho = tc0 + tc1 + tc2;

%***********************************************************************************************************
%5.3 Surface Tension
function Surface_Tension_T = Surface_Tension_T(  T)
%IAPWS Release on Surface Tension of Ordinary Water Substance,
%September 1994
tc = 647.096; %K
B = 0.2358;    %N/m
bb = -0.625;
my = 1.256;
if T < 0.01 || T > tc 
    Surface_Tension_T = NaN; %"Out of valid region"
    return
end
tau = 1 - T / tc;
Surface_Tension_T = B * tau ^ my * (1 + bb * tau);


%***********************************************************************************************************
%*6 Units                                                                                      *
%***********************************************************************************************************
function toSIunit_p = toSIunit_p( Ins )
%Translate bar to MPa
toSIunit_p = Ins / 10;
function fromSIunit_p = fromSIunit_p( Ins )
%Translate bar to MPa
fromSIunit_p = Ins * 10;
function toSIunit_T = toSIunit_T( Ins )
%Translate degC to Kelvon
toSIunit_T = Ins + 273.15;
function fromSIunit_T = fromSIunit_T( Ins )
%Translate Kelvin to degC
fromSIunit_T = Ins - 273.15;
function toSIunit_h = toSIunit_h( Ins )
toSIunit_h = Ins;
function  fromSIunit_h = fromSIunit_h( Ins )
fromSIunit_h = Ins;
function toSIunit_v = toSIunit_v( Ins )
toSIunit_v = Ins;
function fromSIunit_v = fromSIunit_v( Ins )
fromSIunit_v = Ins;
function toSIunit_s = toSIunit_s( Ins )
toSIunit_s = Ins;
function fromSIunit_s = fromSIunit_s( Ins )
fromSIunit_s = Ins;
function toSIunit_u = toSIunit_u( Ins )
toSIunit_u = Ins;
function fromSIunit_u = fromSIunit_u( Ins )
fromSIunit_u = Ins;
function toSIunit_Cp = toSIunit_Cp( Ins )
toSIunit_Cp = Ins;
function fromSIunit_Cp = fromSIunit_Cp( Ins )
fromSIunit_Cp = Ins;
function toSIunit_Cv = toSIunit_Cv( Ins )
toSIunit_Cv = Ins;
function fromSIunit_Cv = fromSIunit_Cv( Ins )
fromSIunit_Cv = Ins;
function toSIunit_w = toSIunit_w( Ins )
toSIunit_w = Ins;
function fromSIunit_w = fromSIunit_w( Ins )
fromSIunit_w = Ins;
function toSIunit_tc = toSIunit_tc( Ins )
toSIunit_tc = Ins;
function fromSIunit_tc = fromSIunit_tc( Ins )
fromSIunit_tc = Ins;
function toSIunit_st = toSIunit_st( Ins )
toSIunit_st = Ins;
function fromSIunit_st = fromSIunit_st( Ins )
fromSIunit_st = Ins;
function toSIunit_x = toSIunit_x( Ins )
toSIunit_x = Ins;
function fromSIunit_x = fromSIunit_x( Ins )
fromSIunit_x = Ins;
function toSIunit_vx = toSIunit_vx( Ins )
toSIunit_vx = Ins;
function fromSIunit_vx = fromSIunit_vx( Ins )
fromSIunit_vx = Ins;
function toSIunit_my = toSIunit_my( Ins )
toSIunit_my = Ins;
function fromSIunit_my = fromSIunit_my( Ins )
fromSIunit_my = Ins;

%***********************************************************************************************************
%*7 Verification                                                                                      *
%***********************************************************************************************************

function err = check()
err=0;
%*********************************************************************************************************
%* 7.1 Verifiy region 1
%IF-97 Table 5, Page 9
p=[30/10,800/10,30/10];
T=[300,300,500];
Fun={'v1_pT','h1_pT','u1_pT','s1_pT','Cp1_pT','w1_pT'};
IF97=[0.00100215168,0.000971180894,0.001202418;...
        115.331273,184.142828,975.542239;...
        112.324818,106.448356,971.934985;...
        0.392294792,0.368563852,2.58041912;...
        4.17301218,4.01008987,4.65580682;...
        1507.73921,1634.69054,1240.71337];
R1=zeros(6,3);
for i=1:3
    for j=1:6
        R1(j,i)=eval([char(Fun(j)),'(',num2str(p(i)),',',num2str(T(i)),');']);
    end
end
Region1_error=abs((R1-IF97)./IF97)
err=err+sum(sum(Region1_error>1E-8))

%IF-97 Table 7, Page 11
p=[30/10,800/10,800/10];
h=[500,500,1500];
IF97=[391.798509,378.108626,611.041229];
R1=zeros(1,3);
for i=1:3
    R1(i)=T1_ph(p(i),h(i));
end
T1_ph_error=abs((R1-IF97)./IF97)
err=err+sum(sum(T1_ph_error>1E-8))

%IF-97 Table 9, Page 12
p=[30/10,800/10,800/10];
s=[0.5,0.5,3];
IF97=[307.842258,309.979785,565.899909];
R1=zeros(1,3);
for i=1:3
    R1(i)=T1_ps(p(i),s(i));
end
T1_ps_error=abs((R1-IF97)./IF97)
err=err+sum(sum(T1_ps_error>1E-8))

%Supplementary Release on Backward Equations 
%for Pressure as a Function of Enthalpy and Entropy p(h,s) 
%Table 3, Page 6
h=[0.001,90,1500];
s=[0,0,3.4];
IF97=[0.0009800980612,91.929547272,58.68294423];
R1=zeros(1,3);
for i=1:3
    R1(i)=p1_hs(h(i),s(i));
end
p1_hs_error=abs((R1-IF97)./IF97)
err=err+sum(sum(p1_hs_error>1E-8))

%*********************************************************************************************************
%* 7.2 Verifiy region 2
% IF-97 Table 15, Page 17
p=[0.035/10,0.035/10,300/10];
T=[300,700,700];
Fun={'v2_pT','h2_pT','u2_pT','s2_pT','Cp2_pT','w2_pT'};
IF97=[39.4913866,92.3015898,0.00542946619;...
        2549.91145,3335.68375,2631.49474;...
        2411.6916,3012.62819,2468.61076;...
        8.52238967,10.1749996,5.17540298;...
        1.91300162,2.08141274,10.3505092;...
        427.920172,644.289068,480.386523];
R2=zeros(6,3);
for i=1:3
    for j=1:6
        R2(j,i)=eval([char(Fun(j)),'(',num2str(p(i)),',',num2str(T(i)),');']);
    end
end
Region2_error=abs((R2-IF97)./IF97)
err=err+sum(sum(Region2_error>1E-8))

%IF-97 Table 24, Page 25
p=[0.01/10,30/10,30/10,50/10,50/10,250/10,400/10,600/10,600/10];
h=[3000,3000,4000,3500,4000,3500,2700,2700,3200];
IF97=[534.433241,575.37337,1010.77577,801.299102,1015.31583,875.279054,743.056411,791.137067,882.75686];
R2=zeros(1,9);
for i=1:9
    R2(i)=T2_ph(p(i),h(i));
end
T2_ph_error=abs((R2-IF97)./IF97)
err=err+sum(sum(T2_ph_error>1E-8))

%IF-97 Table 29, Page 29
p=[1/10,1/10,25/10,80/10,80/10,900/10,200/10,800/10,800/10];
s=[7.5,8,8,6,7.5,6,5.75,5.25,5.75];
IF97=[399.517097,514.127081,1039.84917,600.48404,1064.95556,1038.01126,697.992849,854.011484,949.017998];
R2=zeros(1,9);
for i=1:9
    R2(i)=T2_ps(p(i),s(i));
end
T2_ps_error=abs((R2-IF97)./IF97)
err=err+sum(sum(T2_ps_error>1E-8))

%Supplementary Release on Backward Equations for Pressure as a Function of Enthalpy and Entropy p(h,s) 
%Table 3, Page 6
h=[2800,2800,4100,2800,3600,3600,2800,2800,3400];
s=[6.5,9.5,9.5,6,6,7,5.1,5.8,5.8];
IF97=[1.371012767,0.001879743844,0.1024788997,4.793911442,83.95519209,7.527161441,94.3920206,8.414574124,83.76903879];
R2=zeros(1,9);
for i=1:9
    R2(i)=p2_hs(h(i),s(i));
end
p2_hs_error=abs((R2-IF97)./IF97)
err=err+sum(sum(p2_hs_error>1E-8))

%*********************************************************************************************************
%* 7.3 Verifiy region 3
% IF-97 Table 33, Page 32
T=[650,650,750];
rho=[500,200,500];
Fun={'p3_rhoT','h3_rhoT','u3_rhoT','s3_rhoT','Cp3_rhoT','w3_rhoT'};
IF97=[25.5837018,22.2930643,78.3095639;...
        1863.43019,2375.12401,2258.68845;...
        1812.26279,2263.65868,2102.06932;...
        4.05427273,4.85438792,4.46971906;...
        13.8935717,44.6579342,6.34165359;...
        502.005554,383.444594,760.696041];
R3=zeros(6,3);
for i=1:3
    for j=1:6
        R3(j,i)=eval([char(Fun(j)),'(',num2str(rho(i)),',',num2str(T(i)),');']);
    end
end
Region3_error=abs((R3-IF97)./IF97)
err=err+sum(sum(Region3_error>1E-8))

%T3_ph
p=[200/10,500/10,1000/10,200/10,500/10,1000/10];
h=[1700,2000,2100,2500,2400,2700];
IF97=[629.3083892,690.5718338,733.6163014,641.8418053,735.1848618,842.0460876];
R3=zeros(1,6);
for i=1:6
    R3(i)=T3_ph(p(i),h(i));
end
T3_ph_error=abs((R3-IF97)./IF97)
err=err+sum(sum(T3_ph_error>1E-8))

%v3_ph
p=[200/10,500/10,1000/10,200/10,500/10,1000/10];
h=[1700,2000,2100,2500,2400,2700];
IF97=[0.001749903962,0.001908139035,0.001676229776,0.006670547043,0.0028012445,0.002404234998];
R3=zeros(1,6);
for i=1:6
    R3(i)=v3_ph(p(i),h(i));
end
v3_ph_error=abs((R3-IF97)./IF97)
err=err+sum(sum(v3_ph_error>1E-7))

%T3_ps
p=[200/10,500/10,1000/10,200/10,500/10,1000/10];
s=[3.7,3.5,4,5,4.5,5];
IF97=[620.8841563,618.1549029,705.6880237,640.1176443,716.3687517,847.4332825];
R3=zeros(1,6);
for i=1:6
    R3(i)=T3_ps(p(i),s(i));
end
T3_ps_error=abs((R3-IF97)./IF97)
err=err+sum(sum(T3_ps_error>1E-8))

%v3_ps
p=[200/10,500/10,1000/10,200/10,500/10,1000/10];
s=[3.7,3.5,4,5,4.5,5];
IF97=[0.001639890984,0.001423030205,0.001555893131,0.006262101987,0.002332634294,0.002449610757];
R3=zeros(1,6);
for i=1:6
    R3(i)=v3_ps(p(i),s(i));
end
v3_ps_error=abs((R3-IF97)./IF97)
err=err+sum(sum(v3_ps_error>1E-8))

%p3_hs
h=[1700,2000,2100,2500,2400,2700];
s=[3.8,4.2,4.3,5.1,4.7,5];
IF97=[25.55703246,45.40873468,60.7812334,17.20612413,63.63924887,88.39043281];
R3=zeros(1,6);
for i=1:6
    R3(i)=p3_hs(h(i),s(i));
end
p3_hs_error=abs((R3-IF97)./IF97)
err=err+sum(sum(p3_hs_error>1E-8))

%h3_pT (Iteration)
p=[255.83702,222.93064,783.09564]./10;
T=[650,650,750];
IF97=[1863.271389,2375.696155,2258.626582];
R3=zeros(1,3);
for i=1:3
    R3(i)=h3_pT(p(i),T(i));
end
h3_pT_error=abs((R3-IF97)./IF97)
err=err+sum(sum(h3_pT_error>1E-6)) %Decimals in IF97

%*********************************************************************************************************
%* 7.4 Verifiy region 4
%Saturation pressure, If97, Table 35, Page 34
T=[300,500,600];
IF97=[0.0353658941, 26.3889776, 123.443146]/10;
R3=zeros(1,3);
for i=1:3
    R4(i)=p4_T(T(i));
end
p4_t_error=abs((R4-IF97)./IF97)
err=err+sum(sum( p4_t_error>1E-7))

T=[1,10,100]/10;
IF97=[372.755919,453.035632,584.149488];
R3=zeros(1,3);
for i=1:3
    R4(i)=T4_p(T(i));
end
T4_p_error=abs((R4-IF97)./IF97)
err=err+sum(sum( T4_p_error>1E-7))

s=[1,2,3,3.8,4,4.2,7,8,9,5.5,5,4.5];
IF97=[308.5509647,700.6304472,1198.359754,1685.025565,1816.891476,1949.352563,2723.729985,2599.04721,2511.861477,2687.69385,2451.623609,2144.360448];
R3=zeros(1,12);
for i=1:12
    R4(i)=h4_s(s(i));
end
h4_s_error=abs((R4-IF97)./IF97)
err=err+sum(sum( h4_s_error>1E-7)) 

%*********************************************************************************************************
%* 7.5 Verifiy region 5
% IF-97 Table 42, Page 39
T=[1500,1500,2000];
p=[5,80,80]/10;
Fun={'v5_pT','h5_pT','u5_pT','s5_pT','Cp5_pT','w5_pT'};
IF97=[1.38455354,0.0865156616,0.115743146;...
        5219.76332,5206.09634,6583.80291;...
        4527.48654,4513.97105,5657.85774;...
        9.65408431,8.36546724,9.15671044;...
        2.61610228,2.64453866,2.8530675;...
        917.071933,919.708859,1054.35806];
R5=zeros(6,3);
for i=1:3
    for j=1:6
        R5(j,i)=eval([char(Fun(j)),'(',num2str(p(i)),',',num2str(T(i)),');']);
    end
end
Region5_error=abs((R5-IF97)./IF97)
err=err+sum(sum(Region5_error>1E-8))

%T5_ph (Iteration)
p=[0.5,8,8];
h=[5219.76331549428,5206.09634477373,6583.80290533381];
IF97=[1500,1500,2000];
R5=zeros(1,3);
for i=1:3
    R5(i)=T5_ph(p(i),h(i));
end
T5_ph_error=abs((R5-IF97)./IF97)
err=err+sum(sum(T5_ph_error>1E-7)) %Decimals in IF97

%T5_ps (Iteration)
p=[0.5,8,8];
s=[9.65408430982588,8.36546724495503,9.15671044273249];
IF97=[1500,1500,2000];
R5=zeros(1,3);
for i=1:3
    R5(i)=T5_ps(p(i),s(i));
end
T5_ps_error=abs((R5-IF97)./IF97)
err=err+sum(sum(T5_ps_error>1E-4)) %Decimals in IF97

%*********************************************************************************************************
%* 7.6 Verifiy calling funtions

fun={'Tsat_p','T_ph','T_ps','T_hs','psat_T','p_hs','hV_p','hL_p','hV_T','hL_T','h_pT','h_ps','h_px','h_prho','h_Tx','vV_p','vL_p','vV_T','vL_T','v_pT','v_ph','v_ps','rhoV_p','rhoL_p','rhoV_T','rhoL_T','rho_pT','rho_ph','rho_ps','sV_p','sL_p','sV_T','sL_T','s_pT','s_ph','uV_p','uL_p','uV_T','uL_T','u_pT','u_ph','u_ps','CpV_p','CpL_p','CpV_T','CpL_T','Cp_pT','Cp_ph','Cp_ps','CvV_p','CvL_p','CvV_T','CvL_T','Cv_pT','Cv_ph','Cv_ps','wV_p','wL_p','wV_T','wL_T','w_pT','w_ph','w_ps','my_pT','my_ph','my_ps','tcL_p','tcV_p','tcL_T','tcV_T','tc_pT','tc_ph','tc_hs','st_T','st_p','x_ph','x_ps','vx_ph','vx_ps'};
In1={'1','1','1','100','100','84','1','1','100','100','1','1','1','1','100','1','1','100','100','1','1','1','1','1','100','100','1','1','1','0.006117','0.0061171','0.0001','100','1','1','1','1','100','100','1','1','1','1','1','100','100','1','1','1','1','1','100','100','1','1','1','1','1','100','100','1','1','1','1','1','1','1','1','25','25','1','1','100','100','1','1','1','1','1'};
In2={'0','100','1','0.2','0','0.296','0','0','0','0','20','1','0.5','2','0.5','0','0','0','0','100','1000','5','0','0','0','0','100','1000','1','0','0','0','0','20','84.01181117','0','0','0','0','100','1000','1','0','0','0','0','100','200','1','0','0','0','0','100','200','1','0','0','0','0','100','200','1','100','100','1','0','0','0','0','25','100','0.34','0','0','1000','4','418','4'};
Control={'99.60591861','23.84481908','73.70859421','13.84933511','1.014179779','2.295498269','2674.949641','417.4364858','2675.572029','419.099155','84.01181117','308.6107171','1546.193063','1082.773391','1547.33559210927','1.694022523','0.001043148','1.671860601','0.001043455','1.695959407','0.437925658','1.03463539','0.590310924','958.6368897','0.598135993','958.3542773','0.589636754','2.283492601','975.6236788','9.155465556','1.8359E-05','9.155756716','1.307014328','0.296482921','0.296813845','2505.547389','417.332171','2506.015308','418.9933299','2506.171426','956.2074342','308.5082185','2.075938025','4.216149431','2.077491868','4.216645119','2.074108555','4.17913573168802','4.190607038','1.552696979','3.769699683','1.553698696','3.76770022','1.551397249','4.035176364','3.902919468','472.0541571','1545.451948','472.2559492','1545.092249','472.3375235','1542.682475','1557.8585','1.22704E-05','0.000914003770302108','0.000384222','0.677593822','0.024753668','0.607458162','0.018326723','0.607509806','0.605710062','0.606283124','0.0589118685876641','0.058987784','0.258055424','0.445397961','0.288493093','0.999233827'};

for i=1:length(fun)
    
    T=['XSteam(''',char(fun(i)),''',',char(In1(i)),',',char(In2(i)),')'];
    Res=eval(T);
    Error=(Res-(str2num(char(Control(i)))))/str2num(char(Control(i)));
    Check=[T,'=',num2str(Res),' - (Control)',char(Control(i)),'=',num2str(Error)]
    if Error>1E-5
        err=err+1;
        error('To large error')
    end   
end