1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
use indextree::NodeEdge as IndexTreeNodeEdge;
use crate::error::Error;
use crate::levelorder::{level_order_traverse, LevelOrder};
use crate::nodemap::{category_predicate, Attributes, Namespaces};
use crate::xmlvalue::{Value, ValueCategory, ValueType};
use crate::xotdata::{Node, Xot};
use crate::{MutableAttributes, MutableNamespaces, Prefixes};
/// Traversal axis.
///
/// This can be used with `[Xot::Axis]` to traverse the tree in different ways.
///
/// The axis behaviors are based on the XPath specification.
///
/// Note that the namespace axis is not supported; it's tricky to support as it
/// includes all namespace nodes in scope of an element, not just those
/// namespaces defined on that element, and has not been a requirement since
/// XPath 2.0.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub enum Axis {
/// The children of the node. Equivalent to [`Xot::children`].
Child,
/// The descendants of the node, without the current node itself.
Descendant,
/// The parent of the node, or an empty iterator.
Parent,
/// The ancestors of the node, without the current node itself.
Ancestor,
/// The siblings following the node, without the current sibling.
/// Equivalent to [`Xot::following_siblings`].
FollowingSibling,
/// The siblings preceding the node, without the current sibling.
/// Equivalent to [`Xot::preceding_siblings`].
PrecedingSibling,
/// The nodes following the node. Equivalent to [`Xot::following`].
Following,
/// The nodes preceding the node. Equivalent to [`Xot::preceding`].
Preceding,
/// The attributes nodes of this node. Equivalent to [`Xot::attribute_nodes`].
Attribute,
/// The node itself as an iterator.
Self_,
/// The node and its descendants, in document order. Equivalent to
/// [`Xot::descendants`].
DescendantOrSelf,
/// The node and its ancestors. Equivalent to [`Xot::ancestors`].
AncestorOrSelf,
}
/// Node edges.
///
/// Used by [`Xot::traverse`] and [`Xot::reverse_traverse`].
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub enum NodeEdge {
/// The start edge of a node. In case of an element
/// this is the start tag. In case of document this is
/// the start of the document.
Start(Node),
/// The end edge of a node. In case of an element
/// this is the end tag. In case of document this is the end
/// of the document. For any other values, the
/// end edge occurs immediately after the start
/// edge.
End(Node),
}
/// ## Read-only access
///
/// These are functions that provide read-only access to the tree.
impl Xot {
/// Obtain the document element from the document node.
///
/// Returns [`Error::NotDocument`](`crate::error::Error::NotDocument`) error if
/// this is not the document node.
///
/// ```rust
/// let mut xot = xot::Xot::new();
///
/// let doc = xot.parse("<p>Example</p>").unwrap();
///
/// let doc_el = xot.document_element(doc).unwrap();
///
/// // Check that we indeed have the `p` element
/// let p_name = xot.name("p").unwrap();
/// assert_eq!(xot.element(doc_el).unwrap().name(), p_name);
/// ```
pub fn document_element(&self, node: Node) -> Result<Node, Error> {
if self.value_type(node) != ValueType::Document {
return Err(Error::NotDocument(node));
}
for child in self.children(node) {
if let Value::Element(_) = self.value(child) {
return Ok(child);
}
}
unreachable!("Document should always have a single document node")
}
/// Obtain top element, given node anywhere in a tree.
///
/// In an XML document this is the document element.
/// In an XML fragment it's the top node of the
/// fragment.
pub fn top_element(&self, node: Node) -> Node {
if self.value_type(node) == ValueType::Document {
return self.document_element(node).unwrap();
}
let mut top = node;
for ancestor in self.ancestors(node) {
if let Value::Element(_) = self.value(ancestor) {
top = ancestor;
}
}
// XXX in a fragment this may not be an element.
top
}
/// Obtain root of the tree.
///
/// This is the document node if possible, but if this is a fragment,
/// it is the root of the fragment.
pub fn root(&self, node: Node) -> Node {
self.ancestors(node).last().unwrap()
}
/// Check whether a node has been removed.
///
/// This can happen because you removed it explicitly, or because you held
/// on to a reference and the node was replaced using [`Xot::replace`], or
/// unwrapped using [`Xot::element_unwrap`].
///
/// ```rust
/// let mut xot = xot::Xot::new();
///
/// let root = xot.parse("<p>Example</p>").unwrap();
/// let p = xot.document_element(root).unwrap();
/// let text = xot.first_child(p).unwrap();
/// xot.remove(text);
/// assert_eq!(xot.to_string(root).unwrap(), "<p/>");
/// assert!(xot.is_removed(text));
/// ```
pub fn is_removed(&self, node: Node) -> bool {
self.arena()[node.get()].is_removed()
}
/// Get parent node.
///
/// Returns [`None`] if this is the document node or if the node is
/// unattached to a document.
///
/// Attribute and namespace nodes have a parent, even though they aren't
/// children of the element they are in.
///
/// ```rust
/// let mut xot = xot::Xot::new();
/// let root = xot.parse("<p>Example</p>").unwrap();
/// let p = xot.document_element(root).unwrap();
/// let text = xot.first_child(p).unwrap();
/// assert_eq!(xot.parent(text), Some(p));
/// assert_eq!(xot.parent(p), Some(root));
/// assert_eq!(xot.parent(root), None);
/// ```
pub fn parent(&self, node: Node) -> Option<Node> {
self.arena()[node.get()].parent().map(Node::new)
}
pub(crate) fn all_children(&self, node: Node) -> impl Iterator<Item = Node> + '_ {
node.get().children(&self.arena).map(Node::new)
}
fn normal_children(&self, node: Node) -> impl Iterator<Item = Node> + '_ {
node.get()
.children(&self.arena)
.skip_while(|n| !self.arena[*n].get().is_normal())
.map(Node::new)
}
/// Attributes accessor.
///
/// Returns a map of [`crate::NameId`] to a String reference representing the
/// attributes on the element.
///
/// Note that if this is called on a non-element node, you get an empty
/// map.
///
/// ```rust
/// let mut xot = xot::Xot::new();
/// let a = xot.add_name("a");
/// let root = xot.parse(r#"<p a="A">Example</p>"#).unwrap();
/// let p = xot.document_element(root).unwrap();
/// let attributes = xot.attributes(p);
///
/// assert_eq!(attributes.get(a), Some(&"A".to_string()));
/// ```
pub fn attributes(&self, node: Node) -> Attributes {
Attributes::new(self, node)
}
/// Namespaces accessor.
///
/// Returns a map of [`crate::PrefixId`] to [`crate::NamespaceId`] representing
/// the namespace declarations on the element.
///
/// Note that if this is called on a non-element node, you get an empty
/// map.
///
/// ```rust
/// let mut xot = xot::Xot::new();
/// let foo_prefix = xot.add_prefix("foo");
/// let foo_ns = xot.add_namespace("FOO");
/// let root = xot.parse(r#"<p xmlns:foo="FOO">Example</p>"#).unwrap();
/// let p = xot.document_element(root).unwrap();
/// let namespaces = xot.namespaces(p);
///
/// assert_eq!(namespaces.get(foo_prefix), Some(&foo_ns));
/// ```
pub fn namespaces(&self, node: Node) -> Namespaces {
Namespaces::new(self, node)
}
/// Copy the namespace declarations as a prefixes hash table.
///
/// Sometimes it's more convenient to work with a hash table of
/// prefixes as opposed to the dynamic [`Xot::namespaces`] node map.
pub fn prefixes(&self, node: Node) -> Prefixes {
let mut prefixes = Prefixes::new();
for (prefix, ns) in self.namespaces(node).iter() {
prefixes.insert(prefix, *ns);
}
prefixes
}
/// Mutable namespaces accessor.
///
/// Panics if called on a non-element.
///
/// Use this to set namespace prefix declarations on an element. You use a
/// hashmap-like API:
///
/// ```rust
/// let mut xot = xot::Xot::new();
/// let foo_prefix = xot.add_prefix("foo");
/// let foo_ns = xot.add_namespace("FOO");
/// let root = xot.parse(r#"<p>Example</p>"#).unwrap();
/// let p = xot.document_element(root).unwrap();
/// let mut namespaces = xot.namespaces_mut(p);
/// namespaces.insert(foo_prefix, foo_ns);
///
/// assert_eq!(xot.to_string(root).unwrap(), r#"<p xmlns:foo="FOO">Example</p>"#);
/// ```
pub fn namespaces_mut(&mut self, node: Node) -> MutableNamespaces {
if !self.is_element(node) {
panic!("Node is not an element, so cannot set namespaces");
}
MutableNamespaces::new(self, node)
}
/// Mutable attributes accessor
///
/// Panics if called on a non-element.
///
/// Use this if you want to set an attribute on an element. You use a
/// hashmap-like API:
///
/// ```rust
/// let mut xot = xot::Xot::new();
/// let a = xot.add_name("a");
/// let root = xot.parse(r#"<p>Example</p>"#).unwrap();
/// let p = xot.document_element(root).unwrap();
/// let mut attributes = xot.attributes_mut(p);
/// attributes.insert(a, "A".to_string());
///
/// assert_eq!(xot.to_string(root).unwrap(), r#"<p a="A">Example</p>"#);
/// ```
pub fn attributes_mut(&mut self, node: Node) -> MutableAttributes {
if !self.is_element(node) {
panic!("Node is not an element, so cannot set attributes");
}
MutableAttributes::new(self, node)
}
/// Access the attribute nodes directly.
pub fn attribute_nodes(&self, node: Node) -> impl Iterator<Item = Node> + '_ {
self.all_children(node)
.skip_while(category_predicate(self, ValueCategory::Namespace))
.take_while(category_predicate(self, ValueCategory::Attribute))
}
/// Get first child.
///
/// Returns [`None`] if there are no children.
///
/// ```rust
/// let mut xot = xot::Xot::new();
/// let root = xot.parse("<p>Example</p>").unwrap();
/// let p = xot.document_element(root).unwrap();
/// let text = xot.first_child(p).unwrap();
/// assert_eq!(xot.first_child(root), Some(p));
/// assert_eq!(xot.first_child(p), Some(text));
/// assert_eq!(xot.first_child(text), None);
/// ```
pub fn first_child(&self, node: Node) -> Option<Node> {
self.normal_children(node).next()
}
/// Get last child.
///
/// Returns [`None`] if there are no children.
pub fn last_child(&self, node: Node) -> Option<Node> {
let last_child = self.arena[node.get()].last_child()?;
if self.arena[last_child].get().is_normal() {
Some(Node::new(last_child))
} else {
None
}
}
/// Get next sibling.
///
/// Returns [`None`] if there is no next sibling.
///
/// For normal child nodes, gives the next child.
///
/// For namespace and attribute nodes, gives the next namespace or
/// attribute in definition order.
///
/// ```rust
/// let mut xot = xot::Xot::new();
/// let root = xot.parse("<p><a/><b/></p>").unwrap();
/// let p = xot.document_element(root).unwrap();
/// let a = xot.first_child(p).unwrap();
/// let b = xot.next_sibling(a).unwrap();
/// assert_eq!(xot.next_sibling(b), None);
/// ```
pub fn next_sibling(&self, node: Node) -> Option<Node> {
let current_category = self.arena[node.get()].get().value_category();
let next_sibling = self.arena[node.get()].next_sibling()?;
let next_category = self.arena[next_sibling].get().value_category();
if current_category != next_category {
return None;
}
Some(Node::new(next_sibling))
}
/// Get previous sibling.
///
/// Returns [`None`] if there is no previous sibling.
pub fn previous_sibling(&self, node: Node) -> Option<Node> {
let current_category = self.arena[node.get()].get().value_category();
let previous_sibling = self.arena[node.get()].previous_sibling()?;
let previous_category = self.arena[previous_sibling].get().value_category();
if current_category != previous_category {
return None;
}
Some(Node::new(previous_sibling))
}
/// Iterator over ancestor nodes, including this one.
///
/// Namespace and attribute node have ancestors, even though
/// they aren't the child of the element they are in.
///
/// ```rust
/// let mut xot = xot::Xot::new();
///
/// let root = xot.parse("<a><b><c/></b></a>").unwrap();
/// let a = xot.document_element(root).unwrap();
/// let b = xot.first_child(a).unwrap();
/// let c = xot.first_child(b).unwrap();
///
/// let ancestors = xot.ancestors(c).collect::<Vec<_>>();
/// assert_eq!(ancestors, vec![c, b, a, root]);
/// ```
pub fn ancestors(&self, node: Node) -> impl Iterator<Item = Node> + '_ {
node.get().ancestors(self.arena()).map(Node::new)
}
/// Iterator over the child nodes of this node.
///
/// Namespace and attribute nodes aren't consider child nodes even
/// if they have a parent element.
///
/// ```rust
/// let mut xot = xot::Xot::new();
/// let root = xot.parse("<p><a/><b/></p>").unwrap();
/// let p = xot.document_element(root).unwrap();
/// let a = xot.first_child(p).unwrap();
/// let b = xot.next_sibling(a).unwrap();
/// let children = xot.children(p).collect::<Vec<_>>();
///
/// assert_eq!(children, vec![a, b]);
/// ```
pub fn children(&self, node: Node) -> impl Iterator<Item = Node> + '_ {
self.normal_children(node)
}
/// Get index of child.
///
/// Returns [`None`] if the node is not a child of this node, so
/// does not apply to namespace or attribute nodes.
///
/// ```rust
/// let mut xot = xot::Xot::new();
/// let root = xot.parse("<p><a/><b/></p>").unwrap();
/// let p = xot.document_element(root).unwrap();
/// let a = xot.first_child(p).unwrap();
/// let b = xot.next_sibling(a).unwrap();
/// assert_eq!(xot.child_index(p, a), Some(0));
/// assert_eq!(xot.child_index(p, b), Some(1));
/// assert_eq!(xot.child_index(a, b), None);
/// ```
pub fn child_index(&self, parent: Node, child: Node) -> Option<usize> {
if self.parent(child) != Some(parent) {
return None;
}
self.normal_children(parent).position(|n| n == child)
}
/// Iterator over the child nodes of this node, in reverse order.
pub fn reverse_children(&self, node: Node) -> impl Iterator<Item = Node> + '_ {
node.get()
.reverse_children(self.arena())
.take_while(|n| self.arena[*n].get().is_normal())
.map(Node::new)
}
fn normal_filter(&self) -> impl Fn(&indextree::NodeId) -> bool + '_ {
|node_id| self.arena[*node_id].get().is_normal()
}
fn normal_edge_filter(&self) -> impl Fn(&indextree::NodeEdge) -> bool + '_ {
move |edge| {
let node_id = match edge {
indextree::NodeEdge::Start(node_id) => node_id,
indextree::NodeEdge::End(node_id) => node_id,
};
self.arena[*node_id].get().is_normal()
}
}
fn category_filter(&self, category: ValueCategory) -> impl Fn(&indextree::NodeId) -> bool + '_ {
move |node_id| self.arena[*node_id].get().value_category() == category
}
/// Iterator over of the descendants of this node,
/// including this one. In document order (pre-order depth-first).
///
/// Namespace and attribute nodes aren't included as descendants.
///
/// ```rust
/// let mut xot = xot::Xot::new();
/// let root = xot.parse("<a><b><c/></b></a>").unwrap();
/// let a = xot.document_element(root).unwrap();
/// let b = xot.first_child(a).unwrap();
/// let c = xot.first_child(b).unwrap();
///
/// let descendants = xot.descendants(a).collect::<Vec<_>>();
/// assert_eq!(descendants, vec![a, b, c]);
/// ```
pub fn descendants(&self, node: Node) -> impl Iterator<Item = Node> + '_ {
node.get()
.descendants(self.arena())
.filter(self.normal_filter())
.map(Node::new)
}
/// All the descendants of this node.
///
/// This includes this one, and namespace and attribute nodes,
/// all in document order, where namespace nodes come before
/// attribute nodes and attribute nodes come before normal children
pub fn all_descendants(&self, node: Node) -> impl Iterator<Item = Node> + '_ {
node.get().descendants(self.arena()).map(Node::new)
}
/// Iterator over the following siblings of this node, including this one.
///
/// In case of namespace or attribute nodes, includes the following sibling
/// namespace or attribute nodes.
///
/// ```rust
/// let mut xot = xot::Xot::new();
/// let root = xot.parse("<p><a/><b/><c/></p>").unwrap();
/// let p = xot.document_element(root).unwrap();
/// let a = xot.first_child(p).unwrap();
/// let b = xot.next_sibling(a).unwrap();
/// let c = xot.next_sibling(b).unwrap();
/// let siblings = xot.following_siblings(a).collect::<Vec<_>>();
/// assert_eq!(siblings, vec![a, b, c]);
/// let siblings = xot.following_siblings(b).collect::<Vec<_>>();
/// assert_eq!(siblings, vec![b, c]);
/// ```
pub fn following_siblings(&self, node: Node) -> impl Iterator<Item = Node> + '_ {
let current_category = self.arena[node.get()].get().value_category();
node.get()
.following_siblings(self.arena())
.filter(self.category_filter(current_category))
.map(Node::new)
}
/// Iterator over the preceding siblings of this node.
pub fn preceding_siblings(&self, node: Node) -> impl Iterator<Item = Node> + '_ {
let current_category = self.arena[node.get()].get().value_category();
node.get()
.preceding_siblings(self.arena())
.filter(self.category_filter(current_category))
.map(Node::new)
}
/// Following nodes in document order
///
/// These are nodes that come after this node in document order,
/// without that node itself, its ancestors, or its descendants.
///
/// Does not include namespace or attribute nodes.
///
/// ```rust
/// let mut xot = xot::Xot::new();
/// let root = xot.parse("<p><a/><b><c/><d/><e/></b><f><g/><h/></f></p>").unwrap();
/// let p = xot.document_element(root).unwrap();
/// let a = xot.first_child(p).unwrap();
/// let b = xot.next_sibling(a).unwrap();
/// let c = xot.first_child(b).unwrap();
/// let d = xot.next_sibling(c).unwrap();
/// let e = xot.next_sibling(d).unwrap();
/// let f = xot.next_sibling(b).unwrap();
/// let g = xot.first_child(f).unwrap();
/// let h = xot.next_sibling(g).unwrap();
/// let siblings = xot.following(c).collect::<Vec<_>>();
/// assert_eq!(siblings, vec![d, e, f, g, h]);
/// ```
pub fn following(&self, node: Node) -> impl Iterator<Item = Node> + '_ {
// start with an empty iterator
let mut joined_iterator: Box<dyn Iterator<Item = Node>> = Box::new(std::iter::empty());
let mut current_parent = Some(node);
while let Some(parent) = current_parent {
let mut current_sibling = parent;
while let Some(current) = self.next_sibling(current_sibling) {
// add descendants of next sibling
joined_iterator =
Box::new(joined_iterator.chain(Box::new(self.descendants(current))));
current_sibling = current;
}
current_parent = self.parent(parent);
}
joined_iterator
}
/// Preceding nodes in document order
///
/// These are nodes that come before this node in document order,
/// without that node itself, its ancestors, or its descendants.
///
/// Does not include namespace or attribute nodes.
///
/// ```rust
/// let mut xot = xot::Xot::new();
/// let root = xot.parse("<p><a/><b><c/><d/><e/></b><f><g/><h/></f></p>").unwrap();
/// let p = xot.document_element(root).unwrap();
/// let a = xot.first_child(p).unwrap();
/// let b = xot.next_sibling(a).unwrap();
/// let c = xot.first_child(b).unwrap();
/// let d = xot.next_sibling(c).unwrap();
/// let e = xot.next_sibling(d).unwrap();
/// let f = xot.next_sibling(b).unwrap();
/// let g = xot.first_child(f).unwrap();
/// let h = xot.next_sibling(g).unwrap();
/// let siblings = xot.preceding(e).collect::<Vec<_>>();
/// assert_eq!(siblings, vec![d, c, a]);
/// let siblings = xot.preceding(h).collect::<Vec<_>>();
/// assert_eq!(siblings, vec![g, e, d, c, b, a]);
/// ```
pub fn preceding(&self, node: Node) -> impl Iterator<Item = Node> + '_ {
// start with an empty iterator
let mut joined_iterator: Box<dyn Iterator<Item = Node>> = Box::new(std::iter::empty());
let mut current_parent = Some(node);
while let Some(parent) = current_parent {
let mut current_sibling = parent;
while let Some(current) = self.previous_sibling(current_sibling) {
// add descendants of previous sibling, reversed
// this unfortunately requires an extra allocation, as descendants
// is not a double iterator.
let descendants = Box::new(self.descendants(current).collect::<Vec<_>>());
let reverse_descendants = descendants.into_iter().rev();
joined_iterator = Box::new(joined_iterator.chain(Box::new(reverse_descendants)));
current_sibling = current;
}
current_parent = self.parent(parent);
}
joined_iterator
}
/// Traverse over node edges.
///
/// This can be used to traverse the tree in document order iteratively
/// without the need for recursion, while getting structure information
/// (unlike [`Xot::descendants`] which doesn't retain structure
/// information).
///
/// For the tree `<a><b/></a>` this generates a [`NodeEdge::Start`] for
/// `<a>`, then a [`NodeEdge::Start`] for `<b>`, immediately followed by a
/// [`NodeEdge::End`] for `<b>`, and finally a [`NodeEdge::End`] for `<a>`.
///
/// For value types other than element or root, the start and end always
/// come as pairs without any intervening edges.
///
/// This does not include edges for namespace and attribute nodes.
///
/// ```rust
/// let mut xot = xot::Xot::new();
/// let root = xot.parse("<a><b>Text</b></a>").unwrap();
/// let a = xot.document_element(root).unwrap();
/// let b = xot.first_child(a).unwrap();
/// let text = xot.first_child(b).unwrap();
/// let edges = xot.traverse(a).collect::<Vec<_>>();
/// assert_eq!(edges, vec![
/// xot::NodeEdge::Start(a),
/// xot::NodeEdge::Start(b),
/// xot::NodeEdge::Start(text),
/// xot::NodeEdge::End(text),
/// xot::NodeEdge::End(b),
/// xot::NodeEdge::End(a),
/// ]);
/// ```
pub fn traverse(&self, node: Node) -> impl Iterator<Item = NodeEdge> + '_ {
node.get()
.traverse(self.arena())
.filter(self.normal_edge_filter())
.map(|edge| match edge {
IndexTreeNodeEdge::Start(node_id) => NodeEdge::Start(Node::new(node_id)),
IndexTreeNodeEdge::End(node_id) => NodeEdge::End(Node::new(node_id)),
})
}
/// Traverse nodes, including namespace and attribute nodes.
pub fn all_traverse(&self, node: Node) -> impl Iterator<Item = NodeEdge> + '_ {
node.get().traverse(self.arena()).map(|edge| match edge {
IndexTreeNodeEdge::Start(node_id) => NodeEdge::Start(Node::new(node_id)),
IndexTreeNodeEdge::End(node_id) => NodeEdge::End(Node::new(node_id)),
})
}
/// Traverse over node edges in reverse order.
///
/// Like [`Xot::traverse`] but in reverse order.
pub fn reverse_traverse(&self, node: Node) -> impl Iterator<Item = NodeEdge> + '_ {
node.get()
.reverse_traverse(self.arena())
.filter(self.normal_edge_filter())
.map(|edge| match edge {
IndexTreeNodeEdge::Start(node_id) => NodeEdge::Start(Node::new(node_id)),
IndexTreeNodeEdge::End(node_id) => NodeEdge::End(Node::new(node_id)),
})
}
/// Traverse over nodes in level order.
///
/// This is a breath first traversal, where each level is visited in turn.
/// Sequences of nodes with a different parent are separated by
/// [`LevelOrder::End`].
///
/// For the tree `<a><b><d/></b><c><e/></c></a>` this generates a
/// [`LevelOrder::Node`] for `<a>`, then a [`LevelOrder::End`]. Next, a
/// [`LevelOrder::Node`] for `<b/>` and `</c>` are generated, again
/// followed by a [`LevelOrder::End`]. Then a [`LevelOrder::Node`] is
/// generated for `<d/>`, followed by a [`LevelOrder::End`]. Finally a
/// [`LevelOrder::Node`] is generated for `<e/>`, followed by a
/// [`LevelOrder::End`].
///
/// This does not include namespace or attribute nodes.
///
/// ```rust
/// let mut xot = xot::Xot::new();
/// let root = xot.parse("<a><b><d/></b><c><e/></c></a>").unwrap();
/// let a = xot.document_element(root).unwrap();
/// let b = xot.first_child(a).unwrap();
/// let d = xot.first_child(b).unwrap();
/// let c = xot.next_sibling(b).unwrap();
/// let e = xot.first_child(c).unwrap();
///
/// let levels = xot.level_order(a).collect::<Vec<_>>();
/// assert_eq!(levels, vec![
/// xot::LevelOrder::Node(a),
/// xot::LevelOrder::End,
/// xot::LevelOrder::Node(b),
/// xot::LevelOrder::Node(c),
/// xot::LevelOrder::End,
/// xot::LevelOrder::Node(d),
/// xot::LevelOrder::End,
/// xot::LevelOrder::Node(e),
/// xot::LevelOrder::End,
/// ]);
/// ```
pub fn level_order(&self, node: Node) -> impl Iterator<Item = LevelOrder> + '_ {
level_order_traverse(self, node)
}
/// Axis-based traversal.
///
/// Use an [`crate::Axis`] to traverse the tree in a way defined by
/// XPath.
///
/// `<https://developer.mozilla.org/en-US/docs/Web/XPath/Axes>`
pub fn axis(&self, axis: Axis, node: Node) -> Box<dyn Iterator<Item = Node> + '_> {
use Axis::*;
match axis {
Child => Box::new(self.children(node)),
Descendant => {
let mut descendants = self.descendants(node);
// since this includes self we get rid of it here
descendants.next();
Box::new(descendants)
}
Parent => {
if let Some(parent) = self.parent(node) {
Box::new(std::iter::once(parent))
} else {
Box::new(std::iter::empty())
}
}
Ancestor => {
let parent = self.parent(node);
if let Some(parent) = parent {
// the ancestors of the parent include self, which is
// what we want as the parent is already taken
// We can't get a Node::Attribute or Node::Namespace
// because we just took the parent
Box::new(self.ancestors(parent))
} else {
Box::new(std::iter::empty())
}
}
FollowingSibling => {
let mut following = self.following_siblings(node);
// consume the self sibling
following.next();
Box::new(following)
}
PrecedingSibling => {
let mut preceding = self.preceding_siblings(node);
// consume the self sibling
preceding.next();
Box::new(preceding)
}
Following => Box::new(self.following(node)),
Preceding => Box::new(self.preceding(node)),
Axis::Self_ => Box::new(std::iter::once(node)),
DescendantOrSelf => Box::new(self.descendants(node)),
AncestorOrSelf => Box::new(self.ancestors(node)),
Attribute => Box::new(self.attribute_nodes(node)),
}
}
}