1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
use std::mem::zeroed;
use std::ops::*;
use vector::{Vector, Vector3};

pub type Row = [f32; 4];

#[derive(PartialEq, Clone, Debug)]
pub struct Matrix { m: [Row; 4] }

impl Matrix {
    pub fn zero() -> Self { unsafe { zeroed() } }

    pub fn new(
        m00: f32, m01: f32, m02: f32, m03: f32,
        m10: f32, m11: f32, m12: f32, m13: f32,
        m20: f32, m21: f32, m22: f32, m23: f32,
        m30: f32, m31: f32, m32: f32, m33: f32,
    ) -> Self {
        Matrix {
            m: [
                [ m00, m01, m02, m03 ],
                [ m10, m11, m12, m13 ],
                [ m20, m21, m22, m23 ],
                [ m30, m31, m32, m33 ],
            ]
        }
    }

    pub fn identity() -> Self {
        Matrix {
            m: [
                [1.0, 0.0, 0.0, 0.0],
                [0.0, 1.0, 0.0, 0.0],
                [0.0, 0.0, 1.0, 0.0],
                [0.0, 0.0, 0.0, 1.0],
            ]
        }
    }

    pub fn rotation_x(rad: f32) -> Self {
        let (sin, cos) = rad.sin_cos();

        Matrix {
            m: [
                [1.0,  0.0, 0.0, 0.0],
                [0.0,  cos, sin, 0.0],
                [0.0, -sin, cos, 0.0],
                [0.0,  0.0, 0.0, 1.0],
            ]
        }
    }

    pub fn rotation_y(rad: f32) -> Self {
        let (sin, cos) = rad.sin_cos();

        Matrix {
            m: [
                [cos, 0.0, -sin, 0.0],
                [0.0, 1.0,  0.0, 0.0],
                [sin, 0.0,  cos, 0.0],
                [0.0, 0.0,  0.0, 1.0],
            ]
        }
    }

    pub fn rotation_z(rad: f32) -> Self {
        let (sin, cos) = rad.sin_cos();

        Matrix {
            m: [
                [ cos, sin, 0.0, 0.0],
                [-sin, cos, 0.0, 0.0],
                [ 0.0, 0.0, 1.0, 0.0],
                [ 0.0, 0.0, 0.0, 1.0],
            ]
        }
    }

    pub fn orthographic(view_width: f32, view_height: f32, near_z: f32, far_z: f32) -> Self {
        // assert(!XMScalarNearEqual(ViewWidth, 0.0f, 0.00001f));
        // assert(!XMScalarNearEqual(ViewHeight, 0.0f, 0.00001f));
        // assert(!XMScalarNearEqual(FarZ, NearZ, 0.00001f));
        let f_range = 1.0/(near_z - far_z);
        Matrix {
            m: [
                [2.0/view_width, 0.0, 0.0, 0.0],
                [0.0, 2.0/view_height, 0.0, 0.0],
                [0.0, 0.0, f_range, 0.0],
                [0.0, 0.0, f_range*near_z, 1.0],
            ]
        }

    }

    pub fn orthographic_off_center(view_left: f32, view_right: f32, view_bottom: f32, view_top: f32, near_z: f32, far_z: f32) -> Self {
        // reciprocal width and height
        let r_width = 1.0/(view_right - view_left);
        let r_height = 1.0/(view_top - view_bottom);
        let range = 1.0/(near_z-far_z);

        Matrix {
            m: [
                [r_width + r_width, 0.0, 0.0, 0.0],
                [0.0, r_height + r_height, 0.0, 0.0],
                [0.0, 0.0, range, 0.0],
                [-(view_left + view_right)*r_width, -(view_top + view_bottom)*r_height, range*near_z, 1.0],
            ]
        }
    }

    pub fn look_at(eye: Vector3, focus: Vector3, up: Vector3) -> Self {
        Self::look_to(eye, focus - eye, up)
    }

    pub fn look_to(eye: Vector3, dir: Vector3, up: Vector3) -> Self {
        assert!(dir != Vector3::zero());
        assert!(!dir.is_infinite());
        assert!(up != Vector3::zero());
        assert!(!up.is_infinite());

        let neg_eye = -eye;
        let neg_dir = -dir;

        let r2 = neg_dir.normalize();
        let r0 = up.cross(&r2).normalize();
        let r1 = r2.cross(&r0);

        let d0 = r0.dot(&neg_eye);
        let d1 = r1.dot(&neg_eye);
        let d2 = r2.dot(&neg_eye);

        Matrix {
            m: [
                [r0.x, r1.x, r2.x, 0.0],
                [r0.y, r1.y, r2.y, 0.0],
                [r0.z, r1.z, r2.z, 0.0],
                [d0,   d1,   d2,   1.0],
            ]
        }
    }

    pub fn perspective(width: f32, height: f32, near_z: f32, far_z: f32) -> Self {
        let two_near_z = near_z + near_z;
        let range = far_z/(near_z - far_z);

        Matrix {
            m: [
                [two_near_z/width, 0.0, 0.0, 0.0],
                [0.0, two_near_z/height, 0.0, 0.0],
                [0.0, 0.0, range, -1.0],
                [0.0, 0.0, range*near_z, 0.0],
            ]
        }
    }

    /// aspect: Width / Height
    pub fn perspective_fov(fov: f32, aspect: f32, near_z: f32, far_z: f32) -> Self {
        let (sin, cos) = (0.5 * fov).sin_cos();
        let f = cos/sin;
        let range = far_z/(near_z - far_z);

        Matrix {
            m: [
                [f/aspect, 0.0, 0.0, 0.0],
                [0.0, f, 0.0, 0.0],
                [0.0, 0.0, range, -1.0],
                [0.0, 0.0, range*near_z, 0.0],
            ]
        }
    }

    pub fn translation(ox: f32, oy: f32, oz: f32) -> Self {
        Matrix {
            m: [
                [1.0, 0.0, 0.0, 0.0],
                [0.0, 1.0, 0.0, 0.0],
                [0.0, 0.0, 1.0, 0.0],
                [ox,  oy,  oz,  1.0],
            ]
        }
    }

    pub fn transpose(self) -> Self {
        Matrix {
            m: [
                [self.m[0][0], self.m[1][0], self.m[2][0], self.m[3][0]],
                [self.m[0][1], self.m[1][1], self.m[2][1], self.m[3][1]],
                [self.m[0][2], self.m[1][2], self.m[2][2], self.m[3][2]],
                [self.m[0][3], self.m[1][3], self.m[2][3], self.m[3][3]],
            ]
        }
    }
}

impl Mul for Matrix {
    type Output = Matrix;
    fn mul(self, rhs: Matrix) -> Matrix { &self * &rhs }
}

impl<'a> Mul<Matrix> for &'a Matrix {
    type Output = Matrix;
    fn mul(self, rhs: Matrix) -> Matrix { self * &rhs }
}

impl<'a> Mul<&'a Matrix> for Matrix {
    type Output = Matrix;
    fn mul(self, rhs: &'a Matrix) -> Matrix { &self * rhs }
}

impl<'a, 'b> Mul<&'a Matrix> for &'b Matrix {
    type Output = Matrix;

    fn mul(self, rhs: &'a Matrix) -> Matrix {
        macro_rules! row {
            ($col:expr) => ({
                let x = self.m[$col][0];
                let y = self.m[$col][1];
                let z = self.m[$col][2];
                let w = self.m[$col][3];
                [
                    (rhs.m[0][0]*x)+(rhs.m[1][0]*y)+(rhs.m[2][0]*z)+(rhs.m[3][0]*w),
                    (rhs.m[0][1]*x)+(rhs.m[1][1]*y)+(rhs.m[2][1]*z)+(rhs.m[3][1]*w),
                    (rhs.m[0][2]*x)+(rhs.m[1][2]*y)+(rhs.m[2][2]*z)+(rhs.m[3][2]*w),
                    (rhs.m[0][3]*x)+(rhs.m[1][3]*y)+(rhs.m[2][3]*z)+(rhs.m[3][3]*w),
                ]
            })
        }

        Matrix { m: [ row!(0), row!(1), row!(2), row!(3) ] }
    }
}

impl Index<usize> for Matrix {
    type Output = [f32;4];
    fn index<'a>(&'a self, index: usize) -> &'a Self::Output {
        &self.m[index]
    }
}

/// glium_text support
impl Into<[[f32; 4]; 4]> for Matrix {
    fn into(self) -> [[f32; 4]; 4] { self.m }
}


#[cfg(feature = "glium-support")]
mod glium_support {
    use super::Matrix;
    use glium::uniforms::{AsUniformValue, UniformValue};

    impl AsUniformValue for Matrix {
        fn as_uniform_value(&self) -> UniformValue<'static> {
            UniformValue::Mat4(self.m)
        }
    }
}