xlsynth 0.0.73

Accelerated Hardware Synthesis (XLS/XLSynth) via Rust
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
// SPDX-License-Identifier: Apache-2.0

use xlsynth_sys::{CIrBits, CIrValue};

use crate::{
    lib_support::{
        xls_bits_make_sbits, xls_bits_make_ubits, xls_bits_to_debug_str, xls_bits_to_string,
        xls_format_preference_from_string, xls_value_eq, xls_value_free, xls_value_get_bits,
        xls_value_get_element, xls_value_get_element_count, xls_value_make_sbits,
        xls_value_make_tuple, xls_value_make_ubits, xls_value_to_string,
        xls_value_to_string_format_preference,
    },
    xls_parse_typed_value,
    xlsynth_error::XlsynthError,
};

pub struct IrBits {
    #[allow(dead_code)]
    pub(crate) ptr: *mut CIrBits,
}

impl IrBits {
    pub fn make_ubits(bit_count: usize, value: u64) -> Result<Self, XlsynthError> {
        xls_bits_make_ubits(bit_count, value)
    }

    pub fn make_sbits(bit_count: usize, value: i64) -> Result<Self, XlsynthError> {
        xls_bits_make_sbits(bit_count, value)
    }

    pub fn get_bit_count(&self) -> usize {
        let bit_count = unsafe { xlsynth_sys::xls_bits_get_bit_count(self.ptr) };
        assert!(bit_count >= 0);
        bit_count as usize
    }

    pub fn to_debug_str(&self) -> String {
        xls_bits_to_debug_str(self.ptr)
    }

    pub fn get_bit(&self, index: usize) -> Result<bool, XlsynthError> {
        if self.get_bit_count() <= index {
            return Err(XlsynthError(format!(
                "Index {} out of bounds for bits[{}]:{}",
                index,
                self.get_bit_count(),
                self.to_debug_str()
            )));
        }
        let bit = unsafe { xlsynth_sys::xls_bits_get_bit(self.ptr, index as i64) };
        Ok(bit)
    }

    pub fn to_string_fmt(&self, format: IrFormatPreference, include_bit_count: bool) -> String {
        let fmt_pref: xlsynth_sys::XlsFormatPreference =
            xls_format_preference_from_string(format.to_string()).unwrap();
        xls_bits_to_string(self.ptr, fmt_pref, include_bit_count).unwrap()
    }

    #[allow(dead_code)]
    fn to_hex_string(&self) -> String {
        let value = self.to_string_fmt(IrFormatPreference::Hex, false);
        format!("bits[{}]:{}", self.get_bit_count(), value)
    }

    pub fn umul(&self, rhs: &IrBits) -> IrBits {
        let result = unsafe { xlsynth_sys::xls_bits_umul(self.ptr, rhs.ptr) };
        IrBits { ptr: result }
    }

    pub fn smul(&self, rhs: &IrBits) -> IrBits {
        let result = unsafe { xlsynth_sys::xls_bits_smul(self.ptr, rhs.ptr) };
        IrBits { ptr: result }
    }

    pub fn negate(&self) -> IrBits {
        let result = unsafe { xlsynth_sys::xls_bits_negate(self.ptr) };
        IrBits { ptr: result }
    }

    pub fn abs(&self) -> IrBits {
        let result = unsafe { xlsynth_sys::xls_bits_abs(self.ptr) };
        IrBits { ptr: result }
    }

    pub fn msb(&self) -> bool {
        self.get_bit(self.get_bit_count() - 1).unwrap()
    }

    pub fn shll(&self, shift_amount: i64) -> IrBits {
        let result = unsafe { xlsynth_sys::xls_bits_shift_left_logical(self.ptr, shift_amount) };
        IrBits { ptr: result }
    }

    pub fn shrl(&self, shift_amount: i64) -> IrBits {
        let result = unsafe { xlsynth_sys::xls_bits_shift_right_logical(self.ptr, shift_amount) };
        IrBits { ptr: result }
    }

    pub fn shra(&self, shift_amount: i64) -> IrBits {
        let result =
            unsafe { xlsynth_sys::xls_bits_shift_right_arithmetic(self.ptr, shift_amount) };
        IrBits { ptr: result }
    }

    pub fn width_slice(&self, start: i64, width: i64) -> IrBits {
        let result = unsafe { xlsynth_sys::xls_bits_width_slice(self.ptr, start, width) };
        IrBits { ptr: result }
    }

    pub fn not(&self) -> IrBits {
        let result = unsafe { xlsynth_sys::xls_bits_not(self.ptr) };
        IrBits { ptr: result }
    }

    pub fn and(&self, rhs: &IrBits) -> IrBits {
        let result = unsafe { xlsynth_sys::xls_bits_and(self.ptr, rhs.ptr) };
        IrBits { ptr: result }
    }

    pub fn or(&self, rhs: &IrBits) -> IrBits {
        let result = unsafe { xlsynth_sys::xls_bits_or(self.ptr, rhs.ptr) };
        IrBits { ptr: result }
    }

    pub fn xor(&self, rhs: &IrBits) -> IrBits {
        let result = unsafe { xlsynth_sys::xls_bits_xor(self.ptr, rhs.ptr) };
        IrBits { ptr: result }
    }
}

impl std::cmp::PartialEq for IrBits {
    fn eq(&self, other: &Self) -> bool {
        unsafe { xlsynth_sys::xls_bits_eq(self.ptr, other.ptr) }
    }
}

impl std::fmt::Debug for IrBits {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        write!(f, "{}", self.to_debug_str())
    }
}

impl From<&IrBits> for IrValue {
    fn from(bits: &IrBits) -> Self {
        IrValue::from_bits(bits)
    }
}

impl std::fmt::Display for IrBits {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        write!(
            f,
            "bits[{}]:{}",
            self.get_bit_count(),
            self.to_string_fmt(IrFormatPreference::Default, false)
        )
    }
}

impl std::ops::Add for IrBits {
    type Output = Self;

    fn add(self, rhs: Self) -> Self::Output {
        let result = unsafe { xlsynth_sys::xls_bits_add(self.ptr, rhs.ptr) };
        Self { ptr: result }
    }
}

impl std::ops::BitAnd for IrBits {
    type Output = Self;

    fn bitand(self, rhs: Self) -> Self::Output {
        let result = unsafe { xlsynth_sys::xls_bits_and(self.ptr, rhs.ptr) };
        Self { ptr: result }
    }
}

impl std::ops::BitOr for IrBits {
    type Output = Self;

    fn bitor(self, rhs: Self) -> Self::Output {
        IrBits::or(&self, &rhs)
    }
}

impl std::ops::BitXor for IrBits {
    type Output = Self;

    fn bitxor(self, rhs: Self) -> Self::Output {
        IrBits::xor(&self, &rhs)
    }
}

impl std::ops::Not for IrBits {
    type Output = Self;

    fn not(self) -> Self::Output {
        IrBits::not(&self)
    }
}

// --

pub enum IrFormatPreference {
    Default,
    Binary,
    SignedDecimal,
    UnsignedDecimal,
    Hex,
    PlainBinary,
    ZeroPaddedBinary,
    PlainHex,
    ZeroPaddedHex,
}

impl IrFormatPreference {
    pub fn to_string(&self) -> &'static str {
        match self {
            IrFormatPreference::Default => "default",
            IrFormatPreference::Binary => "binary",
            IrFormatPreference::SignedDecimal => "signed_decimal",
            IrFormatPreference::UnsignedDecimal => "unsigned_decimal",
            IrFormatPreference::Hex => "hex",
            IrFormatPreference::PlainBinary => "plain_binary",
            IrFormatPreference::ZeroPaddedBinary => "zero_padded_binary",
            IrFormatPreference::PlainHex => "plain_hex",
            IrFormatPreference::ZeroPaddedHex => "zero_padded_hex",
        }
    }
}

pub struct IrValue {
    pub(crate) ptr: *mut CIrValue,
}

impl IrValue {
    pub fn make_tuple(elements: &[IrValue]) -> Self {
        xls_value_make_tuple(elements)
    }

    pub fn from_bits(bits: &IrBits) -> Self {
        let ptr = unsafe { xlsynth_sys::xls_value_from_bits(bits.ptr) };
        Self { ptr }
    }

    pub fn parse_typed(s: &str) -> Result<Self, XlsynthError> {
        xls_parse_typed_value(s)
    }

    pub fn u32(value: u32) -> Self {
        // Unwrap should be ok since the u32 always fits.
        xls_value_make_ubits(value as u64, 32).unwrap()
    }

    pub fn u64(value: u64) -> Self {
        // Unwrap should be ok since the u64 always fits.
        xls_value_make_ubits(value as u64, 64).unwrap()
    }

    pub fn make_ubits(bit_count: usize, value: u64) -> Result<Self, XlsynthError> {
        xls_value_make_ubits(value as u64, bit_count)
    }

    pub fn make_sbits(bit_count: usize, value: i64) -> Result<Self, XlsynthError> {
        xls_value_make_sbits(value, bit_count)
    }

    pub fn bit_count(&self) -> Result<usize, XlsynthError> {
        // TODO(cdleary): 2024-06-23 Expose a more efficient API for this from libxls.so
        let bits = self.to_bits()?;
        Ok(bits.get_bit_count())
    }

    pub fn to_string_fmt(&self, format: IrFormatPreference) -> Result<String, XlsynthError> {
        let fmt_pref: xlsynth_sys::XlsFormatPreference =
            xls_format_preference_from_string(format.to_string())?;
        xls_value_to_string_format_preference(self.ptr, fmt_pref)
    }

    pub fn to_string_fmt_no_prefix(
        &self,
        format: IrFormatPreference,
    ) -> Result<String, XlsynthError> {
        let s = self.to_string_fmt(format)?;
        if s.starts_with("bits[") {
            let parts: Vec<&str> = s.split(':').collect();
            Ok(parts[1].to_string())
        } else {
            Ok(s)
        }
    }

    pub fn to_bool(&self) -> Result<bool, XlsynthError> {
        let bits = self.to_bits()?;
        if bits.get_bit_count() != 1 {
            return Err(XlsynthError(format!(
                "IrValue {} is not single-bit; must be bits[1] to convert to bool",
                self.to_string()
            )));
        }
        bits.get_bit(0)
    }

    pub fn to_i64(&self) -> Result<i64, XlsynthError> {
        let string = self.to_string_fmt(IrFormatPreference::SignedDecimal)?;
        let number = string.split(':').nth(1).expect("split success");
        match number.parse::<i64>() {
            Ok(i) => Ok(i),
            Err(e) => Err(XlsynthError(format!(
                "IrValue::to_i64() failed to parse i64 from string: {}",
                e
            ))),
        }
    }

    pub fn to_u64(&self) -> Result<u64, XlsynthError> {
        let string = self.to_string_fmt(IrFormatPreference::UnsignedDecimal)?;
        let number = string.split(':').nth(1).expect("split success");
        match number.parse::<u64>() {
            Ok(i) => Ok(i),
            Err(e) => Err(XlsynthError(format!(
                "IrValue::to_u64() failed to parse u64 from string: {}",
                e
            ))),
        }
    }

    pub fn to_u32(&self) -> Result<u32, XlsynthError> {
        let string = self.to_string_fmt(IrFormatPreference::UnsignedDecimal)?;
        let number = string.split(':').nth(1).expect("split success");
        match number.parse::<u32>() {
            Ok(i) => Ok(i),
            Err(e) => Err(XlsynthError(format!(
                "IrValue::to_u32() failed to parse u32 from string: {}",
                e
            ))),
        }
    }

    /// Attempts to extract the bits contents underlying this value.
    ///
    /// If this value is not a bits type, an error is returned.
    pub fn to_bits(&self) -> Result<IrBits, XlsynthError> {
        xls_value_get_bits(self.ptr)
    }

    pub fn get_element(&self, index: usize) -> Result<IrValue, XlsynthError> {
        xls_value_get_element(self.ptr, index)
    }

    pub fn get_element_count(&self) -> Result<usize, XlsynthError> {
        xls_value_get_element_count(self.ptr)
    }

    pub fn get_elements(&self) -> Result<Vec<IrValue>, XlsynthError> {
        let count = self.get_element_count()?;
        let mut elements = Vec::with_capacity(count);
        for i in 0..count {
            let element = self.get_element(i)?;
            elements.push(element);
        }
        Ok(elements)
    }
}

unsafe impl Send for IrValue {}
unsafe impl Sync for IrValue {}

impl std::cmp::PartialEq for IrValue {
    fn eq(&self, other: &Self) -> bool {
        xls_value_eq(self.ptr, other.ptr).expect("eq success")
    }
}

impl std::fmt::Display for IrValue {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        write!(
            f,
            "{}",
            xls_value_to_string(self.ptr).expect("stringify success")
        )
    }
}

impl std::fmt::Debug for IrValue {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        write!(
            f,
            "{}",
            xls_value_to_string(self.ptr).expect("stringify success")
        )
    }
}

impl Drop for IrValue {
    fn drop(&mut self) {
        xls_value_free(self.ptr)
    }
}

impl Clone for IrValue {
    fn clone(&self) -> Self {
        let ptr = unsafe { xlsynth_sys::xls_value_clone(self.ptr) };
        Self { ptr }
    }
}

/// Typed wrapper around an `IrBits` value that has a particular
/// compile-time-known bit width and whose type notes the value
/// should be treated as unsigned.
pub struct IrUBits<const BIT_COUNT: usize> {
    #[allow(dead_code)]
    wrapped: IrBits,
}

impl<const BIT_COUNT: usize> IrUBits<BIT_COUNT> {
    pub const SIGNEDNESS: bool = false;

    pub fn new(wrapped: IrBits) -> Result<Self, XlsynthError> {
        if wrapped.get_bit_count() != BIT_COUNT {
            return Err(XlsynthError(format!(
                "Expected {} bits, got {}",
                BIT_COUNT,
                wrapped.get_bit_count()
            )));
        }
        Ok(Self { wrapped })
    }
}

/// Typed wrapper around an `IrBits` value that has a particular
/// compile-time-known bit width and whose type notes the value
/// should be treated as signed.
pub struct IrSBits<const BIT_COUNT: usize> {
    #[allow(dead_code)]
    wrapped: IrBits,
}

impl<const BIT_COUNT: usize> IrSBits<BIT_COUNT> {
    pub const SIGNEDNESS: bool = true;

    pub fn new(wrapped: IrBits) -> Result<Self, XlsynthError> {
        if wrapped.get_bit_count() != BIT_COUNT {
            return Err(XlsynthError(format!(
                "Expected {} bits, got {}",
                BIT_COUNT,
                wrapped.get_bit_count()
            )));
        }
        Ok(Self { wrapped })
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_ir_value_eq() {
        let v1 = IrValue::parse_typed("bits[32]:42").expect("parse success");
        let v2 = IrValue::parse_typed("bits[32]:42").expect("parse success");
        assert_eq!(v1, v2);
    }

    #[test]
    fn test_ir_value_eq_fail() {
        let v1 = IrValue::parse_typed("bits[32]:42").expect("parse success");
        let v2 = IrValue::parse_typed("bits[32]:43").expect("parse success");
        assert_ne!(v1, v2);
    }

    #[test]
    fn test_ir_value_display() {
        let v = IrValue::parse_typed("bits[32]:42").expect("parse success");
        assert_eq!(format!("{}", v), "bits[32]:42");
    }

    #[test]
    fn test_ir_value_debug() {
        let v = IrValue::parse_typed("bits[32]:42").expect("parse success");
        assert_eq!(format!("{:?}", v), "bits[32]:42");
    }

    #[test]
    fn test_ir_value_drop() {
        let v = IrValue::parse_typed("bits[32]:42").expect("parse success");
        drop(v);
    }

    #[test]
    fn test_ir_value_fmt_pref() {
        let v = IrValue::parse_typed("bits[32]:42").expect("parse success");
        assert_eq!(
            v.to_string_fmt(IrFormatPreference::Default)
                .expect("fmt success"),
            "bits[32]:42"
        );
        assert_eq!(
            v.to_string_fmt(IrFormatPreference::Binary)
                .expect("fmt success"),
            "bits[32]:0b10_1010"
        );
        assert_eq!(
            v.to_string_fmt(IrFormatPreference::SignedDecimal)
                .expect("fmt success"),
            "bits[32]:42"
        );
        assert_eq!(
            v.to_string_fmt(IrFormatPreference::UnsignedDecimal)
                .expect("fmt success"),
            "bits[32]:42"
        );
        assert_eq!(
            v.to_string_fmt(IrFormatPreference::Hex)
                .expect("fmt success"),
            "bits[32]:0x2a"
        );
        assert_eq!(
            v.to_string_fmt(IrFormatPreference::PlainBinary)
                .expect("fmt success"),
            "bits[32]:101010"
        );
        assert_eq!(
            v.to_string_fmt(IrFormatPreference::PlainHex)
                .expect("fmt success"),
            "bits[32]:2a"
        );
    }

    #[test]
    fn test_ir_value_from_rust() {
        let v = IrValue::u64(42);

        // Check formatting for default stringification.
        assert_eq!(
            v.to_string_fmt(IrFormatPreference::Default)
                .expect("fmt success"),
            "bits[64]:42"
        );
        // Check the bit count is as we specified.
        assert_eq!(v.bit_count().unwrap(), 64);

        // Check we can't convert a 64-bit value to a bool.
        v.to_bool()
            .expect_err("bool conversion should error for u64");

        let v_i64 = v.to_i64().expect("i64 conversion success");
        assert_eq!(v_i64, 42);

        let f = IrValue::parse_typed("bits[1]:0").expect("parse success");
        assert_eq!(f.to_bool().unwrap(), false);

        let t = IrValue::parse_typed("bits[1]:1").expect("parse success");
        assert_eq!(t.to_bool().unwrap(), true);
    }

    #[test]
    fn test_ir_value_get_bits() {
        let v = IrValue::parse_typed("bits[32]:42").expect("parse success");
        let bits = v.to_bits().expect("to_bits success");

        // Equality comparison.
        let v2 = IrValue::make_ubits(32, 42).expect("make_ubits success");
        assert_eq!(v, v2);

        // Getting at bit values; 42 = 0b101010.
        assert_eq!(bits.get_bit(0).unwrap(), false);
        assert_eq!(bits.get_bit(1).unwrap(), true);
        assert_eq!(bits.get_bit(2).unwrap(), false);
        assert_eq!(bits.get_bit(3).unwrap(), true);
        assert_eq!(bits.get_bit(4).unwrap(), false);
        assert_eq!(bits.get_bit(5).unwrap(), true);
        assert_eq!(bits.get_bit(6).unwrap(), false);
        for i in 7..32 {
            assert_eq!(bits.get_bit(i).unwrap(), false);
        }
        assert!(
            bits.get_bit(32).is_err(),
            "Expected an error for out of bounds index"
        );
        assert!(bits
            .get_bit(32)
            .unwrap_err()
            .to_string()
            .contains("Index 32 out of bounds for bits[32]:0b00000000000000000000000000101010"));

        let debug_fmt = format!("{:?}", bits);
        assert_eq!(debug_fmt, "0b00000000000000000000000000101010");
    }

    #[test]
    fn test_ir_value_make_bits() {
        let zero_u2 = IrValue::make_ubits(2, 0).expect("make_ubits success");
        assert_eq!(
            zero_u2
                .to_string_fmt(IrFormatPreference::Default)
                .expect("fmt success"),
            "bits[2]:0"
        );

        let three_u2 = IrValue::make_ubits(2, 3).expect("make_ubits success");
        assert_eq!(
            three_u2
                .to_string_fmt(IrFormatPreference::Default)
                .expect("fmt success"),
            "bits[2]:3"
        );
    }

    #[test]
    fn test_ir_value_parse_array_value() {
        let text = "[bits[32]:1, bits[32]:2]";
        let v = IrValue::parse_typed(text).expect("parse success");
        assert_eq!(v.to_string(), text);
    }

    #[test]
    fn test_ir_value_parse_2d_array_value() {
        let text = "[[bits[32]:1, bits[32]:2], [bits[32]:3, bits[32]:4], [bits[32]:5, bits[32]:6]]";
        let v = IrValue::parse_typed(text).expect("parse success");
        assert_eq!(v.to_string(), text);
    }

    #[test]
    fn test_ir_bits_add_two_plus_three() {
        let two = IrBits::make_ubits(32, 2).expect("make_ubits success");
        let three = IrBits::make_ubits(32, 3).expect("make_ubits success");
        let sum = two + three;
        assert_eq!(sum.to_string(), "bits[32]:5");
    }

    #[test]
    fn test_ir_bits_umul_two_times_three() {
        let two = IrBits::make_ubits(32, 2).expect("make_ubits success");
        let three = IrBits::make_ubits(32, 3).expect("make_ubits success");
        let product = two.umul(&three);
        assert_eq!(product.to_string(), "bits[64]:6");
    }

    #[test]
    fn test_ir_bits_smul_two_times_neg_three() {
        let two = IrBits::make_ubits(32, 2).expect("make_ubits success");
        let neg_three = IrBits::make_ubits(32, 3)
            .expect("make_ubits success")
            .negate();
        let product = two.smul(&neg_three);
        assert_eq!(product.msb(), true);
        assert_eq!(product.abs().to_string(), "bits[64]:6");
    }

    #[test]
    fn test_ir_bits_width_slice() {
        let bits = IrBits::make_ubits(32, 0x12345678).expect("make_ubits success");
        let slice = bits.width_slice(8, 16);
        assert_eq!(slice.to_hex_string(), "bits[16]:0x3456");
    }

    #[test]
    fn test_ir_bits_shll() {
        let bits = IrBits::make_ubits(32, 0x12345678).expect("make_ubits success");
        let shifted = bits.shll(8);
        assert_eq!(shifted.to_hex_string(), "bits[32]:0x3456_7800");
    }

    #[test]
    fn test_ir_bits_shrl() {
        let bits = IrBits::make_ubits(32, 0x12345678).expect("make_ubits success");
        let shifted = bits.shrl(8);
        assert_eq!(shifted.to_hex_string(), "bits[32]:0x12_3456");
    }

    #[test]
    fn test_ir_bits_shra() {
        let bits = IrBits::make_ubits(32, 0x92345678).expect("make_ubits success");
        let shifted = bits.shra(8);
        assert_eq!(shifted.to_hex_string(), "bits[32]:0xff92_3456");
    }

    #[test]
    fn test_ir_bits_and() {
        let lhs = IrBits::make_ubits(32, 0x5a5a5a5a).expect("make_ubits success");
        let rhs = IrBits::make_ubits(32, 0xa5a5a5a5).expect("make_ubits success");
        assert_eq!(lhs.and(&rhs).to_hex_string(), "bits[32]:0x0");
        assert_eq!(lhs.and(&rhs.not()).to_hex_string(), "bits[32]:0x5a5a_5a5a");
    }

    #[test]
    fn test_ir_bits_or() {
        let lhs = IrBits::make_ubits(32, 0x5a5a5a5a).expect("make_ubits success");
        let rhs = IrBits::make_ubits(32, 0xa5a5a5a5).expect("make_ubits success");
        assert_eq!(lhs.or(&rhs).to_hex_string(), "bits[32]:0xffff_ffff");
        assert_eq!(lhs.or(&rhs.not()).to_hex_string(), "bits[32]:0x5a5a_5a5a");
    }

    #[test]
    fn test_ir_bits_xor() {
        let lhs = IrBits::make_ubits(32, 0x5a5a5a5a).expect("make_ubits success");
        let rhs = IrBits::make_ubits(32, 0xa5a5a5a5).expect("make_ubits success");
        assert_eq!(lhs.xor(&rhs).to_hex_string(), "bits[32]:0xffff_ffff");
        assert_eq!(lhs.xor(&rhs.not()).to_hex_string(), "bits[32]:0x0");
    }

    #[test]
    fn test_make_tuple_and_get_elements() {
        let _ = env_logger::builder().is_test(true).try_init();
        let b1_v0 = IrValue::make_ubits(1, 0).expect("make_ubits success");
        let b2_v1 = IrValue::make_ubits(2, 1).expect("make_ubits success");
        let b3_v2 = IrValue::make_ubits(3, 2).expect("make_ubits success");
        let tuple = IrValue::make_tuple(&[b1_v0.clone(), b2_v1.clone(), b3_v2.clone()]);
        let elements = tuple.get_elements().expect("get_elements success");
        assert_eq!(elements.len(), 3);
        assert_eq!(elements[0].to_string(), "bits[1]:0");
        assert_eq!(elements[0], b1_v0);
        assert_eq!(elements[1].to_string(), "bits[2]:1");
        assert_eq!(elements[1], b2_v1);
        assert_eq!(elements[2].to_string(), "bits[3]:2");
        assert_eq!(elements[2], b3_v2);
    }

    #[test]
    fn test_make_ir_value_bits_that_does_not_fit() {
        let result = IrValue::make_ubits(1, 2);
        assert!(result.is_err());
        let error = result.unwrap_err();
        assert!(error.to_string().contains("0x2 requires 2 bits to fit in an unsigned datatype, but attempting to fit in 1 bit"), "got: {}", error);

        let result = IrValue::make_sbits(1, -2);
        assert!(result.is_err());
        let error = result.unwrap_err();
        assert!(error.to_string().contains("0xfffffffffffffffe requires 2 bits to fit in an signed datatype, but attempting to fit in 1 bit"), "got: {}", error);
    }
}