1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
//! Utility code for working with images.
//!
//! This module contains the [`Image`] struct which represents an arbitrary image in
//! `ImageFormat::ZPixmap`. If you do not know what `ZPixmap` means, then rest assured that you do
//! not want to know the details. It suffices to know that the values of the individual pixels are
//! saved one after another in memory.
//!
//! An [`Image`] can be converted to a different internal representation. [`Image::native`]
//! converts it to the native format of the X11 server. These conversions do not change the actual
//! content of the image, but only the way that it is laid out in memory (e.g. byte order and
//! padding). Specifically, there is no support for converting an image to another `depth`.
//!
//! The code in this module is only available when the `image` feature of the library is
//! enabled.

// For future readers:
//
// - Z-Pixmap means that the pixels are right next to each other. I.e. first you have the value of
//   the pixel at (0, 0), then (1, 0), .... At the end of the row, there might be some padding
//   before the next row begins.
// - XY-Bitmap consists of individual bits. The bits are assigned colors via a GC's foreground and
//   background color when uploading to the X11 server.
// - XY-Pixmap consists of bit planes. This means you first get the first bit of each pixel,
//   stuffed together into bytes. After all of the first pixels are represented, the second plane
//   begins with the second bit of each pixel etc.

use std::borrow::Cow;
use std::convert::{TryFrom, TryInto};

use crate::connection::Connection;
use crate::cookie::VoidCookie;
use crate::errors::{ConnectionError, ParseError, ReplyError};
use crate::protocol::xproto::{
    get_image, put_image, Drawable, Format, Gcontext, GetImageReply, ImageFormat,
    ImageOrder as XprotoImageOrder, Setup, VisualClass, Visualid, Visualtype,
};

/// The description of a single color component.
///
/// For example, in an RGB image, pixels are often saved as `0xRRGGBB`, where each letter
/// represents the respective color component. In the example, green has a `width` of 8 (it takes
/// up 8 bits) and a `shift` of `16` (there are 16 less significant bits beyond it). This info is
/// represented as a `ColorComponent`.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub struct ColorComponent {
    /// Number of bits for the component
    width: u8,
    /// Offset in an u32 of the component
    shift: u8,
}

impl ColorComponent {
    /// Create a new color component with the given information.
    ///
    /// The following conditions must be satisfied:
    /// - `width <= 16`: color components have at most 16 bits.
    /// - `shift < 32`: pixel values have at most 32 bits.
    /// - `shift + width <= 32`: pixel values have at most 32 bits.
    pub fn new(width: u8, shift: u8) -> Result<Self, ParseError> {
        if width > 16 || shift >= 32 || shift + width > 32 {
            Err(ParseError::InvalidValue)
        } else {
            Ok(Self { width, shift })
        }
    }

    /// Get the bit width of the color component.
    pub fn width(self) -> u8 {
        self.width
    }

    /// Get the bit shift of the color component.
    pub fn shift(self) -> u8 {
        self.shift
    }

    /// Get the pixel mask representing this color component.
    ///
    /// The mask can be used to mask off other colors in a pixel value. Only the bits that
    /// correspond to this color component are set.
    /// ```
    /// # use x11rb::image::ColorComponent;
    /// let red = ColorComponent::new(8, 16)?;
    /// assert_eq!(red.mask(), 0xff0000);
    /// # Ok::<(), x11rb::errors::ParseError>(())
    /// ```
    pub fn mask(self) -> u32 {
        // Get a mask with 'width' set bits.
        let mask = (1u32 << self.width) - 1;
        // Shift the mask into the right position
        mask << self.shift
    }

    /// Create a new color component from a color mask.
    ///
    /// This turns a color mask into its individual components.
    /// ```
    /// # use x11rb::image::ColorComponent;
    /// let red1 = ColorComponent::new(8, 16);
    /// let red2 = ColorComponent::from_mask(0xff0000);
    /// ```
    ///
    /// # Errors
    ///
    /// This function fails if the given value is not a well-formed mask. This means that at least
    /// one bit must be set and the set bits must be consecutive.
    pub fn from_mask(mask: u32) -> Result<Self, ParseError> {
        let width = mask.count_ones();
        let shift = mask.trailing_zeros();
        // Both width and shift can be at most 32, which should fit into u8.
        let result = Self::new(width.try_into().unwrap(), shift.try_into().unwrap())?;
        if mask != result.mask() {
            Err(ParseError::InvalidValue)
        } else {
            Ok(result)
        }
    }

    /// Get this color component out of a pixel value.
    ///
    /// This function gets a single pixel value and returns this color component's value in that
    /// pixel value, expanded to width 16.
    /// ```
    /// # use x11rb::image::ColorComponent;
    /// let red = ColorComponent::new(8, 16)?;
    /// assert_eq!(0xABAB, red.decode(0x78AB_4321));
    /// # Ok::<(), x11rb::errors::ParseError>(())
    /// ```
    pub fn decode(self, pixel: u32) -> u16 {
        // Get the color component out
        let value = (pixel & self.mask()) >> self.shift;

        // Now expand from with `self.width` to width 16.
        let mut width = self.width;
        let mut value = value << (16 - width);
        // Add some low bits by using the high bits
        while width < 16 {
            value |= value >> width;
            width <<= 1;
        }
        value.try_into().unwrap()
    }

    /// Encode a color value according to this pixel format.
    ///
    /// ```
    /// # use x11rb::image::ColorComponent;
    /// let red = ColorComponent::new(8, 16)?;
    /// assert_eq!(0xAB0000, red.encode(0xABCD));
    /// # Ok::<(), x11rb::errors::ParseError>(())
    /// ```
    pub fn encode(self, intensity: u16) -> u32 {
        // First truncate to width `self.width`, then place at the correct offset.
        (u32::from(intensity) >> (16 - self.width)) << self.shift
    }
}

/// A collection of color components describing the red, green, and blue components of a pixel.
///
/// A [`ColorComponent`] describes a single color component in an image. This structure describes
/// the `red`, `green`, and `blue` color components by containing a [`ColorComponent`] for each of
/// them.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub struct PixelLayout {
    red: ColorComponent,
    green: ColorComponent,
    blue: ColorComponent,
}

impl PixelLayout {
    /// Create a new pixel layout from the description of each component
    pub fn new(red: ColorComponent, green: ColorComponent, blue: ColorComponent) -> Self {
        Self { red, green, blue }
    }

    /// Create a new pixel layout
    ///
    /// This function errors if the visual has a different class than `TrueColor` or `DirectColor`,
    /// because color pallets and grayscales are not supported. This function also errors if the
    /// mask components of the visual are malformed.
    pub fn from_visual_type(visual: Visualtype) -> Result<Self, ParseError> {
        if visual.class != VisualClass::TRUE_COLOR && visual.class != VisualClass::DIRECT_COLOR {
            Err(ParseError::InvalidValue)
        } else {
            Ok(Self::new(
                ColorComponent::from_mask(visual.red_mask)?,
                ColorComponent::from_mask(visual.green_mask)?,
                ColorComponent::from_mask(visual.blue_mask)?,
            ))
        }
    }

    /// Get the depth of this pixel layout.
    ///
    /// The depth is the number of significant bits of each pixel value.
    pub fn depth(self) -> u8 {
        // TODO: I am not quite sure this implementation is correct. The protocol seems to allow
        // unused bits in the middle..?
        self.red.width + self.green.width + self.blue.width
    }

    /// Decode a pixel value into its red, green, and blue components.
    ///
    /// This function returns each component expanded to width 16.
    /// ```
    /// # use x11rb::image::{ColorComponent, PixelLayout};
    /// let layout = PixelLayout::new(
    ///     ColorComponent::new(8, 16)?,
    ///     ColorComponent::new(8, 8)?,
    ///     ColorComponent::new(8, 0)?,
    /// );
    /// assert_eq!((0xABAB, 0x4343, 0x2121), layout.decode(0x78AB_4321));
    /// # Ok::<(), x11rb::errors::ParseError>(())
    /// ```
    pub fn decode(self, pixel: u32) -> (u16, u16, u16) {
        let red = self.red.decode(pixel);
        let green = self.green.decode(pixel);
        let blue = self.blue.decode(pixel);
        (red, green, blue)
    }

    /// Encode a color value according to this layout.
    ///
    /// ```
    /// # use x11rb::image::{ColorComponent, PixelLayout};
    /// let layout = PixelLayout::new(
    ///     ColorComponent::new(8, 16)?,
    ///     ColorComponent::new(8, 8)?,
    ///     ColorComponent::new(8, 0)?,
    /// );
    /// assert_eq!(0x00AB_4321, layout.encode((0xABAB, 0x4343, 0x2121)));
    /// # Ok::<(), x11rb::errors::ParseError>(())
    /// ```
    pub fn encode(self, (red, green, blue): (u16, u16, u16)) -> u32 {
        let red = self.red.encode(red);
        let green = self.green.encode(green);
        let blue = self.blue.encode(blue);
        red | green | blue
    }
}

// Compute the stride based on some information of the image
fn compute_stride(width: u16, bits_per_pixel: BitsPerPixel, scanline_pad: ScanlinePad) -> usize {
    let value = usize::from(width) * usize::from(bits_per_pixel);
    scanline_pad.round_to_multiple(value) / 8
}

#[cfg(test)]
mod test_stride {
    use super::compute_stride;
    use std::convert::TryInto;

    #[test]
    fn test_stride() {
        for &(width, bpp, pad, stride) in &[
            // bpp=pad=8
            (0, 8, 8, 0),
            (1, 8, 8, 1),
            (2, 8, 8, 2),
            (3, 8, 8, 3),
            (41, 8, 8, 41),
            // bpp=8, pad=16
            (0, 8, 16, 0),
            (1, 8, 16, 2),
            (2, 8, 16, 2),
            (3, 8, 16, 4),
            (41, 8, 16, 42),
            // bpp=16, pad=16
            (0, 16, 16, 0),
            (1, 16, 16, 2),
            (2, 16, 16, 4),
            (3, 16, 16, 6),
            (41, 16, 16, 82),
            // bpp=16, pad=32
            (0, 16, 32, 0),
            (1, 16, 32, 4),
            (2, 16, 32, 4),
            (3, 16, 32, 8),
            (41, 16, 32, 84),
            // bpp=32, pad=32
            (0, 32, 32, 0),
            (1, 32, 32, 4),
            (2, 32, 32, 8),
            (3, 32, 32, 12),
            (41, 32, 32, 164),
        ] {
            let actual = compute_stride(width, bpp.try_into().unwrap(), pad.try_into().unwrap());
            assert_eq!(stride, actual, "width={}, bpp={}, pad={}", width, bpp, pad);
        }
    }
}

// Find the format with the given depth in `setup.pixmap_formats`.
fn find_format(setup: &Setup, depth: u8) -> Result<&Format, ParseError> {
    setup
        .pixmap_formats
        .iter()
        .find(|f| f.depth == depth)
        .ok_or(ParseError::InvalidValue)
}

macro_rules! number_enum {
    {
        $(#[$meta:meta])*
        $vis:vis enum $enum_name:ident {
            $(
                $(#[$variant_meta:meta])*
                $variant_name:ident = $value:literal,
            )*
        }
    } => {
        $(#[$meta])*
        #[derive(Debug, Copy, Clone, Eq, PartialEq, Hash)]
        $vis enum $enum_name {
            $(
                $(#[$variant_meta])*
                $variant_name = $value,
            )*
        }

        impl TryFrom<u8> for $enum_name {
            type Error = ParseError;
            fn try_from(value: u8) -> Result<Self, Self::Error> {
                match value {
                    $($value => Ok(Self::$variant_name),)*
                    _ => Err(ParseError::InvalidValue),
                }
            }
        }

        impl From<$enum_name> for u8 {
            fn from(value: $enum_name) -> u8 {
                match value {
                    $($enum_name::$variant_name => $value,)*
                }
            }
        }

        impl From<$enum_name> for usize {
            fn from(value: $enum_name) -> usize {
                u8::from(value).into()
            }
        }
    }
}

number_enum! {
    /// The padding of scanlines.
    ///
    /// Each line of an image is padded to a multiple of some value. This value is the scanline
    /// padding, which this enum represents.
    #[non_exhaustive]
    pub enum ScanlinePad {
        /// Padding to multiples of 8 bits, i.e. no padding.
        Pad8 = 8,
        /// Padding to multiples of 16 bits, i.e. the next even number of bytes.
        Pad16 = 16,
        /// Padding to multiples of 32 bits, i.e. the next multiple of 4.
        Pad32 = 32,
    }
}

impl ScanlinePad {
    fn round_to_multiple(self, value: usize) -> usize {
        let value = value + usize::from(self) - 1;
        value - value % usize::from(self)
    }
}

#[cfg(test)]
mod test_scanline_pad {
    use super::ScanlinePad;
    use std::convert::TryInto;

    #[test]
    fn number_conversions() {
        assert_eq!(8_u8, ScanlinePad::Pad8.into());
        assert_eq!(16_u8, ScanlinePad::Pad16.into());
        assert_eq!(32_u8, ScanlinePad::Pad32.into());
        assert_eq!(8.try_into(), Ok(ScanlinePad::Pad8));
        assert_eq!(16.try_into(), Ok(ScanlinePad::Pad16));
        assert_eq!(32.try_into(), Ok(ScanlinePad::Pad32));
    }

    #[test]
    fn test_round_to_multiple() {
        for &(value, pad8, pad16, pad32) in [
            (0, 0, 0, 0),
            (1, 8, 16, 32),
            (2, 8, 16, 32),
            (3, 8, 16, 32),
            (4, 8, 16, 32),
            (5, 8, 16, 32),
            (6, 8, 16, 32),
            (7, 8, 16, 32),
            (8, 8, 16, 32),
            (9, 16, 16, 32),
            (10, 16, 16, 32),
            (11, 16, 16, 32),
            (12, 16, 16, 32),
            (13, 16, 16, 32),
            (14, 16, 16, 32),
            (15, 16, 16, 32),
            (16, 16, 16, 32),
            (17, 24, 32, 32),
            (33, 40, 48, 64),
            (47, 48, 48, 64),
            (48, 48, 48, 64),
            (49, 56, 64, 64),
        ]
        .iter()
        {
            assert_eq!(
                pad8,
                ScanlinePad::Pad8.round_to_multiple(value),
                "value={} for pad8",
                value,
            );
            assert_eq!(
                pad16,
                ScanlinePad::Pad16.round_to_multiple(value),
                "value={} for pad16",
                value,
            );
            assert_eq!(
                pad32,
                ScanlinePad::Pad32.round_to_multiple(value),
                "value={} for pad32",
                value,
            );
        }
    }
}

number_enum! {
    /// The number of bits required to store one pixel.
    ///
    /// This value is only about the size of one pixel in memory. Other names for it include
    /// `bits_per_pixel` or `bpp`. It may be larger than the number of meaningful bits for a pixel
    /// value, which is its `depth`.
    #[non_exhaustive]
    pub enum BitsPerPixel {
        /// Each pixel takes one bit of memory.
        B1 = 1,
        /// Each pixel takes four bits of memory.
        B4 = 4,
        /// Each pixel takes one byte of memory.
        B8 = 8,
        /// Each pixel takes two bytes of memory.
        B16 = 16,
        /// Each pixel takes three bytes of memory.
        ///
        /// This is most likely not what you want to use, even if you have RGB data with 8 bits per
        /// channel. This corresponds to `depth=24`, but is almost always stored as four bytes
        /// per pixel, which is `BitsPerPixel::B32`.
        B24 = 24,
        /// Each pixel takes four bytes of memory.
        B32 = 32,
    }
}

/// Order in which bytes are stored in memory.
///
/// If the numberof bits per pixel is less than 8, then this is the
/// order in which bits are packed into bytes.
#[derive(Debug, Copy, Clone, Eq, PartialEq, Hash)]
pub enum ImageOrder {
    /// Least significant byte first
    LsbFirst,
    /// Most significant byte first
    MsbFirst,
}

impl TryFrom<XprotoImageOrder> for ImageOrder {
    type Error = ParseError;

    fn try_from(value: XprotoImageOrder) -> Result<Self, ParseError> {
        match value {
            XprotoImageOrder::LSB_FIRST => Ok(Self::LsbFirst),
            XprotoImageOrder::MSB_FIRST => Ok(Self::MsbFirst),
            _ => Err(ParseError::InvalidValue),
        }
    }
}

/// The description of an image.
#[derive(Debug, PartialEq, Eq, Clone)]
pub struct Image<'a> {
    /// Width in pixels.
    width: u16,

    /// Height in pixels.
    height: u16,

    /// Right padding on each scanline.
    scanline_pad: ScanlinePad,

    /// Color depth in bits.
    depth: u8,

    /// Storage per pixel in bits. Must be >= depth.
    bits_per_pixel: BitsPerPixel,

    /// Byte order of components.
    ///
    /// This is the nibble order when bits_per_pixel is 4.
    byte_order: ImageOrder,

    /// The image data.
    data: Cow<'a, [u8]>,
}

impl<'a> Image<'a> {
    /// The width in pixels.
    pub fn width(&self) -> u16 {
        self.width
    }

    /// The height in pixels.
    pub fn height(&self) -> u16 {
        self.height
    }

    /// The padding on the right side of each scanline.
    ///
    /// Each scanline is rounded up to some multiple of the `scanline_pad`.
    pub fn scanline_pad(&self) -> ScanlinePad {
        self.scanline_pad
    }

    /// Color depth in bits.
    pub fn depth(&self) -> u8 {
        self.depth
    }

    /// Number of bits required to store one pixel.
    ///
    /// This is always `>= depth`.
    pub fn bits_per_pixel(&self) -> BitsPerPixel {
        self.bits_per_pixel
    }

    /// Order in which bytes are stored in memory.
    ///
    /// If `bits_per_pixel()` is smaller than 8, then this is the order in which bits are packed
    /// into bytes.
    pub fn byte_order(&self) -> ImageOrder {
        self.byte_order
    }

    /// Raw pixel data.
    pub fn data(&self) -> &[u8] {
        &self.data
    }

    /// Mutable access to the raw pixel data.
    ///
    /// If the `Image` was constructed with `Cow::Borrowed`-access to its pixel data, then a copy
    /// is made when this method is called.
    pub fn data_mut(&mut self) -> &mut [u8] {
        self.data.to_mut()
    }

    /// Construct a new image from existing data.
    ///
    /// This constructs a new `Image` from given `data` without copying this data around. The other
    /// parameters describe the format that the image data is in.
    ///
    /// See [`Image::allocate`] for a variant that allocates memory for you and
    /// [`Image::allocate_native`] for allocating an image that is in an X11 server's native
    /// format.
    ///
    /// # Errors
    ///
    /// The only possible error is that `data.len()` is too short for an image as described by the
    /// other parameters.
    pub fn new(
        width: u16,
        height: u16,
        scanline_pad: ScanlinePad,
        depth: u8,
        bits_per_pixel: BitsPerPixel,
        byte_order: ImageOrder,
        data: Cow<'a, [u8]>,
    ) -> Result<Self, ParseError> {
        let stride = compute_stride(width, bits_per_pixel, scanline_pad);
        let expected_size = usize::from(height) * stride;
        if data.len() < expected_size {
            Err(ParseError::InsufficientData)
        } else {
            Ok(Self {
                width,
                height,
                scanline_pad,
                depth,
                bits_per_pixel,
                byte_order,
                data,
            })
        }
    }

    /// Construct a new, empty image.
    ///
    /// This function allocates memory for a new image in the format that is described by the
    /// parameters.
    ///
    /// See [`Image::new`] for a variant that wraps an existing in-memory image in an `Image` and
    /// [`Image::allocate_native`] for allocating an image that is in an X11 server's native
    /// format.
    pub fn allocate(
        width: u16,
        height: u16,
        scanline_pad: ScanlinePad,
        depth: u8,
        bits_per_pixel: BitsPerPixel,
        byte_order: ImageOrder,
    ) -> Self {
        let stride = compute_stride(width, bits_per_pixel, scanline_pad);
        let data = Cow::Owned(vec![0; usize::from(height) * stride]);
        Self {
            width,
            height,
            scanline_pad,
            depth,
            bits_per_pixel,
            byte_order,
            data,
        }
    }

    /// Construct a new, empty image.
    ///
    /// This function allocates memory for a new image in the format that the X11 server expects.
    /// The image will have size `width`x`height` and a depth of `depth`.
    ///
    /// See [`Image::new`] for a variant that wraps an existing in-memory image in an `Image` and
    /// [`Image::allocate`] for allocating an image that is in a more general format, not
    /// necessarily what the X11 server wants.
    pub fn allocate_native(
        width: u16,
        height: u16,
        depth: u8,
        setup: &Setup,
    ) -> Result<Self, ParseError> {
        let format = find_format(setup, depth)?;
        Ok(Self::allocate(
            width,
            height,
            format.scanline_pad.try_into()?,
            depth,
            format.bits_per_pixel.try_into()?,
            setup.image_byte_order.try_into()?,
        ))
    }

    /// The stride is the number of bytes that each row of pixel data occupies in memory.
    fn stride(&self) -> usize {
        compute_stride(self.width, self.bits_per_pixel, self.scanline_pad)
    }

    /// Get an image from the X11 server.
    ///
    /// This function sends a [`GetImage`](crate::protocol::xproto::GetImageRequest) request, waits
    /// for its response and wraps it in a new `Image`. The image and the corresponding visual id
    /// are returned.
    ///
    /// The returned image contains the rectangle with top left corner `(x, y)` and size `(width,
    /// height)` of the given `drawable`.
    pub fn get(
        conn: &impl Connection,
        drawable: Drawable,
        x: i16,
        y: i16,
        width: u16,
        height: u16,
    ) -> Result<(Self, Visualid), ReplyError> {
        let reply = get_image(
            conn,
            ImageFormat::Z_PIXMAP,
            drawable,
            x,
            y,
            width,
            height,
            !0,
        )?
        .reply()?;
        let visual = reply.visual;
        let image = Self::get_from_reply(conn.setup(), width, height, reply)?;
        Ok((image, visual))
    }

    /// Construct an `Image` from a `GetImageReply`.
    ///
    /// This function takes a `GetImageReply` and wraps it in an `Image`. The given `width` and
    /// `height` describe the corresponding values of the `GetImage` request that was used to get
    /// the `GetImageReply`.
    pub fn get_from_reply(
        setup: &Setup,
        width: u16,
        height: u16,
        reply: GetImageReply,
    ) -> Result<Self, ParseError> {
        let format = find_format(setup, reply.depth)?;
        Self::new(
            width,
            height,
            format.scanline_pad.try_into()?,
            reply.depth,
            format.bits_per_pixel.try_into()?,
            setup.image_byte_order.try_into()?,
            Cow::Owned(reply.data),
        )
    }

    /// Put an image to the X11 server.
    ///
    /// This function sends a [`PutImage`](crate::protocol::xproto::PutImageRequest) request. This
    /// will upload this image to the given `drawable` to position `(dst_x, dst_y)`.
    ///
    /// The server's maximum request size is honored. This means that a too large `PutImage`
    /// request is automatically split up into smaller pieces. Thus, if this function returns an
    /// error, the image could already be partially sent.
    ///
    /// Before uploading, the image is translated into the server's native format via
    /// [`Image::native`]. This may convert the image to another format, which can be slow. If you
    /// intend to upload the same image multiple times, it is likely more efficient to call
    /// [`Image::native`] once initially so that the conversion is not repeated on each upload.
    pub fn put<'c, Conn: Connection>(
        &self,
        conn: &'c Conn,
        drawable: Drawable,
        gc: Gcontext,
        dst_x: i16,
        dst_y: i16,
    ) -> Result<Vec<VoidCookie<'c, Conn>>, ConnectionError> {
        self.native(conn.setup())?
            .put_impl(conn, drawable, gc, dst_x, dst_y)
    }

    fn put_impl<'c, Conn: Connection>(
        &self,
        conn: &'c Conn,
        drawable: Drawable,
        gc: Gcontext,
        dst_x: i16,
        dst_y: i16,
    ) -> Result<Vec<VoidCookie<'c, Conn>>, ConnectionError> {
        // Upload the image without exceeding the server's maximum request size
        let max_bytes = conn.maximum_request_bytes();
        let put_image_header = 24;
        let stride = self.stride();
        let lines_per_request = (max_bytes - put_image_header) / stride;
        let mut result = Vec::with_capacity(
            (usize::from(self.height()) + lines_per_request - 1) / lines_per_request,
        );
        let lines_per_request = lines_per_request.try_into().unwrap_or(u16::max_value());
        assert!(lines_per_request > 0);

        let (mut y_offset, mut byte_offset) = (0, 0);
        while y_offset < self.height {
            let next_lines = lines_per_request.min(self.height - y_offset);
            let next_byte_offset = byte_offset + usize::from(next_lines) * stride;
            let data = &self.data[byte_offset..next_byte_offset];
            result.push(put_image(
                conn,
                ImageFormat::Z_PIXMAP,
                drawable,
                gc,
                self.width,
                next_lines,
                dst_x,
                dst_y + i16::try_from(y_offset).unwrap(),
                0, // left_pad must always be 0 for ZPixmap
                self.depth,
                data,
            )?);

            y_offset += next_lines;
            byte_offset = next_byte_offset;
        }
        Ok(result)
    }

    /// Convert this image into the format specified by the other parameters.
    ///
    /// This function may need to copy the image, hence returns a `Cow`.
    pub fn convert(
        &self,
        scanline_pad: ScanlinePad,
        bits_per_pixel: BitsPerPixel,
        byte_order: ImageOrder,
    ) -> Cow<'_, Self> {
        let already_converted = scanline_pad == self.scanline_pad
            && bits_per_pixel == self.bits_per_pixel
            && byte_order == self.byte_order;
        if already_converted {
            Cow::Borrowed(self)
        } else {
            let mut copy = Image::allocate(
                self.width,
                self.height,
                scanline_pad,
                self.depth,
                bits_per_pixel,
                byte_order,
            );
            // This is the slowest possible way to do this. But also the easiest one to implement.
            for y in 0..self.height {
                for x in 0..self.width {
                    copy.put_pixel(x, y, self.get_pixel(x, y))
                }
            }
            Cow::Owned(copy)
        }
    }

    /// Convert this image into the native format of the X11 server.
    ///
    /// This function may need to copy the image, hence returns a `Cow`.
    pub fn native(&self, setup: &Setup) -> Result<Cow<'_, Self>, ParseError> {
        let format = find_format(setup, self.depth)?;
        Ok(self.convert(
            format.scanline_pad.try_into()?,
            format.bits_per_pixel.try_into()?,
            setup.image_byte_order.try_into()?,
        ))
    }

    /// Reencode this image to a different pixel layout / depth.
    ///
    /// Each pixel of this image is interpreted according to `own` and written to the resulting
    /// image in the format described by `output`.
    ///
    /// The resulting image is always in the native format as described by `setup`.
    pub fn reencode<'b>(
        &'b self,
        own: PixelLayout,
        output: PixelLayout,
        setup: &Setup,
    ) -> Result<Cow<'b, Self>, ParseError> {
        if own == output {
            self.native(setup)
        } else {
            // Yay, we get to convert the image :-(
            let (width, height) = (self.width(), self.height());
            let mut result = Image::allocate_native(width, height, output.depth(), setup)?;
            for y in 0..height {
                for x in 0..width {
                    let pixel = self.get_pixel(x, y);
                    let pixel = output.encode(own.decode(pixel));
                    result.put_pixel(x, y, pixel);
                }
            }
            Ok(Cow::Owned(result))
        }
    }

    /// Set a single pixel in this image.
    ///
    /// The pixel at position `(x, y)` will be set to the value `pixel`. `pixel` is truncated to
    /// this image's [`Self::bits_per_pixel`].
    ///
    /// If the image was constructed from a `Cow::Borrowed` access to its pixel data, this causes
    /// the whole pixel data to be copied. See [`Image::new`] and [`Image::data_mut`].
    pub fn put_pixel(&mut self, x: u16, y: u16, pixel: u32) {
        assert!(x < self.width);
        assert!(y < self.height);

        let row_start = usize::from(y) * self.stride();
        let x = usize::from(x);
        let data = self.data.to_mut();
        match self.bits_per_pixel {
            BitsPerPixel::B1 => {
                let (byte, bit) = compute_depth_1_address(x, self.byte_order);
                let pixel = ((pixel & 0x01) << bit) as u8;
                let old = data[row_start + byte];
                let bit_cleared = old & !(1 << bit);
                data[row_start + byte] = bit_cleared | pixel;
            }
            BitsPerPixel::B4 => {
                let mut pixel = pixel & 0x0f;
                let odd_x = x % 2 == 1;
                let mask = if odd_x == (self.byte_order == ImageOrder::MsbFirst) {
                    pixel <<= 4;
                    0xf0
                } else {
                    0x0f
                };
                data[row_start + x / 2] = (data[row_start + x / 2] & !mask) | (pixel as u8);
            }
            BitsPerPixel::B8 => data[row_start + x] = pixel as u8,
            BitsPerPixel::B16 => {
                let (p0, p1) = match self.byte_order {
                    ImageOrder::LsbFirst => (pixel, pixel >> 8),
                    ImageOrder::MsbFirst => (pixel >> 8, pixel),
                };
                data[row_start + 2 * x + 1] = p1 as u8;
                data[row_start + 2 * x] = p0 as u8;
            }
            BitsPerPixel::B24 => {
                let (p0, p1, p2) = match self.byte_order {
                    ImageOrder::LsbFirst => (pixel, pixel >> 8, pixel >> 16),
                    ImageOrder::MsbFirst => (pixel >> 16, pixel >> 8, pixel),
                };
                data[row_start + 3 * x + 2] = p2 as u8;
                data[row_start + 3 * x + 1] = p1 as u8;
                data[row_start + 3 * x] = p0 as u8;
            }
            BitsPerPixel::B32 => {
                let (p0, p1, p2, p3) = match self.byte_order {
                    ImageOrder::LsbFirst => (pixel, pixel >> 8, pixel >> 16, pixel >> 24),
                    ImageOrder::MsbFirst => (pixel >> 24, pixel >> 16, pixel >> 8, pixel),
                };
                data[row_start + 4 * x + 3] = p3 as u8;
                data[row_start + 4 * x + 2] = p2 as u8;
                data[row_start + 4 * x + 1] = p1 as u8;
                data[row_start + 4 * x] = p0 as u8;
            }
        }
    }

    /// Get the value of a single pixel.
    ///
    /// This function gets the value of the pixel at `(x, y)`.
    pub fn get_pixel(&self, x: u16, y: u16) -> u32 {
        assert!(x < self.width);
        assert!(y < self.height);

        let row_start = usize::from(y) * self.stride();
        let x = usize::from(x);
        // TODO Can this code (and the one in put_pixel) be simplified? E.g. handle B4 as a special
        // case and copy bits_per_pixel.into() / 8 bytes in other cases?
        match self.bits_per_pixel {
            BitsPerPixel::B1 => {
                let (byte, bit) = compute_depth_1_address(x, self.byte_order);
                ((self.data[row_start + byte] >> bit) & 1).into()
            }
            BitsPerPixel::B4 => {
                let byte = u32::from(self.data[row_start + x / 2]);
                let odd_x = x % 2 == 1;
                if odd_x == (self.byte_order == ImageOrder::MsbFirst) {
                    byte >> 4
                } else {
                    byte & 0x0f
                }
            }
            BitsPerPixel::B8 => self.data[row_start + x].into(),
            BitsPerPixel::B16 => {
                let p1 = u32::from(self.data[row_start + 2 * x + 1]);
                let p0 = u32::from(self.data[row_start + 2 * x]);
                match self.byte_order {
                    ImageOrder::LsbFirst => p0 | (p1 << 8),
                    ImageOrder::MsbFirst => p1 | (p0 << 8),
                }
            }
            BitsPerPixel::B24 => {
                let p2 = u32::from(self.data[row_start + 3 * x + 2]);
                let p1 = u32::from(self.data[row_start + 3 * x + 1]);
                let p0 = u32::from(self.data[row_start + 3 * x]);
                match self.byte_order {
                    ImageOrder::LsbFirst => p0 | (p1 << 8) | (p2 << 16),
                    ImageOrder::MsbFirst => p2 | (p1 << 8) | (p0 << 16),
                }
            }
            BitsPerPixel::B32 => {
                let p3 = u32::from(self.data[row_start + 4 * x + 3]);
                let p2 = u32::from(self.data[row_start + 4 * x + 2]);
                let p1 = u32::from(self.data[row_start + 4 * x + 1]);
                let p0 = u32::from(self.data[row_start + 4 * x]);
                match self.byte_order {
                    ImageOrder::LsbFirst => p0 | (p1 << 8) | (p2 << 16) | (p3 << 24),
                    ImageOrder::MsbFirst => p3 | (p2 << 8) | (p1 << 16) | (p0 << 24),
                }
            }
        }
    }

    /// Get a version of this image with `'static` lifetime.
    ///
    /// If the image was constructed from a `Cow::Borrowed`, this clones the contained data.
    /// Otherwise, this simply returns `self`.
    pub fn into_owned(self) -> Image<'static> {
        // It would be great if we could just implement ToOwned, but that requires implementing
        // Borrow, which we cannot do. Thus, this function exists as a work-around.
        Image {
            data: self.data.into_owned().into(),
            ..self
        }
    }
}

fn compute_depth_1_address(x: usize, order: ImageOrder) -> (usize, usize) {
    let bit = match order {
        ImageOrder::MsbFirst => 7 - x % 8,
        ImageOrder::LsbFirst => x % 8,
    };
    (x / 8, bit)
}

#[cfg(test)]
mod test_image {
    use super::{BitsPerPixel, Image, ImageOrder, ParseError, ScanlinePad};
    use std::borrow::Cow;

    #[test]
    fn test_new_too_short() {
        let depth = 16;
        // Due to Pad16, this image needs two bytes
        let result = Image::new(
            1,
            1,
            ScanlinePad::Pad16,
            depth,
            BitsPerPixel::B8,
            ImageOrder::MsbFirst,
            Cow::Owned(vec![0]),
        );
        assert_eq!(result.unwrap_err(), ParseError::InsufficientData);
    }

    #[test]
    fn test_new() {
        let depth = 16;
        let image = Image::new(
            2,
            1,
            ScanlinePad::Pad16,
            depth,
            BitsPerPixel::B8,
            ImageOrder::MsbFirst,
            Cow::Owned(vec![42, 125]),
        )
        .unwrap();
        assert_eq!(image.width(), 2);
        assert_eq!(image.height(), 1);
        assert_eq!(image.scanline_pad(), ScanlinePad::Pad16);
        assert_eq!(image.depth(), depth);
        assert_eq!(image.bits_per_pixel(), BitsPerPixel::B8);
        assert_eq!(image.byte_order(), ImageOrder::MsbFirst);
        assert_eq!(image.data(), [42, 125]);
    }

    #[test]
    fn test_into_owned_keeps_owned_data() {
        fn with_data(data: Cow<'_, [u8]>) -> *const u8 {
            let orig_ptr = data.as_ptr();
            let image = Image::new(
                1,
                1,
                ScanlinePad::Pad8,
                1,
                BitsPerPixel::B1,
                ImageOrder::MsbFirst,
                data,
            )
            .unwrap();
            assert_eq!(image.data().as_ptr(), orig_ptr);
            image.into_owned().data().as_ptr()
        }

        // Cow::Borrowed is copied
        let data = vec![0];
        let orig_ptr = data.as_ptr();
        assert_ne!(with_data(Cow::Borrowed(&data)), orig_ptr);

        // Cow::Owned is kept
        assert_eq!(with_data(Cow::Owned(data)), orig_ptr);
    }

    #[test]
    fn put_pixel_depth1() {
        let mut image = Image::allocate(
            16,
            2,
            ScanlinePad::Pad32,
            1,
            BitsPerPixel::B1,
            ImageOrder::MsbFirst,
        );
        for x in 0..8 {
            image.put_pixel(x, 0, 1);
        }
        assert_eq!(0b_1111_1111, image.data()[0]);

        image.put_pixel(0, 0, 0);
        assert_eq!(0b_0111_1111, image.data()[0]);

        image.put_pixel(2, 0, 0);
        assert_eq!(0b_0101_1111, image.data()[0]);

        image.put_pixel(4, 0, 0);
        assert_eq!(0b_0101_0111, image.data()[0]);

        image.put_pixel(6, 0, 0);
        assert_eq!(0b_0101_0101, image.data()[0]);

        image.data_mut()[1] = 0;

        image.put_pixel(8, 0, 1);
        assert_eq!(0b_1000_0000, image.data()[1]);

        image.put_pixel(15, 0, 1);
        assert_eq!(0b_1000_0001, image.data()[1]);

        assert_eq!(0b_0000_0000, image.data()[5]);
        image.put_pixel(15, 1, 1);
        assert_eq!(0b_0000_0001, image.data()[5]);
    }

    #[test]
    fn put_pixel_depth4() {
        let mut image = Image::allocate(
            8,
            2,
            ScanlinePad::Pad16,
            1,
            BitsPerPixel::B4,
            ImageOrder::MsbFirst,
        );
        for pos in 0..=0xf {
            image.put_pixel(pos % 8, pos / 8, pos.into());
        }
        assert_eq!(
            image.data(),
            [0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE]
        );
    }

    #[test]
    fn put_pixel_depth8() {
        let mut image = Image::allocate(
            256,
            2,
            ScanlinePad::Pad8,
            1,
            BitsPerPixel::B8,
            ImageOrder::MsbFirst,
        );
        for x in 0..=0xff {
            image.put_pixel(x, 0, x.into());
        }
        image.put_pixel(255, 1, 0x1245_89AB);
        let expected = (0..=0xff)
            .chain((0..0xff).map(|_| 0))
            .chain(std::iter::once(0xAB))
            .collect::<Vec<_>>();
        assert_eq!(image.data(), &expected[..]);
    }

    #[test]
    fn put_pixel_depth16() {
        let mut image = Image::allocate(
            5,
            2,
            ScanlinePad::Pad32,
            1,
            BitsPerPixel::B16,
            ImageOrder::MsbFirst,
        );
        image.put_pixel(0, 0, 0xAB_36_18_F8);
        image.put_pixel(4, 0, 0x12_34_56_78);
        image.put_pixel(4, 1, 0xFE_DC_BA_98);
        #[rustfmt::skip]
        let expected = [
            // First row
            0x18, 0xF8, 0, 0, 0, 0, 0, 0, 0x56, 0x78,
            // Padding Pad32
            0, 0,
            // Second row
            0, 0, 0, 0, 0, 0, 0, 0, 0xBA, 0x98,
            // Padding Pad32
            0, 0,
        ];
        assert_eq!(image.data(), expected);
    }

    #[test]
    fn put_pixel_depth32() {
        let mut image = Image::allocate(
            2,
            2,
            ScanlinePad::Pad32,
            1,
            BitsPerPixel::B32,
            ImageOrder::MsbFirst,
        );
        image.put_pixel(0, 0, 0xAB_36_18_F8);
        image.put_pixel(1, 0, 0x12_34_56_78);
        image.put_pixel(1, 1, 0xFE_DC_BA_98);
        #[rustfmt::skip]
        let expected = [
            // First row
            0xAB, 0x36, 0x18, 0xF8, 0x12, 0x34, 0x56, 0x78,
            // Second row
            0x00, 0x00, 0x00, 0x00, 0xFE, 0xDC, 0xBA, 0x98,
        ];
        assert_eq!(image.data(), expected);
    }

    #[test]
    fn get_pixel_depth1() {
        let image = Image::new(
            16,
            2,
            ScanlinePad::Pad32,
            1,
            BitsPerPixel::B1,
            ImageOrder::MsbFirst,
            Cow::Borrowed(&DATA),
        )
        .unwrap();
        assert_eq!(1, image.get_pixel(0, 0));
        assert_eq!(1, image.get_pixel(10, 0));
        assert_eq!(0, image.get_pixel(15, 0));
        assert_eq!(0, image.get_pixel(0, 1));
        assert_eq!(1, image.get_pixel(10, 1));
        assert_eq!(0, image.get_pixel(15, 1));
    }

    #[test]
    fn get_pixel_depth4() {
        let image = Image::new(
            16,
            2,
            ScanlinePad::Pad32,
            1,
            BitsPerPixel::B4,
            ImageOrder::MsbFirst,
            Cow::Borrowed(&DATA),
        )
        .unwrap();
        assert_eq!(0xB, image.get_pixel(0, 0));
        assert_eq!(0x4, image.get_pixel(10, 0));
        assert_eq!(0x7, image.get_pixel(15, 0));
        assert_eq!(0x0, image.get_pixel(0, 1));
        assert_eq!(0xC, image.get_pixel(10, 1));
        assert_eq!(0x9, image.get_pixel(15, 1));
    }

    #[test]
    fn get_pixel_depth8() {
        let image = Image::new(
            3,
            2,
            ScanlinePad::Pad32,
            1,
            BitsPerPixel::B8,
            ImageOrder::MsbFirst,
            Cow::Borrowed(&DATA),
        )
        .unwrap();
        assert_eq!(0xAB, image.get_pixel(0, 0));
        assert_eq!(0x36, image.get_pixel(1, 0));
        assert_eq!(0x18, image.get_pixel(2, 0));
        assert_eq!(0x12, image.get_pixel(0, 1));
        assert_eq!(0x34, image.get_pixel(1, 1));
        assert_eq!(0x56, image.get_pixel(2, 1));
    }

    #[test]
    fn get_pixel_depth16() {
        let image = Image::new(
            3,
            2,
            ScanlinePad::Pad32,
            1,
            BitsPerPixel::B16,
            ImageOrder::MsbFirst,
            Cow::Borrowed(&DATA),
        )
        .unwrap();
        assert_eq!(0xAB36, image.get_pixel(0, 0));
        assert_eq!(0x18F8, image.get_pixel(1, 0));
        assert_eq!(0x1234, image.get_pixel(2, 0));
        assert_eq!(0x0000, image.get_pixel(0, 1));
        assert_eq!(0x0000, image.get_pixel(1, 1));
        assert_eq!(0xFEDC, image.get_pixel(2, 1));
    }

    #[test]
    fn get_pixel_depth32() {
        let image = Image::new(
            2,
            2,
            ScanlinePad::Pad32,
            1,
            BitsPerPixel::B32,
            ImageOrder::MsbFirst,
            Cow::Borrowed(&DATA),
        )
        .unwrap();
        assert_eq!(0xAB36_18F8, image.get_pixel(0, 0));
        assert_eq!(0x1234_5678, image.get_pixel(1, 0));
        assert_eq!(0x0000_0000, image.get_pixel(0, 1));
        assert_eq!(0xFEDC_BA98, image.get_pixel(1, 1));
    }

    static DATA: [u8; 16] = [
        0xAB, 0x36, 0x18, 0xF8, 0x12, 0x34, 0x56, 0x78, 0x00, 0x00, 0x00, 0x00, 0xFE, 0xDC, 0xBA,
        0x98,
    ];
}