# Wyrm
[](https://crates.io/crates/wyrm)
[](https://docs.rs/wyrm/0.1.0/wyrm/)
A reverse mode, define-by-run, low-overhead autodifferentiation library.
## Features
Performs backpropagation through arbitrary, define-by-run computation graphs,
emphasizing low overhead estimation of sparse, small models on the CPU.
Highlights:
1. Low overhead.
2. Built-in support for sparse gradients.
3. Define-by-run.
4. Trivial Hogwild-style parallelisation, scaling linearly with the number of CPU cores available.
Requires the nightly compiler due to use of SIMD intrinsics.
## Quickstart
The following defines a univariate linear regression model, then
backpropagates through it.
```rust
let slope = ParameterNode::new(random_matrix(1, 1));
let intercept = ParameterNode::new(random_matrix(1, 1));
let x = InputNode::new(random_matrix(1, 1));
let y = InputNode::new(random_matrix(1, 1));
let y_hat = slope.clone() * x.clone() + intercept.clone();
let mut loss = (y.clone() - y_hat).square();
```
To optimize the parameters, create an optimizer object and
go through several epochs of learning:
```rust
let mut optimizer = SGD::new(0.1, vec![slope.clone(), intercept.clone()]);
for _ in 0..num_epochs {
let x_value: f32 = rand::random();
let y_value = 3.0 * x_value + 5.0;
// You can re-use the computation graph
// by giving the input nodes new values.
x.set_value(x_value);
y.set_value(y_value);
loss.forward();
loss.backward(1.0);
optimizer.step();
optimizer.zero_gradients();
}
```
You can use `rayon` to fit your model in parallel, by first creating a set of shared
parameters, then building a per-thread copy of the model:
```rust
let slope_param = Arc::new(HogwildParameter::new(random_matrix(1, 1)));
let intercept_param = Arc::new(HogwildParameter::new(random_matrix(1, 1)));
let num_epochs = 10;
(0..rayon::current_num_threads())
.into_par_iter()
.for_each(|_| {
let slope = ParameterNode::shared(slope_param.clone());
let intercept = ParameterNode::shared(intercept_param.clone());
let x = InputNode::new(random_matrix(1, 1));
let y = InputNode::new(random_matrix(1, 1));
let y_hat = slope.clone() * x.clone() + intercept.clone();
let mut loss = (y.clone() - y_hat).square();
let mut optimizer = SGD::new(0.1, vec![slope.clone(), intercept.clone()]);
for _ in 0..num_epochs {
let x_value: f32 = rand::random();
let y_value = 3.0 * x_value + 5.0;
x.set_value(x_value);
y.set_value(y_value);
loss.forward();
loss.backward(1.0);
optimizer.step();
optimizer.zero_gradients();
}
});
```