wonnx-cli 0.3.0

CLI for WONNX. WONNX is an ONNX runtime based on wgpu aimed at being a universal GPU runtime, written in Rust.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
use crate::info::info_table;
use info::print_graph;
use prettytable::{cell, row, Table};
use protobuf::{self, Message};
use std::collections::HashMap;
use structopt::StructOpt;
use wonnx::onnx::ModelProto;
use wonnx::utils::{OutputTensor, Shape};
use wonnx_preprocessing::text::{get_lines, EncodedText};
use wonnx_preprocessing::Tensor;

mod gpu;
mod info;
mod types;
mod utils;

use crate::types::*;

async fn run() -> Result<(), NNXError> {
    env_logger::init();
    let opt = Opt::from_args();

    match opt.cmd {
        Command::Devices => {
            let instance = wgpu::Instance::new(wgpu::Backends::all());
            let adapters = instance.enumerate_adapters(wgpu::Backends::all());
            let mut adapters_table = Table::new();
            adapters_table.add_row(row![b->"Adapter", b->"Vendor", b->"Backend"]);
            for adapter in adapters {
                let info = adapter.get_info();
                adapters_table.add_row(row![info.name, info.vendor, format!("{:?}", info.backend)]);
            }
            adapters_table.printstd();
            Ok(())
        }

        Command::Info(info_opt) => {
            // Load the model
            let model_path = info_opt
                .model
                .into_os_string()
                .into_string()
                .expect("invalid path");
            let model = ModelProto::parse_from_bytes(
                &std::fs::read(&model_path).expect("ONNX Model path not found."),
            )
            .expect("Could not deserialize the model");
            let table = info_table(&model)?;
            table.printstd();
            Ok(())
        }

        Command::Graph(info_opt) => {
            // Load the model
            let model_path = info_opt
                .model
                .into_os_string()
                .into_string()
                .expect("invalid path");
            let model = ModelProto::parse_from_bytes(
                &std::fs::read(&model_path).expect("ONNX Model path not found."),
            )
            .expect("Could not deserialize the model");
            print_graph(&model);
            Ok(())
        }

        Command::Infer(infer_opt) => infer_command(infer_opt).await,
    }
}

fn print_qa_output(
    infer_opt: &InferOptions,
    qa_encoding: &EncodedText,
    mut outputs: HashMap<String, OutputTensor>,
) -> Result<(), NNXError> {
    let start_output: Vec<f32> = outputs
        .remove(&infer_opt.qa_answer_start)
        .ok_or_else(|| NNXError::OutputNotFound(infer_opt.qa_answer_start.to_string()))?
        .try_into()?;

    let end_output: Vec<f32> = outputs
        .remove(&infer_opt.qa_answer_end)
        .ok_or_else(|| NNXError::OutputNotFound(infer_opt.qa_answer_start.to_string()))?
        .try_into()?;

    println!(
        "{}",
        qa_encoding
            .get_answer(
                &start_output,
                &end_output,
                infer_opt.context.as_ref().unwrap()
            )
            .text
    );
    Ok(())
}

fn print_output(
    infer_opt: &InferOptions,
    output_name: &str,
    output: OutputTensor,
    print_output_names: bool,
    print_newlines: bool,
) {
    // Look up label
    match &infer_opt.labels {
        Some(labels_path) => {
            if print_output_names {
                println!("{}: ", output_name);
            }
            let labels = get_lines(labels_path);

            let output_slice: Vec<f32> = output.try_into().unwrap();
            let mut probabilities = output_slice.iter().enumerate().collect::<Vec<_>>();
            probabilities.sort_unstable_by(|a, b| b.1.partial_cmp(a.1).unwrap());

            let top = infer_opt.top.unwrap_or(10);
            for i in 0..top.min(labels.len()) {
                if infer_opt.probabilities {
                    println!("{}: {}", labels[probabilities[i].0], probabilities[i].1);
                } else {
                    println!("{}", labels[probabilities[i].0]);
                }
            }
        }
        None => {
            if print_output_names {
                print!("{}: ", output_name);
            }

            // Just print the output tensor values, one a line
            match output {
                wonnx::utils::OutputTensor::F32(fs) => {
                    for i in fs {
                        if print_newlines {
                            println!("{:.3}", i);
                        } else {
                            print!("{:.3} ", i);
                        }
                    }
                }
                wonnx::utils::OutputTensor::I32(ints) => {
                    for i in ints {
                        if print_newlines {
                            println!("{}", i);
                        } else {
                            print!("{}", i);
                        }
                    }
                }
                wonnx::utils::OutputTensor::I64(ints) => {
                    for i in ints {
                        if print_newlines {
                            println!("{}", i);
                        } else {
                            print!("{}", i);
                        }
                    }
                }
            }
        }
    }

    if !print_newlines {
        println!();
    }
}

async fn infer_command(infer_opt: InferOptions) -> Result<(), NNXError> {
    // Load the model
    let model_path = infer_opt
        .model
        .clone()
        .into_os_string()
        .into_string()
        .expect("invalid path");
    let model = ModelProto::parse_from_bytes(
        &std::fs::read(&model_path).expect("ONNX Model path not found."),
    )
    .expect("Could not deserialize the model");

    let inference_input = InferenceInput::new(&infer_opt, &model)?;

    // Determine which outputs we will be reading
    let mut output_names = infer_opt.output_name.clone();
    if output_names.is_empty() {
        for output in model.get_graph().get_output() {
            output_names.push(output.get_name().to_string());
        }
        log::info!("no outputs given; using {:?}", output_names);
    }

    #[cfg(feature = "cpu")]
    if infer_opt.compare {
        return infer_compare(&model_path, inference_input, infer_opt, output_names, model).await;
    }

    let first_result = async {
        let compile_start = std::time::Instant::now();
        let backend = infer_opt
            .backend
            .inferer_for_model(
                &model_path,
                &inference_input.input_shapes,
                Some(output_names.clone()),
            )
            .await?;
        log::info!(
            "compile phase took {}ms",
            compile_start.elapsed().as_millis()
        );

        if infer_opt.benchmark {
            let benchmark_start = std::time::Instant::now();
            for _ in 0..100 {
                let _ = backend
                    .infer(&output_names, &inference_input.inputs, &model)
                    .await?;
            }
            let benchmark_time = benchmark_start.elapsed();
            println!(
                "time for 100 inferences: {}ms ({}/s)",
                benchmark_time.as_millis(),
                1000 / (benchmark_time.as_millis() / 100)
            );
        }

        let infer_start = std::time::Instant::now();
        let res = backend
            .infer(&output_names, &inference_input.inputs, &model)
            .await;
        log::info!("infer phase took {}ms", infer_start.elapsed().as_millis());
        res
    };

    let mut output_tensors = match first_result.await {
        Ok(x) => x,
        Err(e) => {
            #[cfg(feature = "cpu")]
            if infer_opt.fallback {
                match infer_opt.backend.fallback() {
                    Some(fallback_backend) => {
                        log::warn!(
                            "inference with {:?} backend failed: {}",
                            infer_opt.backend,
                            e,
                        );
                        log::warn!("trying {:?} backend instead", fallback_backend);
                        let fallback_inferer = fallback_backend
                            .inferer_for_model(
                                &model_path,
                                &inference_input.input_shapes,
                                Some(output_names.clone()),
                            )
                            .await?;
                        fallback_inferer
                            .infer(&output_names, &inference_input.inputs, &model)
                            .await?
                    }
                    None => return Err(e),
                }
            } else {
                return Err(e);
            }

            #[cfg(not(feature = "cpu"))]
            return Err(e);
        }
    };

    if infer_opt.qa_answer {
        // Print outputs as QA answer
        print_qa_output(
            &infer_opt,
            &inference_input.qa_encoding.unwrap(),
            output_tensors,
        )?;
    } else {
        // Print outputs individually
        let print_output_names = output_names.len() > 1;
        let print_newlines = !print_output_names;

        for output_name in &output_names {
            let output = output_tensors.remove(output_name).unwrap();
            print_output(
                &infer_opt,
                output_name,
                output,
                print_output_names,
                print_newlines,
            );
        }
    }

    Ok(())
}

#[cfg(feature = "cpu")]
mod cpu;

impl Backend {
    #[cfg(feature = "cpu")]
    fn fallback(&self) -> Option<Backend> {
        match self {
            #[cfg(feature = "cpu")]
            Backend::Cpu => None,

            Backend::Gpu => {
                #[cfg(feature = "cpu")]
                return Some(Backend::Cpu);

                #[cfg(not(feature = "cpu"))]
                return None;
            }
        }
    }

    async fn inferer_for_model(
        &self,
        model_path: &str,
        #[allow(unused_variables)] input_shapes: &HashMap<String, Shape>,
        outputs: Option<Vec<String>>,
    ) -> Result<Box<dyn Inferer>, NNXError> {
        Ok(match self {
            Backend::Gpu => Box::new(gpu::GPUInferer::new(model_path, outputs).await?),
            #[cfg(feature = "cpu")]
            Backend::Cpu => Box::new(cpu::CPUInferer::new(model_path, input_shapes).await?),
        })
    }
}

#[cfg(feature = "cpu")]
async fn infer_compare(
    model_path: &str,
    inference_input: InferenceInput,
    infer_opt: InferOptions,
    output_names: Vec<String>,
    model: ModelProto,
) -> Result<(), NNXError> {
    let gpu_backend = Backend::Gpu
        .inferer_for_model(
            model_path,
            &inference_input.input_shapes,
            Some(output_names.clone()),
        )
        .await?;
    let gpu_start = std::time::Instant::now();
    if infer_opt.benchmark {
        for _ in 0..100 {
            let _ = gpu_backend
                .infer(&output_names, &inference_input.inputs, &model)
                .await?;
        }
    }
    let gpu_output_tensors = gpu_backend
        .infer(&output_names, &inference_input.inputs, &model)
        .await?;
    let gpu_time = gpu_start.elapsed();
    log::info!("gpu time: {}ms", gpu_time.as_millis());
    drop(gpu_backend);

    let cpu_backend = Backend::Cpu
        .inferer_for_model(
            model_path,
            &inference_input.input_shapes,
            Some(output_names.clone()),
        )
        .await?;
    let cpu_start = std::time::Instant::now();
    if infer_opt.benchmark {
        for _ in 0..100 {
            let _ = cpu_backend
                .infer(&output_names, &inference_input.inputs, &model)
                .await?;
        }
    }
    let cpu_output_tensors = cpu_backend
        .infer(&output_names, &inference_input.inputs, &model)
        .await?;
    let cpu_time = cpu_start.elapsed();
    log::info!(
        "cpu time: {}ms ({:.2}x gpu time)",
        cpu_time.as_millis(),
        cpu_time.as_secs_f64() / gpu_time.as_secs_f64()
    );
    if gpu_output_tensors.len() != cpu_output_tensors.len() {
        return Err(NNXError::Comparison(format!(
            "number of outputs in GPU result ({}) mismatches CPU result ({})",
            gpu_output_tensors.len(),
            cpu_output_tensors.len()
        )));
    }

    for output_name in &output_names {
        let cpu_output: Vec<f32> = cpu_output_tensors[output_name].clone().try_into()?;
        let gpu_output: Vec<f32> = gpu_output_tensors[output_name].clone().try_into()?;
        log::info!(
            "comparing output {} (gpu_len={}, cpu_len={})",
            output_name,
            gpu_output.len(),
            cpu_output.len()
        );

        for i in 0..gpu_output.len() {
            let diff = (gpu_output[i] - cpu_output[i]).abs();
            println!(
                "{};{};{}",
                gpu_output[i],
                cpu_output[i],
                (gpu_output[i] - cpu_output[i])
            );
            if diff > 0.001 {
                return Err(NNXError::Comparison(format!(
							"output {}: element {} differs too much: GPU says {} vs CPU says {} (difference is {})",
							output_name, i, gpu_output[i], cpu_output[i], diff
						)));
            }
        }
    }

    if infer_opt.benchmark {
        println!(
            "OK (gpu={}ms, cpu={}ms, {:.2}x)",
            gpu_time.as_millis(),
            cpu_time.as_millis(),
            cpu_time.as_secs_f64() / gpu_time.as_secs_f64()
        );
    } else {
        println!("OK")
    }
    Ok(())
}

fn main() -> Result<(), std::io::Error> {
    std::process::exit(match pollster::block_on(run()) {
        Ok(_) => 0,
        Err(err) => {
            eprintln!("Error: {}", err);
            1
        }
    });
}