wolfram-expr 0.1.3

Efficient and ergonomic representation of Wolfram expressions in Rust
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
//! Efficient and ergonomic representation of Wolfram expressions in Rust.

#![allow(clippy::let_and_return)]
#![warn(missing_docs)]

mod conversion;
mod ptr_cmp;

pub mod symbol;

#[doc(hidden)]
mod test_readme {
    // Ensure that doc tests in the README.md file get run.
    #![doc = include_str ! ("../README.md")]
}


use std::fmt;
use std::mem;
use std::sync::Arc;


#[doc(inline)]
pub use self::symbol::Symbol;

#[cfg(feature = "unstable_parse")]
pub use self::ptr_cmp::ExprRefCmp;

#[cfg(feature = "unstable_parse")]
pub mod parse {
    pub use crate::symbol::parse::*;
}

/// Wolfram Language expression.
///
/// # Example
///
/// Construct the expression `{1, 2, 3}`:
///
/// ```
/// use wolfram_expr::{Expr, Symbol};
///
/// let expr = Expr::normal(Symbol::new("System`List"), vec![
///     Expr::from(1),
///     Expr::from(2),
///     Expr::from(3)
/// ]);
/// ```
///
/// # Reference counting
///
/// Internally, `Expr` is an atomically reference-counted [`ExprKind`]. This makes cloning
/// an expression computationally inexpensive.
#[derive(Clone, PartialEq, Eq, Hash)]
pub struct Expr {
    inner: Arc<ExprKind>,
}

// Assert that Expr has the same size and alignment as a usize / pointer.
const _: () = assert!(mem::size_of::<Expr>() == mem::size_of::<usize>());
const _: () = assert!(mem::size_of::<Expr>() == mem::size_of::<*const ()>());
const _: () = assert!(mem::align_of::<Expr>() == mem::align_of::<usize>());
const _: () = assert!(mem::align_of::<Expr>() == mem::align_of::<*const ()>());

impl Expr {
    /// Construct a new expression from an [`ExprKind`].
    pub fn new(kind: ExprKind) -> Expr {
        Expr {
            inner: Arc::new(kind),
        }
    }

    /// Consume `self` and return an owned [`ExprKind`].
    ///
    /// If the reference count of `self` is equal to 1 this function will *not* perform
    /// a clone of the stored `ExprKind`, making this operation very cheap in that case.
    // Silence the clippy warning about this method. While this method technically doesn't
    // follow the Rust style convention of using `into` to prefix methods which take
    // `self` by move, I think using `to` is more appropriate given the expected
    // performance characteristics of this method. `into` implies that the method is
    // always returning data already owned by this type, and as such should be a very
    // cheap operation. This method can make no such guarantee; if the reference count is
    // 1, then performance is very good, but if the reference count is >1, a deeper clone
    // must be done.
    #[allow(clippy::wrong_self_convention)]
    pub fn to_kind(self) -> ExprKind {
        match Arc::try_unwrap(self.inner) {
            Ok(kind) => kind,
            Err(self_) => (*self_).clone(),
        }
    }

    /// Get the [`ExprKind`] representing this expression.
    pub fn kind(&self) -> &ExprKind {
        &*self.inner
    }

    /// Get mutable access to the [`ExprKind`] that represents this expression.
    ///
    /// If the reference count of the underlying shared pointer is not equal to 1, this
    /// will clone the [`ExprKind`] to make it unique.
    pub fn kind_mut(&mut self) -> &mut ExprKind {
        Arc::make_mut(&mut self.inner)
    }

    /// Retrieve the reference count of this expression.
    pub fn ref_count(&self) -> usize {
        Arc::strong_count(&self.inner)
    }

    /// Construct a new normal expression from the head and elements.
    pub fn normal<H: Into<Expr>>(head: H, contents: Vec<Expr>) -> Expr {
        let head = head.into();
        // let contents = contents.into();
        Expr {
            inner: Arc::new(ExprKind::Normal(Normal { head, contents })),
        }
    }

    // TODO: Should Expr's be cached? Especially Symbol exprs? Would certainly save
    //       a lot of allocations.
    /// Construct a new expression from a [`Symbol`].
    pub fn symbol<S: Into<Symbol>>(s: S) -> Expr {
        let s = s.into();
        Expr {
            inner: Arc::new(ExprKind::Symbol(s)),
        }
    }

    /// Construct a new expression from a [`Number`].
    pub fn number(num: Number) -> Expr {
        Expr {
            inner: Arc::new(ExprKind::from(num)),
        }
    }

    /// Construct a new expression from a [`String`].
    pub fn string<S: Into<String>>(s: S) -> Expr {
        Expr {
            inner: Arc::new(ExprKind::String(s.into())),
        }
    }

    /// Construct an expression from a floating-point number.
    ///
    /// ```
    /// # use wolfram_expr::Expr;
    /// let expr = Expr::real(3.14159);
    /// ```
    ///
    /// # Panics
    ///
    /// This function will panic if `real` is NaN.
    pub fn real(real: f64) -> Expr {
        Expr::number(Number::real(real))
    }

    /// Returns the outer-most symbol "tag" used in this expression.
    ///
    /// To illustrate:
    ///
    /// Expression   | Tag
    /// -------------|----
    /// `5`          | `None`
    /// `"hello"`    | `None`
    /// `foo`        | `foo`
    /// `f[1, 2, 3]` | `f`
    /// `g[x][y]`    | `g`
    //
    // TODO: _[x] probably should return None, even though technically
    //       Blank[][x] has the tag Blank.
    // TODO: The above TODO is probably wrong -- tag() shouldn't have any language
    //       semantics built in to it.
    pub fn tag(&self) -> Option<Symbol> {
        match *self.inner {
            ExprKind::Integer(_) | ExprKind::Real(_) | ExprKind::String(_) => None,
            ExprKind::Normal(ref normal) => normal.head.tag(),
            ExprKind::Symbol(ref sym) => Some(sym.clone()),
        }
    }

    /// If this represents a [`Normal`] expression, return its head. Otherwise, return
    /// `None`.
    pub fn normal_head(&self) -> Option<Expr> {
        match *self.inner {
            ExprKind::Normal(ref normal) => Some(normal.head.clone()),
            ExprKind::Symbol(_)
            | ExprKind::Integer(_)
            | ExprKind::Real(_)
            | ExprKind::String(_) => None,
        }
    }

    /// Attempt to get the element at `index` of a `Normal` expression.
    ///
    /// Return `None` if this is not a `Normal` expression, or the given index is out of
    /// bounds.
    ///
    /// `index` is 0-based. The 0th index is the first element, not the head.
    ///
    /// This function does not panic.
    pub fn normal_part(&self, index_0: usize) -> Option<&Expr> {
        match self.kind() {
            ExprKind::Normal(ref normal) => normal.contents.get(index_0),
            ExprKind::Symbol(_)
            | ExprKind::Integer(_)
            | ExprKind::Real(_)
            | ExprKind::String(_) => None,
        }
    }

    /// Returns `true` if `self` is a `Normal` expr with the head `sym`.
    pub fn has_normal_head(&self, sym: &Symbol) -> bool {
        match *self.kind() {
            ExprKind::Normal(ref normal) => normal.has_head(sym),
            _ => false,
        }
    }

    //==================================
    // Common values
    //==================================

    /// [`Null`](https://reference.wolfram.com/language/ref/Null.html) <sub>WL</sub>.
    pub fn null() -> Expr {
        Expr::symbol(unsafe { Symbol::unchecked_new("System`Null") })
    }

    //==================================
    // Convenience creation functions
    //==================================

    /// Construct a new `Rule[_, _]` expression from the left-hand side and right-hand
    /// side.
    ///
    /// # Example
    ///
    /// Construct the expression `FontSize -> 16`:
    ///
    /// ```
    /// use wolfram_expr::{Expr, Symbol};
    ///
    /// let option = Expr::rule(Symbol::new("System`FontSize"), Expr::from(16));
    /// ```
    pub fn rule<LHS: Into<Expr>>(lhs: LHS, rhs: Expr) -> Expr {
        let lhs = lhs.into();

        Expr::normal(Symbol::new("System`Rule"), vec![lhs, rhs])
    }
    /// Construct a new `RuleDelayed[_, _]` expression from the left-hand side and right-hand
    /// side.
    ///
    /// # Example
    ///
    /// Construct the expression `x :> RandomReal[]`:
    ///
    /// ```
    /// use wolfram_expr::{Expr, Symbol};
    ///
    /// let delayed = Expr::rule_delayed(
    ///     Symbol::new("Global`x"),
    ///     Expr::normal(Symbol::new("System`RandomReal"), vec![])
    /// );
    /// ```
    pub fn rule_delayed<LHS: Into<Expr>>(lhs: LHS, rhs: Expr) -> Expr {
        let lhs = lhs.into();

        Expr::normal(Symbol::new("System`RuleDelayed"), vec![lhs, rhs])
    }

    /// Construct a new `List[...]`(`{...}`) expression from it's elements.
    ///
    /// # Example
    ///
    /// Construct the expression `{1, 2, 3}`:
    ///
    /// ```
    /// use wolfram_expr::Expr;
    ///
    /// let list = Expr::list(vec![Expr::from(1), Expr::from(2), Expr::from(3)]);
    /// ```
    pub fn list(elements: Vec<Expr>) -> Expr {
        Expr::normal(Symbol::new("System`List"), elements)
    }
}

/// Wolfram Language expression variants.
#[allow(missing_docs)]
#[derive(Clone, PartialEq, Eq, Hash)]
pub enum ExprKind<E = Expr> {
    Integer(i64),
    Real(F64),
    String(String),
    Symbol(Symbol),
    Normal(Normal<E>),
}

/// Wolfram Language "normal" expression: `f[...]`.
///
/// A *normal* expression is any expression that consists of a head and zero or
/// more arguments.
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub struct Normal<E = Expr> {
    /// The head of this normal expression.
    head: E,

    /// The elements of this normal expression.
    ///
    /// If `head` conceptually represents a function, these are the arguments that are
    /// being applied to `head`.
    contents: Vec<E>,
}

/// Subset of [`ExprKind`] that covers number-type expression values.
#[allow(missing_docs)]
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Hash)]
pub enum Number {
    // TODO: Rename this to MachineInteger
    Integer(i64),
    // TODO: Make an explicit MachineReal type which hides the inner f64, so that other
    //       code can make use of WL machine reals with a guaranteed type. In
    //       particular, change wl_compile::mir::Constant to use that type.
    Real(F64),
}

/// 64-bit floating-point real number. Not NaN.
pub type F64 = ordered_float::NotNan<f64>;
/// 32-bit floating-point real number. Not NaN.
pub type F32 = ordered_float::NotNan<f32>;

//=======================================
// Type Impl's
//=======================================

impl Normal {
    /// Construct a new normal expression from the head and elements.
    pub fn new<E: Into<Expr>>(head: E, contents: Vec<Expr>) -> Self {
        Normal {
            head: head.into(),
            contents,
        }
    }

    /// The head of this normal expression.
    pub fn head(&self) -> &Expr {
        &self.head
    }

    /// The elements of this normal expression.
    ///
    /// If `head` conceptually represents a function, these are the arguments that are
    /// being applied to `head`.
    pub fn elements(&self) -> &[Expr] {
        &self.contents
    }

    /// The elements of this normal expression.
    ///
    /// Use [`Normal::elements()`] to get a reference to this value.
    pub fn into_elements(self) -> Vec<Expr> {
        self.contents
    }

    /// Returns `true` if the head of this expression is `sym`.
    pub fn has_head(&self, sym: &Symbol) -> bool {
        self.head == *sym
    }
}

impl Number {
    /// # Panics
    ///
    /// This function will panic if `r` is NaN.
    ///
    /// TODO: Change this function to take `NotNan` instead, so the caller doesn't have to
    ///       worry about panics.
    pub fn real(r: f64) -> Self {
        let r = match ordered_float::NotNan::new(r) {
            Ok(r) => r,
            Err(_) => panic!("Number::real: got NaN"),
        };
        Number::Real(r)
    }
}

//=======================================
// Display & Debug impl/s
//=======================================

impl fmt::Debug for Expr {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        let Expr { inner } = self;
        write!(f, "{:?}", inner)
    }
}

/// By default, this should generate a string which can be unambiguously parsed to
/// reconstruct the `Expr` being displayed. This means symbols will always include their
/// contexts, special characters in String's will always be properly escaped, and numeric
/// literals needing precision and accuracy marks will have them.
impl fmt::Display for Expr {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.inner)
    }
}

impl fmt::Display for ExprKind {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match *self {
            ExprKind::Normal(ref normal) => fmt::Display::fmt(normal, f),
            ExprKind::Integer(ref int) => fmt::Display::fmt(int, f),
            ExprKind::Real(ref real) => fmt::Display::fmt(real, f),
            ExprKind::String(ref string) => {
                // Escape any '"' which appear in the string.
                // Using the Debug implementation will cause \n, \t, etc. to appear in
                // place of the literal character they are escapes for. This is necessary
                // when printing expressions in a way that they can be read back in as a
                // string, such as with ToExpression.
                write!(f, "{:?}", string)
            },
            ExprKind::Symbol(ref symbol) => fmt::Display::fmt(symbol, f),
        }
    }
}

impl fmt::Debug for ExprKind {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self)
    }
}

impl fmt::Display for Normal {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}[", self.head)?;
        for (idx, elem) in self.contents.iter().enumerate() {
            write!(f, "{}", elem)?;
            if idx != self.contents.len() - 1 {
                write!(f, ", ")?;
            }
        }
        write!(f, "]")
    }
}

impl fmt::Display for Number {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match *self {
            Number::Integer(ref int) => write!(f, "{}", int),
            Number::Real(ref real) => {
                // Make sure we're not printing NotNan (which surprisingly implements
                // Display)
                let real: f64 = **real;
                write!(f, "{:?}", real)
            },
        }
    }
}

//======================================
// Comparision trait impls
//======================================

impl PartialEq<Symbol> for Expr {
    fn eq(&self, other: &Symbol) -> bool {
        match self.kind() {
            ExprKind::Symbol(self_sym) => self_sym == other,
            _ => false,
        }
    }
}