wnf 0.4.0

Safe bindings for the Windows Notification Facility
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
//! Reading types from state data

use std::alloc::Layout;
use std::ffi::c_void;
use std::io::ErrorKind;
use std::mem::MaybeUninit;
use std::ptr::NonNull;
use std::{alloc, io, mem, ptr};

use thiserror::Error;

use crate::bytes::CheckedBitPattern;
use crate::data::OpaqueData;

/// A trait for types that can be read from state data
///
/// A type `T` implements [`Read<D>`] if the data of a state of type `T` (i.e., an
/// [`OwnedState<T>`](crate::state::OwnedState) or a [`BorrowedState<'_, T>`](crate::state::BorrowedState))
/// can be read as an instance of type `D`, where `D` is either `T` or [`Box<T>`].
///
/// This is used to abstract over types that either implement [`CheckedBitPattern`] themselves or are of the form `[T]`
/// where `T` implements [`CheckedBitPattern`].
///
/// This trait is sealed and cannot be implemented outside of `wnf`.
pub trait Read<D>: private::Sealed + Send + 'static {
    /// Tries to read a `D` from a preallocated buffer
    ///
    /// The buffer starts at `ptr` and is `size` bytes long.
    ///
    /// # Safety
    /// - `ptr` must be valid for reads of size `size`
    /// - The memory range of size `size` starting at `ptr` must be initialized
    ///
    /// # Errors
    /// Returns an error if the data in the buffer is not a valid `D`
    #[doc(hidden)]
    unsafe fn from_buffer(ptr: *const c_void, size: usize) -> io::Result<D>;

    /// Tries to read a `D` by invoking a reader closure
    ///
    /// The reader closure takes a pointer to a buffer and the size of the buffer in bytes and tries to read a `D` into
    /// that buffer. It returns the actual number of bytes read and some metadata (such as a change stamp) that is
    /// passed through.
    ///
    /// # Safety
    /// When `reader` is invoked as `reader(ptr, size)`, it can assume that `ptr` is valid for accesses of size `size`
    ///
    /// When `reader(ptr, size)` returns `Ok((read_size, _))` with `read_size <= size`, then it must guarantee that the
    /// memory range of size `read_size` starting at `ptr` is initialized
    ///
    /// # Errors
    /// Returns an error if `reader` fails or the read data is not a valid `D`
    #[doc(hidden)]
    unsafe fn from_reader<F, Meta>(reader: F) -> io::Result<(D, Meta)>
    where
        F: FnMut(*mut c_void, usize) -> io::Result<(usize, Meta)>;
}

impl Read<OpaqueData> for OpaqueData {
    unsafe fn from_buffer(_: *const c_void, size: usize) -> io::Result<OpaqueData> {
        Ok(OpaqueData::new(size))
    }

    unsafe fn from_reader<F, Meta>(mut reader: F) -> io::Result<(OpaqueData, Meta)>
    where
        F: FnMut(*mut c_void, usize) -> io::Result<(usize, Meta)>,
    {
        // The precondition of `reader` is satisfied because `NonNull::dangling()` is valid for zero-size accesses
        let (size, meta) = reader(NonNull::dangling().as_ptr(), 0)?;
        Ok((OpaqueData::new(size), meta))
    }
}

impl<T> Read<T> for T
where
    T: CheckedBitPattern,
{
    unsafe fn from_buffer(ptr: *const c_void, size: usize) -> io::Result<T> {
        if size != mem::size_of::<T::Bits>() {
            return Err(io::Error::new(
                ErrorKind::InvalidData,
                ReadError::WrongSize {
                    expected: mem::size_of::<T::Bits>(),
                    actual: size,
                },
            ));
        }

        // SAFETY:
        // - `ptr` is valid for reads of `T::Bits` by the safety condition and `size == mem::size_of::<T::Bits>()`
        // - `ptr` points to a valid `T::Bits` because the memory range is initialized (by the safety condition) and
        //   `T::Bits: AnyBitPattern`
        let bits: T::Bits = unsafe { ptr::read_unaligned(ptr.cast()) };

        if T::is_valid_bit_pattern(&bits) {
            // SAFETY: By the safety conditions of `CheckedBitPattern`,
            // - `T` has the same memory layout as `T::Bits`
            // - `bits` can be reinterpreted as a `T` because `T::is_valid_bit_pattern(&bits)` is `true`
            Ok(unsafe { *(&bits as *const T::Bits as *const T) })
        } else {
            Err(io::Error::new(ErrorKind::InvalidData, ReadError::InvalidBitPattern))
        }
    }

    unsafe fn from_reader<F, Meta>(mut reader: F) -> io::Result<(T, Meta)>
    where
        F: FnMut(*mut c_void, usize) -> io::Result<(usize, Meta)>,
    {
        let mut bits = MaybeUninit::<T::Bits>::uninit();

        // The precondition of `reader` is satisfied because `bits.as_mut_ptr()` is valid for accesses of `T::Bits`
        let (size, meta) = reader(bits.as_mut_ptr().cast(), mem::size_of::<T::Bits>())?;

        if size != mem::size_of::<T::Bits>() {
            return Err(io::Error::new(
                ErrorKind::InvalidData,
                ReadError::WrongSize {
                    expected: mem::size_of::<T::Bits>(),
                    actual: size,
                },
            ));
        }

        // SAFETY:
        // `bits.as_mut_ptr()` points to a valid `T::Bits` because the memory range is initialized (by the safety
        // condition and `size == mem::size_of::<T::Bits>()`) and `T::Bits: AnyBitPattern`
        let bits = unsafe { bits.assume_init() };

        if T::is_valid_bit_pattern(&bits) {
            // SAFETY: By the safety conditions of `CheckedBitPattern`,
            // - `T` has the same memory layout as `T::Bits`
            // - `bits` can be reinterpreted as a `T` because `T::is_valid_bit_pattern(&bits)` is `true`
            let data = unsafe { *(&bits as *const T::Bits as *const T) };
            Ok((data, meta))
        } else {
            Err(io::Error::new(ErrorKind::InvalidData, ReadError::InvalidBitPattern))
        }
    }
}

impl<T> Read<Box<T>> for T
where
    T: CheckedBitPattern,
{
    unsafe fn from_buffer(ptr: *const c_void, size: usize) -> io::Result<Box<T>> {
        if size != mem::size_of::<T::Bits>() {
            return Err(io::Error::new(
                ErrorKind::InvalidData,
                ReadError::WrongSize {
                    expected: mem::size_of::<T::Bits>(),
                    actual: size,
                },
            ));
        }

        // Ideally, we would use `Box::new_uninit`, but that is unstable
        let bits = if mem::size_of::<T::Bits>() == 0 {
            // SAFETY:
            // The all-zero byte pattern is a valid `T::Bits` because `T::Bits` is zero-sized
            // (or, alternatively, because `T::Bits: AnyBitPattern`)
            unsafe { Box::new(mem::zeroed()) }
        } else {
            let layout = Layout::new::<T::Bits>();

            // SAFETY:
            // `layout` has non-zero size
            let data = unsafe { alloc::alloc(layout) as *mut T::Bits };

            // SAFETY:
            // - `ptr` is valid for reads of `mem::size_of::<T::Bits>()` by the safety condition and `size ==
            //   mem::size_of::<T::Bits>()`
            // - `data` is valid for writes of `mem::size_of::<T::Bits>()` because it was allocated with that size
            // - Both `ptr` and `data` are trivially properly aligned as `mem::align_of::<u8>() == 1`
            // - The source and destination regions don't overlap because the source region is within the bounds of a
            //   single allocated object (because `ptr` is valid for reads) while the destination region is a freshly
            //   allocated object
            unsafe {
                ptr::copy_nonoverlapping(ptr as *const u8, data as *mut u8, mem::size_of::<T::Bits>());
            }

            // SAFETY:
            // - `data` was allocated with the global allocator using the layout of `T::Bits`
            // - `data` is not aliased
            // - `data` points to a valid `T::Bits` because the memory range is initialized (by the safety condition)
            //   and `T::Bits: AnyBitPattern`
            unsafe { Box::from_raw(data) }
        };

        if T::is_valid_bit_pattern(&bits) {
            // SAFETY:
            // - The raw pointer is obtained via `Box::into_raw` from a `Box<T::Bits>`
            //
            // By the safety conditions of `CheckedBitPattern`,
            // - `T` has the same memory layout as `T::Bits`
            // - `bits` can be reinterpreted as a `T` because `T::is_valid_bit_pattern(&bits)` is `true`
            Ok(unsafe { Box::from_raw(Box::into_raw(bits) as *mut T) })
        } else {
            Err(io::Error::new(ErrorKind::InvalidData, ReadError::InvalidBitPattern))
        }
    }

    unsafe fn from_reader<F, Meta>(mut reader: F) -> io::Result<(Box<T>, Meta)>
    where
        F: FnMut(*mut c_void, usize) -> io::Result<(usize, Meta)>,
    {
        // Ideally, we would use `Box::new_uninit`, but that is unstable
        let mut bits = if mem::size_of::<T::Bits>() == 0 {
            Box::new(MaybeUninit::uninit())
        } else {
            let layout = Layout::new::<T::Bits>();

            // SAFETY:
            // `layout` has non-zero size
            let data = unsafe { alloc::alloc(layout) as *mut MaybeUninit<T::Bits> };

            // SAFETY:
            // - `data` was allocated with the global allocator using the layout of `T::Bits`, which is the same as the
            //   layout of `MaybeUninit<T::Bits>`
            // - `data` is not aliased
            // - `data` points to a valid `MaybeUninit<T::Bits>` because a `MaybeUninit<_>` is always valid
            unsafe { Box::from_raw(data) }
        };

        // The precondition of `reader` is satisfied because `bits.as_mut_ptr()` is valid for accesses of `T::Bits`
        let (size, meta) = reader(bits.as_mut_ptr().cast(), mem::size_of::<T::Bits>())?;

        if size != mem::size_of::<T::Bits>() {
            return Err(io::Error::new(
                ErrorKind::InvalidData,
                ReadError::WrongSize {
                    expected: mem::size_of::<T::Bits>(),
                    actual: size,
                },
            ));
        }

        // SAFETY:
        // - The raw pointer is obtained via `Box::into_raw` from a `Box<MaybeUninit<T::Bits>>`
        // - `T::Bits` has the same memory layout as `MaybeUninit<T::Bits>`
        // - The box contains a valid `T::Bits` because the memory range is initialized (by the safety condition and
        //   `size == mem::size_of::<T::Bits>()`) and `T::Bits: AnyBitPattern`
        let bits = unsafe { Box::from_raw(Box::into_raw(bits) as *mut T::Bits) };

        if T::is_valid_bit_pattern(&bits) {
            // SAFETY:
            // - The raw pointer is obtained via `Box::into_raw` from a `Box<T::Bits>`
            //
            // By the safety conditions of `CheckedBitPattern`,
            // - `T` has the same memory layout as `T::Bits`
            // - `bits` can be reinterpreted as a `T` because `T::is_valid_bit_pattern(&bits)` is `true`
            let data = unsafe { Box::from_raw(Box::into_raw(bits) as *mut T) };
            Ok((data, meta))
        } else {
            Err(io::Error::new(ErrorKind::InvalidData, ReadError::InvalidBitPattern))
        }
    }
}

impl<T> Read<Box<[T]>> for [T]
where
    T: CheckedBitPattern,
{
    unsafe fn from_buffer(ptr: *const c_void, size: usize) -> io::Result<Box<[T]>> {
        if mem::size_of::<T::Bits>() == 0 {
            return if size == 0 {
                Ok(Vec::new().into_boxed_slice())
            } else {
                Err(io::Error::new(
                    ErrorKind::InvalidData,
                    ReadError::WrongSize {
                        expected: 0,
                        actual: size,
                    },
                ))
            };
        }

        if size % mem::size_of::<T::Bits>() != 0 {
            return Err(io::Error::new(
                ErrorKind::InvalidData,
                ReadError::WrongSizeMultiple {
                    expected_modulus: mem::size_of::<T::Bits>(),
                    actual: size,
                },
            ));
        }

        let len = size / mem::size_of::<T::Bits>();
        let mut buffer = Vec::with_capacity(len);

        // SAFETY:
        // - `ptr` is valid for reads of size `size` by the safety condition
        // - `buffer.as_mut_ptr()` is valid for writes of size `size` because `buffer.capacity() *
        //   mem::size_of::<T::Bits>() == size`
        // - Both `ptr` and `buffer.as_mut_ptr()` are trivially properly aligned as `mem::align_of::<u8>() == 1`
        // - The source and destination regions don't overlap because the source region is within the bounds of a single
        //   allocated object (because `ptr` is valid for reads) while the destination region is a freshly allocated
        //   object
        unsafe {
            ptr::copy_nonoverlapping(ptr as *const u8, buffer.as_mut_ptr() as *mut u8, size);
        }

        // SAFETY:
        // - `len <= buffer.capacity()`
        // - The elements at `0..len` are valid `T::Bits` because the memory range is initialized (by the safety
        //   condition) and `T::Bits: AnyBitPattern`
        unsafe {
            buffer.set_len(len);
        }

        if buffer.iter().all(T::is_valid_bit_pattern) {
            let data = buffer.into_boxed_slice();

            // SAFETY:
            // - The raw pointer is obtained via `Box::into_raw` from a `Box<[T::Bits]>`
            //
            // By the safety conditions of `CheckedBitPattern`,
            // - `T` has the same memory layout as `T::Bits`
            // - all elements of `data` can be reinterpreted as `T` because `T::is_valid_bit_pattern` is `true` for each
            //   element
            Ok(unsafe { Box::from_raw(Box::into_raw(data) as *mut [T]) })
        } else {
            Err(io::Error::new(ErrorKind::InvalidData, ReadError::InvalidBitPattern))
        }
    }

    unsafe fn from_reader<F, Meta>(mut reader: F) -> io::Result<(Box<[T]>, Meta)>
    where
        F: FnMut(*mut c_void, usize) -> io::Result<(usize, Meta)>,
    {
        let mut buffer: Vec<T::Bits> = Vec::new();

        // We need to loop to deal with race conditions caused by the state data growing larger after we determine
        // its size but before we perform the actual read. This is guaranteed to terminate because we only reiterate
        // when the new size is strictly larger than the old one and there is an upper bound to the size of a state
        let (len, meta) = loop {
            // The precondition of `reader` is satisfied because `buffer.as_mut_ptr()` is valid for accesses of
            // `T::Bits`
            let (size, meta) = reader(
                buffer.as_mut_ptr().cast(),
                buffer.capacity() * mem::size_of::<T::Bits>(),
            )?;

            if size == 0 {
                break (0, meta);
            }

            if mem::size_of::<T::Bits>() == 0 {
                return Err(io::Error::new(
                    ErrorKind::InvalidData,
                    ReadError::WrongSize {
                        expected: 0,
                        actual: size,
                    },
                ));
            }

            if size % mem::size_of::<T::Bits>() != 0 {
                return Err(io::Error::new(
                    ErrorKind::InvalidData,
                    ReadError::WrongSizeMultiple {
                        expected_modulus: mem::size_of::<T::Bits>(),
                        actual: size,
                    },
                ));
            }

            let len = size / mem::size_of::<T::Bits>();

            if len > buffer.capacity() {
                buffer.reserve(len);
                // At this point we have `buffer.capacity() >= len`
            } else {
                break (len, meta);
            }
        };

        // At this point we have `size == len * mem::size_of::<T::Bits>()`

        // SAFETY:
        // - `len <= buffer.capacity()`
        // - The elements at `0..len` are valid `T::Bits` because the memory range is initialized (by the safety
        //   condition and `size == len * mem::size_of::<T::Bits>()`) and `T::Bits: AnyBitPattern`
        unsafe {
            buffer.set_len(len);
        }

        if buffer.iter().all(T::is_valid_bit_pattern) {
            let data = buffer.into_boxed_slice();

            // SAFETY:
            // - The raw pointer is obtained via `Box::into_raw` from a `Box<[T::Bits]>`
            //
            // By the safety conditions of `CheckedBitPattern`,
            // - `T` has the same memory layout as `T::Bits`
            // - all elements of `data` can be reinterpreted as `T` because `T::is_valid_bit_pattern` is `true` for each
            //   element
            let data = unsafe { Box::from_raw(Box::into_raw(data) as *mut [T]) };

            Ok((data, meta))
        } else {
            Err(io::Error::new(ErrorKind::InvalidData, ReadError::InvalidBitPattern))
        }
    }
}

/// An error reading state data
#[derive(Clone, Copy, Debug, Eq, Error, Hash, PartialEq)]
pub enum ReadError {
    /// The size of the data doesn't match the size of the data type `T`
    #[error("failed to read state data: data has wrong size (expected {expected}, got {actual})")]
    WrongSize {
        /// The expected size in bytes, which is the size of the data type `T`
        expected: usize,

        /// The actual size in bytes of the state data
        actual: usize,
    },

    /// The size of the data isn't a multiple of the size of `T` (for slice data types `[T]`)
    #[error(
        "failed to read state data: data has wrong size (expected a multiple of {expected_modulus}, got {actual})"
    )]
    WrongSizeMultiple {
        /// The number the state data size in bytes is expected to be a multiple of
        expected_modulus: usize,

        /// The actual size in bytes of the state data
        actual: usize,
    },

    /// The state data has an invalid bit pattern for the data type `T`
    #[error("failed to read state data: data has invalid bit pattern")]
    InvalidBitPattern,
}

/// Making [`Read<D>`] a sealed trait
mod private {
    use super::*;

    pub trait Sealed {}

    impl Sealed for OpaqueData {}
    impl<T> Sealed for T where T: CheckedBitPattern {}
    impl<T> Sealed for [T] where T: CheckedBitPattern {}
}

#[cfg(test)]
mod tests {
    #![allow(clippy::undocumented_unsafe_blocks)]

    use std::cmp::min;

    use super::*;
    use crate::bytes::AnyBitPattern;

    #[test]
    fn opaque_data_from_buffer() {
        let data = MisalignedU16::default();
        let (ptr, size) = data.as_buffer();

        // SAFETY:
        // - `ptr` and `size` come from a preallocated buffer
        let result = unsafe { OpaqueData::from_buffer(ptr, size) };

        assert!(matches!(result, Ok(data) if data.size() == 2));
    }

    #[test]
    fn opaque_data_from_reader() {
        // SAFETY: See `reader`
        let result = unsafe { OpaqueData::from_reader(reader(&[0xFF; 2], "Meta")) };

        assert!(matches!(result, Ok((data, "Meta")) if data.size() == 2));
    }

    #[test]
    fn zero_sized_from_buffer_success() {
        // SAFETY:
        // - `NonNull::dangling()` is valid for zero-size reads
        // - a zero-size memory range is always initialized
        let result: io::Result<ZeroSized> = unsafe { ZeroSized::from_buffer(NonNull::dangling().as_ptr(), 0) };

        assert!(result.is_ok());
    }

    #[test]
    fn zero_sized_from_buffer_wrong_size() {
        let data = MisalignedU16::default();
        let (ptr, size) = data.as_buffer();

        // SAFETY:
        // - `ptr` and `size` come from a preallocated buffer
        let result: io::Result<ZeroSized> = unsafe { ZeroSized::from_buffer(ptr, size) };

        assert!(result.is_err());
        let err = result.unwrap_err();
        assert_eq!(err.kind(), ErrorKind::InvalidData);
        assert_eq!(
            err.to_string(),
            "failed to read state data: data has wrong size (expected 0, got 2)"
        );
    }

    #[test]
    fn zero_sized_from_buffer_invalid_bit_pattern() {
        // SAFETY:
        // - `NonNull::dangling()` is valid for zero-size reads
        // - a zero-size memory range is always initialized
        let result: io::Result<AlwaysInvalid<ZeroSized>> =
            unsafe { AlwaysInvalid::<ZeroSized>::from_buffer(NonNull::dangling().as_ptr(), 0) };

        assert!(result.is_err());
        let err = result.unwrap_err();
        assert_eq!(err.kind(), ErrorKind::InvalidData);
        assert_eq!(
            err.to_string(),
            "failed to read state data: data has invalid bit pattern"
        );
    }

    #[test]
    fn zero_sized_from_reader_success() {
        // SAFETY: See `reader`
        let result: io::Result<(ZeroSized, &str)> = unsafe { ZeroSized::from_reader(reader(&[], "Meta")) };

        assert!(matches!(result, Ok((_, "Meta"))));
    }

    #[test]
    fn zero_sized_from_reader_wrong_size() {
        // SAFETY: See `reader`
        let result: io::Result<(ZeroSized, &str)> = unsafe { ZeroSized::from_reader(reader(&[0xFF; 2], "Meta")) };

        assert!(result.is_err());
        let err = result.unwrap_err();
        assert_eq!(err.kind(), ErrorKind::InvalidData);
        assert_eq!(
            err.to_string(),
            "failed to read state data: data has wrong size (expected 0, got 2)"
        );
    }

    #[test]
    fn zero_sized_from_reader_invalid_bit_pattern() {
        // SAFETY: See `reader`
        let result: io::Result<(AlwaysInvalid<ZeroSized>, &str)> =
            unsafe { AlwaysInvalid::<ZeroSized>::from_reader(reader(&[], "Meta")) };

        assert!(result.is_err());
        let err = result.unwrap_err();
        assert_eq!(err.kind(), ErrorKind::InvalidData);
        assert_eq!(
            err.to_string(),
            "failed to read state data: data has invalid bit pattern"
        );
    }

    #[test]
    fn zero_sized_boxed_from_buffer_success() {
        // SAFETY:
        // - `NonNull::dangling()` is valid for zero-size reads
        // - a zero-size memory range is always initialized
        let result: io::Result<Box<ZeroSized>> = unsafe { ZeroSized::from_buffer(NonNull::dangling().as_ptr(), 0) };

        assert!(result.is_ok());
    }

    #[test]
    fn zero_sized_boxed_from_reader_success() {
        // SAFETY: See `reader`
        let result: io::Result<(Box<ZeroSized>, &str)> = unsafe { ZeroSized::from_reader(reader(&[], "Meta")) };

        assert!(matches!(result, Ok((_, "Meta"))));
    }

    #[test]
    fn zero_sized_slice_from_buffer_success() {
        // SAFETY:
        // - `NonNull::dangling()` is valid for zero-size reads
        // - a zero-size memory range is always initialized
        let result: io::Result<Box<[ZeroSized]>> =
            unsafe { <[ZeroSized]>::from_buffer(NonNull::dangling().as_ptr(), 0) };

        assert!(matches!(result, Ok(read_data) if read_data.is_empty()));
    }

    #[test]
    fn zero_sized_slice_from_buffer_wrong_size() {
        let data = MisalignedU16::default();
        let (ptr, size) = data.as_buffer();

        // SAFETY:
        // - `ptr` and `size` come from a preallocated buffer
        let result: io::Result<Box<[ZeroSized]>> = unsafe { <[ZeroSized]>::from_buffer(ptr, size) };

        assert!(result.is_err());
        let err = result.unwrap_err();
        assert_eq!(err.kind(), ErrorKind::InvalidData);
        assert_eq!(
            err.to_string(),
            "failed to read state data: data has wrong size (expected 0, got 2)"
        );
    }

    #[test]
    fn zero_sized_slice_from_reader_success() {
        // SAFETY: See `reader`
        let result: io::Result<(Box<[ZeroSized]>, &str)> = unsafe { <[ZeroSized]>::from_reader(reader(&[], "Meta")) };

        assert!(matches!(result, Ok((read_data, "Meta")) if read_data.is_empty()));
    }

    #[test]
    fn zero_sized_slice_from_reader_wrong_size() {
        // SAFETY: See `reader`
        let result: io::Result<(Box<[ZeroSized]>, &str)> =
            unsafe { <[ZeroSized]>::from_reader(reader(&[0xFF; 2], "Meta")) };

        assert!(result.is_err());
        let err = result.unwrap_err();
        assert_eq!(err.kind(), ErrorKind::InvalidData);
        assert_eq!(
            err.to_string(),
            "failed to read state data: data has wrong size (expected 0, got 2)"
        );
    }

    #[test]
    fn nonzero_sized_from_buffer_success() {
        let data = MisalignedU16::default();
        let (ptr, size) = data.as_buffer();

        // SAFETY:
        // - `ptr` and `size` come from a preallocated buffer
        let result: io::Result<u16> = unsafe { u16::from_buffer(ptr, size) };

        assert!(matches!(result, Ok(read_data) if read_data == data.as_u16()));
    }

    #[test]
    fn nonzero_sized_from_buffer_wrong_size() {
        let data = MisalignedU16::default();
        let (ptr, size) = data.as_buffer();

        // SAFETY:
        // - `ptr` and `size` come from a preallocated buffer
        let result: io::Result<u32> = unsafe { u32::from_buffer(ptr, size) };

        assert!(result.is_err());
        let err = result.unwrap_err();
        assert_eq!(err.kind(), ErrorKind::InvalidData);
        assert_eq!(
            err.to_string(),
            "failed to read state data: data has wrong size (expected 4, got 2)"
        );
    }

    #[test]
    fn nonzero_sized_from_buffer_invalid_bit_pattern() {
        let data = MisalignedU16::default();
        let (ptr, size) = data.as_buffer();

        // SAFETY:
        // - `ptr` and `size` come from a preallocated buffer
        let result: io::Result<AlwaysInvalid<u16>> = unsafe { AlwaysInvalid::<u16>::from_buffer(ptr, size) };

        assert!(result.is_err());
        let err = result.unwrap_err();
        assert_eq!(err.kind(), ErrorKind::InvalidData);
        assert_eq!(
            err.to_string(),
            "failed to read state data: data has invalid bit pattern"
        );
    }

    #[test]
    fn nonzero_sized_from_reader_success() {
        let data: u16 = 0x1234;

        // SAFETY: See `reader`
        let result: io::Result<(u16, &str)> = unsafe { u16::from_reader(reader(&data.to_le_bytes(), "Meta")) };

        assert!(matches!(result, Ok((read_data, "Meta")) if read_data == data));
    }

    #[test]
    fn nonzero_sized_from_reader_wrong_size() {
        // SAFETY: See `reader`
        let result: io::Result<(u32, &str)> = unsafe { u32::from_reader(reader(&[0xFF; 2], "Meta")) };

        assert!(result.is_err());
        let err = result.unwrap_err();
        assert_eq!(err.kind(), ErrorKind::InvalidData);
        assert_eq!(
            err.to_string(),
            "failed to read state data: data has wrong size (expected 4, got 2)"
        );
    }

    #[test]
    fn nonzero_sized_from_reader_invalid_bit_pattern() {
        // SAFETY: See `reader`
        let result: io::Result<(AlwaysInvalid<u16>, &str)> =
            unsafe { AlwaysInvalid::<u16>::from_reader(reader(&[0xFF; 2], "Meta")) };

        assert!(result.is_err());
        let err = result.unwrap_err();
        assert_eq!(err.kind(), ErrorKind::InvalidData);
        assert_eq!(
            err.to_string(),
            "failed to read state data: data has invalid bit pattern"
        );
    }

    #[test]
    fn nonzero_sized_boxed_from_buffer_success() {
        let data = MisalignedU16::default();
        let (ptr, size) = data.as_buffer();

        // SAFETY:
        // - `ptr` and `size` come from a preallocated buffer
        let result: io::Result<Box<u16>> = unsafe { u16::from_buffer(ptr, size) };

        assert!(matches!(result, Ok(read_data) if *read_data == data.as_u16()));
    }

    #[test]
    fn nonzero_sized_boxed_from_reader_success() {
        let data: u16 = 0x1234;

        // SAFETY: See `reader`
        let result: io::Result<(Box<u16>, &str)> = unsafe { u16::from_reader(reader(&data.to_le_bytes(), "Meta")) };

        assert!(matches!(result, Ok((read_data, "Meta")) if *read_data == data));
    }

    #[test]
    fn nonzero_sized_slice_from_buffer_success_empty() {
        // SAFETY:
        // - `NonNull::dangling()` is valid for zero-size reads
        // - a zero-size memory range is always initialized
        let result: io::Result<Box<[u16]>> = unsafe { <[u16]>::from_buffer(NonNull::dangling().as_ptr(), 0) };

        assert!(matches!(result, Ok(read_data) if read_data.is_empty()));
    }

    #[test]
    fn nonzero_sized_slice_from_buffer_success_nonempty() {
        let data = MisalignedU16Slice::default();
        let (ptr, size) = data.as_buffer();

        // SAFETY:
        // - `ptr` and `size` come from a preallocated buffer
        let result: io::Result<Box<[u16]>> = unsafe { <[u16]>::from_buffer(ptr, size) };

        assert!(matches!(result, Ok(read_data) if *read_data == *data.as_u16_slice()));
    }

    #[test]
    fn nonzero_sized_slice_from_buffer_wrong_size_multiple() {
        let data = MisalignedU16Slice::default();
        let (ptr, size) = data.as_buffer();

        // SAFETY:
        // - `ptr` and `size` come from a preallocated buffer
        let result: io::Result<Box<[u64]>> = unsafe { <[u64]>::from_buffer(ptr, size) };

        assert!(result.is_err());
        let err = result.unwrap_err();
        assert_eq!(err.kind(), ErrorKind::InvalidData);
        assert_eq!(
            err.to_string(),
            "failed to read state data: data has wrong size (expected a multiple of 8, got 4)"
        );
    }

    #[test]
    fn nonzero_sized_slice_from_buffer_invalid_bit_pattern() {
        let data = MisalignedU16Slice::default();
        let (ptr, size) = data.as_buffer();

        // SAFETY:
        // - `ptr` and `size` come from a preallocated buffer
        let result: io::Result<Box<[AlwaysInvalid<u16>]>> = unsafe { <[AlwaysInvalid<u16>]>::from_buffer(ptr, size) };

        assert!(result.is_err());
        let err = result.unwrap_err();
        assert_eq!(err.kind(), ErrorKind::InvalidData);
        assert_eq!(
            err.to_string(),
            "failed to read state data: data has invalid bit pattern"
        );
    }

    #[test]
    fn nonzero_sized_slice_from_reader_success() {
        let data: [u16; 2] = [0x1234, 0x5678];
        let raw_data: Vec<_> = data.iter().flat_map(|&value| value.to_le_bytes().into_iter()).collect();

        // SAFETY: See `reader`
        let result: io::Result<(Box<[u16]>, &str)> = unsafe { <[u16]>::from_reader(reader(&raw_data, "Meta")) };

        assert!(matches!(result, Ok((read_data, "Meta")) if *read_data == data));
    }

    #[test]
    fn nonzero_sized_slice_from_reader_growing() {
        // We pass a reader that first produces one element, then five
        // After seeing the one element, the destination vector will grow directly to a capacity of four elements, so it
        // needs to grow by one more element
        let data: [u16; 5] = [0x1122, 0x3344, 0x5566, 0x7788, 0x99AA];
        let raw_data_1 = data[0].to_le_bytes();
        let raw_data_2: Vec<_> = data.iter().flat_map(|&value| value.to_le_bytes().into_iter()).collect();

        // SAFETY: See `multireader`
        let result: io::Result<(Box<[u16]>, &str)> =
            unsafe { <[u16]>::from_reader(multireader(vec![(&raw_data_1, "Meta 1"), (&raw_data_2, "Meta 2")])) };

        assert!(matches!(result, Ok((read_data, "Meta 2")) if *read_data == data));
    }

    #[test]
    fn nonzero_sized_slice_from_reader_wrong_size_multiple() {
        // SAFETY: See `reader`
        let result: io::Result<(Box<[u64]>, &str)> = unsafe { <[u64]>::from_reader(reader(&[0xFF; 4], "Meta")) };

        assert!(result.is_err());
        let err = result.unwrap_err();
        assert_eq!(err.kind(), ErrorKind::InvalidData);
        assert_eq!(
            err.to_string(),
            "failed to read state data: data has wrong size (expected a multiple of 8, got 4)"
        );
    }

    #[test]
    fn nonzero_sized_slice_from_reader_invalid_bit_pattern() {
        // SAFETY: See `reader`
        let result: io::Result<(Box<[AlwaysInvalid<u16>]>, &str)> =
            unsafe { <[AlwaysInvalid<u16>]>::from_reader(reader(&[0xFF; 4], "Meta")) };

        assert!(result.is_err());
        let err = result.unwrap_err();
        assert_eq!(err.kind(), ErrorKind::InvalidData);
        assert_eq!(
            err.to_string(),
            "failed to read state data: data has invalid bit pattern"
        );
    }

    #[derive(Clone, Copy, Debug)]
    #[repr(C)]
    struct ZeroSized;

    // SAFETY:
    // `ZeroSized` is zero-sized
    unsafe impl AnyBitPattern for ZeroSized {}

    #[derive(Debug, Clone, Copy)]
    #[repr(transparent)]
    struct AlwaysInvalid<T>(T);

    // SAFETY:
    // `AlwaysInvalid<T>` has the same memory layout as `T`
    // `is_valid_bit_pattern` always returns `false`
    unsafe impl<T> CheckedBitPattern for AlwaysInvalid<T>
    where
        T: AnyBitPattern,
    {
        type Bits = T;

        fn is_valid_bit_pattern(_: &T) -> bool {
            false
        }
    }

    #[derive(Debug, Default)]
    struct MisalignedU16 {
        slice: MisalignedU16Slice,
    }

    impl MisalignedU16 {
        fn as_u16(&self) -> u16 {
            self.slice.as_u16_slice()[0]
        }

        fn as_buffer(&self) -> (*const c_void, usize) {
            let (ptr, size) = self.slice.as_buffer();
            (ptr, size / self.slice.len())
        }
    }

    #[derive(Debug)]
    struct MisalignedU16Slice {
        buffer: [u16; 3],
    }

    impl Default for MisalignedU16Slice {
        fn default() -> Self {
            Self {
                // Since `mem::align_of::<[u16; 3]>() == 2`, the buffer looks like this in memory
                // (assuming little-endian byte order):
                //
                // Memory address mod 2 | 0    | 1    | 0    | 1    | 0    | 1    |
                // Value                | 0xFF | 0x34 | 0x12 | 0x78 | 0x56 | 0xFF |
                //
                // So the 4-byte subslice starting at an offset of 1 byte is a misaligned `[u16]` with value
                // `[0x1234, 0x5678]`
                buffer: [0x34FF, 0x7812, 0xFF56],
            }
        }
    }

    impl MisalignedU16Slice {
        fn len(&self) -> usize {
            self.as_u16_slice().len()
        }

        fn as_u16_slice(&self) -> &[u16] {
            &[0x1234, 0x5678]
        }

        fn as_buffer(&self) -> (*const c_void, usize) {
            let ptr = self.buffer.as_ptr() as *const u8;

            // SAFETY:
            // - Both `ptr` and the offset pointer are in bounds of the same allocated object `self.buffer`
            // - The computed offset does not overflow an `isize`
            // - The computed sum does not overflow a `usize`
            let ptr = unsafe { ptr.offset(1) };

            assert_ne!((ptr as usize) % mem::align_of::<u16>(), 0);
            (ptr as *const c_void, self.len() * mem::size_of::<u16>())
        }
    }

    /// Produces a reader that reads from the provided data and returns the provided metadata
    fn reader<'a, Meta>(data: &'a [u8], meta: Meta) -> impl FnMut(*mut c_void, usize) -> io::Result<(usize, Meta)> + 'a
    where
        Meta: Clone + 'a,
    {
        multireader(vec![(data, meta)])
    }

    /// Produces a reader that, on its first invocation, reads from the provided data and returns the provided metadata
    /// from the first element of `outputs`, then on its second invocation from the second element and so on
    ///
    /// When `outputs` is exhausted, its last element is repeated.
    ///
    /// # Safety notes
    /// - `multireader(&[(data, _), ..])(ptr, size)` returns `Ok((data.len(), _))`
    /// - If `data.len() <= size`, then `min(data.len(), size) == data.len()` and the memory range of size `data.len()`
    ///   starting at `ptr` is initialized because it is filled by `ptr::copy_nonoverlapping`
    fn multireader<'a, Meta>(
        outputs: Vec<(&'a [u8], Meta)>,
    ) -> impl FnMut(*mut c_void, usize) -> io::Result<(usize, Meta)> + 'a
    where
        Meta: Clone + 'a,
    {
        let mut outputs = (0..).map(move |idx| outputs[min(idx, outputs.len() - 1)].clone());

        move |ptr, size| {
            let (data, meta) = outputs.next().unwrap();

            // SAFETY:
            // - `data.as_ptr()` is valid for reads of `min(data.len(), size)` because it comes from the live reference
            //   `data` pointing to data of size `data.len()`
            // - `ptr` is valid for writes of `min(data.len(), size)` by the safety conditions of `from_reader`
            // - Both `data.as_ptr()` and `ptr` are trivially properly aligned as `mem::align_of::<u8>() == 1`
            // - The source and destination regions don't overlap because the source region is within the bounds of the
            //   single allocated object `data` while the destination region is within the bounds of another single
            //   allocated object because `ptr` is valid for writes
            unsafe {
                ptr::copy_nonoverlapping(data.as_ptr(), ptr as *mut u8, min(data.len(), size));
            }

            Ok((data.len(), meta))
        }
    }
}