Struct X2

Source
#[repr(C)]
pub struct X2<Scalar>(pub Scalar, pub Scalar) where Scalar: ScalarInterface;
Expand description

Vector X2

Tuple Fields§

§0: Scalar§1: Scalar

Methods from Deref<Target = Matrix<Scalar, Const<2>, Const<1>, ArrayStorage<Scalar, 2, 1>>>§

Source

pub fn dot<R2, C2, SB>(&self, rhs: &Matrix<T, R2, C2, SB>) -> T
where R2: Dim, C2: Dim, SB: RawStorage<T, R2, C2>, ShapeConstraint: DimEq<R, R2> + DimEq<C, C2>,

The dot product between two vectors or matrices (seen as vectors).

This is equal to self.transpose() * rhs. For the sesquilinear complex dot product, use self.dotc(rhs).

Note that this is not the matrix multiplication as in, e.g., numpy. For matrix multiplication, use one of: .gemm, .mul_to, .mul, the * operator.

§Example
let vec1 = Vector3::new(1.0, 2.0, 3.0);
let vec2 = Vector3::new(0.1, 0.2, 0.3);
assert_eq!(vec1.dot(&vec2), 1.4);

let mat1 = Matrix2x3::new(1.0, 2.0, 3.0,
                          4.0, 5.0, 6.0);
let mat2 = Matrix2x3::new(0.1, 0.2, 0.3,
                          0.4, 0.5, 0.6);
assert_eq!(mat1.dot(&mat2), 9.1);
Source

pub fn dotc<R2, C2, SB>(&self, rhs: &Matrix<T, R2, C2, SB>) -> T
where R2: Dim, C2: Dim, T: SimdComplexField, SB: RawStorage<T, R2, C2>, ShapeConstraint: DimEq<R, R2> + DimEq<C, C2>,

The conjugate-linear dot product between two vectors or matrices (seen as vectors).

This is equal to self.adjoint() * rhs. For real vectors, this is identical to self.dot(&rhs). Note that this is not the matrix multiplication as in, e.g., numpy. For matrix multiplication, use one of: .gemm, .mul_to, .mul, the * operator.

§Example
let vec1 = Vector2::new(Complex::new(1.0, 2.0), Complex::new(3.0, 4.0));
let vec2 = Vector2::new(Complex::new(0.4, 0.3), Complex::new(0.2, 0.1));
assert_eq!(vec1.dotc(&vec2), Complex::new(2.0, -1.0));

// Note that for complex vectors, we generally have:
// vec1.dotc(&vec2) != vec2.dot(&vec2)
assert_ne!(vec1.dotc(&vec2), vec1.dot(&vec2));
Source

pub fn tr_dot<R2, C2, SB>(&self, rhs: &Matrix<T, R2, C2, SB>) -> T
where R2: Dim, C2: Dim, SB: RawStorage<T, R2, C2>, ShapeConstraint: DimEq<C, R2> + DimEq<R, C2>,

The dot product between the transpose of self and rhs.

§Example
let vec1 = Vector3::new(1.0, 2.0, 3.0);
let vec2 = RowVector3::new(0.1, 0.2, 0.3);
assert_eq!(vec1.tr_dot(&vec2), 1.4);

let mat1 = Matrix2x3::new(1.0, 2.0, 3.0,
                          4.0, 5.0, 6.0);
let mat2 = Matrix3x2::new(0.1, 0.4,
                          0.2, 0.5,
                          0.3, 0.6);
assert_eq!(mat1.tr_dot(&mat2), 9.1);
Source

pub fn axcpy<D2, SB>( &mut self, a: T, x: &Matrix<T, D2, Const<1>, SB>, c: T, b: T, )
where D2: Dim, SB: Storage<T, D2>, ShapeConstraint: DimEq<D, D2>,

Computes self = a * x * c + b * self.

If b is zero, self is never read from.

§Example
let mut vec1 = Vector3::new(1.0, 2.0, 3.0);
let vec2 = Vector3::new(0.1, 0.2, 0.3);
vec1.axcpy(5.0, &vec2, 2.0, 5.0);
assert_eq!(vec1, Vector3::new(6.0, 12.0, 18.0));
Source

pub fn axpy<D2, SB>(&mut self, a: T, x: &Matrix<T, D2, Const<1>, SB>, b: T)
where D2: Dim, T: One, SB: Storage<T, D2>, ShapeConstraint: DimEq<D, D2>,

Computes self = a * x + b * self.

If b is zero, self is never read from.

§Example
let mut vec1 = Vector3::new(1.0, 2.0, 3.0);
let vec2 = Vector3::new(0.1, 0.2, 0.3);
vec1.axpy(10.0, &vec2, 5.0);
assert_eq!(vec1, Vector3::new(6.0, 12.0, 18.0));
Source

pub fn gemv<R2, C2, D3, SB, SC>( &mut self, alpha: T, a: &Matrix<T, R2, C2, SB>, x: &Matrix<T, D3, Const<1>, SC>, beta: T, )
where R2: Dim, C2: Dim, D3: Dim, T: One, SB: Storage<T, R2, C2>, SC: Storage<T, D3>, ShapeConstraint: DimEq<D, R2> + AreMultipliable<R2, C2, D3, Const<1>>,

Computes self = alpha * a * x + beta * self, where a is a matrix, x a vector, and alpha, beta two scalars.

If beta is zero, self is never read.

§Example
let mut vec1 = Vector2::new(1.0, 2.0);
let vec2 = Vector2::new(0.1, 0.2);
let mat = Matrix2::new(1.0, 2.0,
                       3.0, 4.0);
vec1.gemv(10.0, &mat, &vec2, 5.0);
assert_eq!(vec1, Vector2::new(10.0, 21.0));
Source

pub fn sygemv<D2, D3, SB, SC>( &mut self, alpha: T, a: &Matrix<T, D2, D2, SB>, x: &Matrix<T, D3, Const<1>, SC>, beta: T, )
where D2: Dim, D3: Dim, T: One, SB: Storage<T, D2, D2>, SC: Storage<T, D3>, ShapeConstraint: DimEq<D, D2> + AreMultipliable<D2, D2, D3, Const<1>>,

Computes self = alpha * a * x + beta * self, where a is a symmetric matrix, x a vector, and alpha, beta two scalars.

For hermitian matrices, use .hegemv instead. If beta is zero, self is never read. If self is read, only its lower-triangular part (including the diagonal) is actually read.

§Examples
let mat = Matrix2::new(1.0, 2.0,
                       2.0, 4.0);
let mut vec1 = Vector2::new(1.0, 2.0);
let vec2 = Vector2::new(0.1, 0.2);
vec1.sygemv(10.0, &mat, &vec2, 5.0);
assert_eq!(vec1, Vector2::new(10.0, 20.0));


// The matrix upper-triangular elements can be garbage because it is never
// read by this method. Therefore, it is not necessary for the caller to
// fill the matrix struct upper-triangle.
let mat = Matrix2::new(1.0, 9999999.9999999,
                       2.0, 4.0);
let mut vec1 = Vector2::new(1.0, 2.0);
vec1.sygemv(10.0, &mat, &vec2, 5.0);
assert_eq!(vec1, Vector2::new(10.0, 20.0));
Source

pub fn hegemv<D2, D3, SB, SC>( &mut self, alpha: T, a: &Matrix<T, D2, D2, SB>, x: &Matrix<T, D3, Const<1>, SC>, beta: T, )
where D2: Dim, D3: Dim, T: SimdComplexField, SB: Storage<T, D2, D2>, SC: Storage<T, D3>, ShapeConstraint: DimEq<D, D2> + AreMultipliable<D2, D2, D3, Const<1>>,

Computes self = alpha * a * x + beta * self, where a is an hermitian matrix, x a vector, and alpha, beta two scalars.

If beta is zero, self is never read. If self is read, only its lower-triangular part (including the diagonal) is actually read.

§Examples
let mat = Matrix2::new(Complex::new(1.0, 0.0), Complex::new(2.0, -0.1),
                       Complex::new(2.0, 1.0), Complex::new(4.0, 0.0));
let mut vec1 = Vector2::new(Complex::new(1.0, 2.0), Complex::new(3.0, 4.0));
let vec2 = Vector2::new(Complex::new(0.1, 0.2), Complex::new(0.3, 0.4));
vec1.sygemv(Complex::new(10.0, 20.0), &mat, &vec2, Complex::new(5.0, 15.0));
assert_eq!(vec1, Vector2::new(Complex::new(-48.0, 44.0), Complex::new(-75.0, 110.0)));


// The matrix upper-triangular elements can be garbage because it is never
// read by this method. Therefore, it is not necessary for the caller to
// fill the matrix struct upper-triangle.

let mat = Matrix2::new(Complex::new(1.0, 0.0), Complex::new(99999999.9, 999999999.9),
                       Complex::new(2.0, 1.0), Complex::new(4.0, 0.0));
let mut vec1 = Vector2::new(Complex::new(1.0, 2.0), Complex::new(3.0, 4.0));
let vec2 = Vector2::new(Complex::new(0.1, 0.2), Complex::new(0.3, 0.4));
vec1.sygemv(Complex::new(10.0, 20.0), &mat, &vec2, Complex::new(5.0, 15.0));
assert_eq!(vec1, Vector2::new(Complex::new(-48.0, 44.0), Complex::new(-75.0, 110.0)));
Source

pub fn gemv_tr<R2, C2, D3, SB, SC>( &mut self, alpha: T, a: &Matrix<T, R2, C2, SB>, x: &Matrix<T, D3, Const<1>, SC>, beta: T, )
where R2: Dim, C2: Dim, D3: Dim, T: One, SB: Storage<T, R2, C2>, SC: Storage<T, D3>, ShapeConstraint: DimEq<D, C2> + AreMultipliable<C2, R2, D3, Const<1>>,

Computes self = alpha * a.transpose() * x + beta * self, where a is a matrix, x a vector, and alpha, beta two scalars.

If beta is zero, self is never read.

§Example
let mat = Matrix2::new(1.0, 3.0,
                       2.0, 4.0);
let mut vec1 = Vector2::new(1.0, 2.0);
let vec2 = Vector2::new(0.1, 0.2);
let expected = mat.transpose() * vec2 * 10.0 + vec1 * 5.0;

vec1.gemv_tr(10.0, &mat, &vec2, 5.0);
assert_eq!(vec1, expected);
Source

pub fn gemv_ad<R2, C2, D3, SB, SC>( &mut self, alpha: T, a: &Matrix<T, R2, C2, SB>, x: &Matrix<T, D3, Const<1>, SC>, beta: T, )
where R2: Dim, C2: Dim, D3: Dim, T: SimdComplexField, SB: Storage<T, R2, C2>, SC: Storage<T, D3>, ShapeConstraint: DimEq<D, C2> + AreMultipliable<C2, R2, D3, Const<1>>,

Computes self = alpha * a.adjoint() * x + beta * self, where a is a matrix, x a vector, and alpha, beta two scalars.

For real matrices, this is the same as .gemv_tr. If beta is zero, self is never read.

§Example
let mat = Matrix2::new(Complex::new(1.0, 2.0), Complex::new(3.0, 4.0),
                       Complex::new(5.0, 6.0), Complex::new(7.0, 8.0));
let mut vec1 = Vector2::new(Complex::new(1.0, 2.0), Complex::new(3.0, 4.0));
let vec2 = Vector2::new(Complex::new(0.1, 0.2), Complex::new(0.3, 0.4));
let expected = mat.adjoint() * vec2 * Complex::new(10.0, 20.0) + vec1 * Complex::new(5.0, 15.0);

vec1.gemv_ad(Complex::new(10.0, 20.0), &mat, &vec2, Complex::new(5.0, 15.0));
assert_eq!(vec1, expected);
Source

pub fn ger<D2, D3, SB, SC>( &mut self, alpha: T, x: &Matrix<T, D2, Const<1>, SB>, y: &Matrix<T, D3, Const<1>, SC>, beta: T, )
where D2: Dim, D3: Dim, T: One, SB: Storage<T, D2>, SC: Storage<T, D3>, ShapeConstraint: DimEq<R1, D2> + DimEq<C1, D3>,

Computes self = alpha * x * y.transpose() + beta * self.

If beta is zero, self is never read.

§Example
let mut mat = Matrix2x3::repeat(4.0);
let vec1 = Vector2::new(1.0, 2.0);
let vec2 = Vector3::new(0.1, 0.2, 0.3);
let expected = vec1 * vec2.transpose() * 10.0 + mat * 5.0;

mat.ger(10.0, &vec1, &vec2, 5.0);
assert_eq!(mat, expected);
Source

pub fn gerc<D2, D3, SB, SC>( &mut self, alpha: T, x: &Matrix<T, D2, Const<1>, SB>, y: &Matrix<T, D3, Const<1>, SC>, beta: T, )
where D2: Dim, D3: Dim, T: SimdComplexField, SB: Storage<T, D2>, SC: Storage<T, D3>, ShapeConstraint: DimEq<R1, D2> + DimEq<C1, D3>,

Computes self = alpha * x * y.adjoint() + beta * self.

If beta is zero, self is never read.

§Example
let mut mat = Matrix2x3::repeat(Complex::new(4.0, 5.0));
let vec1 = Vector2::new(Complex::new(1.0, 2.0), Complex::new(3.0, 4.0));
let vec2 = Vector3::new(Complex::new(0.6, 0.5), Complex::new(0.4, 0.5), Complex::new(0.2, 0.1));
let expected = vec1 * vec2.adjoint() * Complex::new(10.0, 20.0) + mat * Complex::new(5.0, 15.0);

mat.gerc(Complex::new(10.0, 20.0), &vec1, &vec2, Complex::new(5.0, 15.0));
assert_eq!(mat, expected);
Source

pub fn gemm<R2, C2, R3, C3, SB, SC>( &mut self, alpha: T, a: &Matrix<T, R2, C2, SB>, b: &Matrix<T, R3, C3, SC>, beta: T, )
where R2: Dim, C2: Dim, R3: Dim, C3: Dim, T: One, SB: Storage<T, R2, C2>, SC: Storage<T, R3, C3>, ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C3> + AreMultipliable<R2, C2, R3, C3>,

Computes self = alpha * a * b + beta * self, where a, b, self are matrices. alpha and beta are scalar.

If beta is zero, self is never read.

§Example
let mut mat1 = Matrix2x4::identity();
let mat2 = Matrix2x3::new(1.0, 2.0, 3.0,
                          4.0, 5.0, 6.0);
let mat3 = Matrix3x4::new(0.1, 0.2, 0.3, 0.4,
                          0.5, 0.6, 0.7, 0.8,
                          0.9, 1.0, 1.1, 1.2);
let expected = mat2 * mat3 * 10.0 + mat1 * 5.0;

mat1.gemm(10.0, &mat2, &mat3, 5.0);
assert_relative_eq!(mat1, expected);
Source

pub fn gemm_tr<R2, C2, R3, C3, SB, SC>( &mut self, alpha: T, a: &Matrix<T, R2, C2, SB>, b: &Matrix<T, R3, C3, SC>, beta: T, )
where R2: Dim, C2: Dim, R3: Dim, C3: Dim, T: One, SB: Storage<T, R2, C2>, SC: Storage<T, R3, C3>, ShapeConstraint: SameNumberOfRows<R1, C2> + SameNumberOfColumns<C1, C3> + AreMultipliable<C2, R2, R3, C3>,

Computes self = alpha * a.transpose() * b + beta * self, where a, b, self are matrices. alpha and beta are scalar.

If beta is zero, self is never read.

§Example
let mut mat1 = Matrix2x4::identity();
let mat2 = Matrix3x2::new(1.0, 4.0,
                          2.0, 5.0,
                          3.0, 6.0);
let mat3 = Matrix3x4::new(0.1, 0.2, 0.3, 0.4,
                          0.5, 0.6, 0.7, 0.8,
                          0.9, 1.0, 1.1, 1.2);
let expected = mat2.transpose() * mat3 * 10.0 + mat1 * 5.0;

mat1.gemm_tr(10.0, &mat2, &mat3, 5.0);
assert_eq!(mat1, expected);
Source

pub fn gemm_ad<R2, C2, R3, C3, SB, SC>( &mut self, alpha: T, a: &Matrix<T, R2, C2, SB>, b: &Matrix<T, R3, C3, SC>, beta: T, )
where R2: Dim, C2: Dim, R3: Dim, C3: Dim, T: SimdComplexField, SB: Storage<T, R2, C2>, SC: Storage<T, R3, C3>, ShapeConstraint: SameNumberOfRows<R1, C2> + SameNumberOfColumns<C1, C3> + AreMultipliable<C2, R2, R3, C3>,

Computes self = alpha * a.adjoint() * b + beta * self, where a, b, self are matrices. alpha and beta are scalar.

If beta is zero, self is never read.

§Example
let mut mat1 = Matrix2x4::identity();
let mat2 = Matrix3x2::new(Complex::new(1.0, 4.0), Complex::new(7.0, 8.0),
                          Complex::new(2.0, 5.0), Complex::new(9.0, 10.0),
                          Complex::new(3.0, 6.0), Complex::new(11.0, 12.0));
let mat3 = Matrix3x4::new(Complex::new(0.1, 1.3), Complex::new(0.2, 1.4), Complex::new(0.3, 1.5), Complex::new(0.4, 1.6),
                          Complex::new(0.5, 1.7), Complex::new(0.6, 1.8), Complex::new(0.7, 1.9), Complex::new(0.8, 2.0),
                          Complex::new(0.9, 2.1), Complex::new(1.0, 2.2), Complex::new(1.1, 2.3), Complex::new(1.2, 2.4));
let expected = mat2.adjoint() * mat3 * Complex::new(10.0, 20.0) + mat1 * Complex::new(5.0, 15.0);

mat1.gemm_ad(Complex::new(10.0, 20.0), &mat2, &mat3, Complex::new(5.0, 15.0));
assert_eq!(mat1, expected);
Source

pub fn ger_symm<D2, D3, SB, SC>( &mut self, alpha: T, x: &Matrix<T, D2, Const<1>, SB>, y: &Matrix<T, D3, Const<1>, SC>, beta: T, )
where D2: Dim, D3: Dim, T: One, SB: Storage<T, D2>, SC: Storage<T, D3>, ShapeConstraint: DimEq<R1, D2> + DimEq<C1, D3>,

👎Deprecated: This is renamed syger to match the original BLAS terminology.

Computes self = alpha * x * y.transpose() + beta * self, where self is a symmetric matrix.

If beta is zero, self is never read. The result is symmetric. Only the lower-triangular (including the diagonal) part of self is read/written.

§Example
let mut mat = Matrix2::identity();
let vec1 = Vector2::new(1.0, 2.0);
let vec2 = Vector2::new(0.1, 0.2);
let expected = vec1 * vec2.transpose() * 10.0 + mat * 5.0;
mat.m12 = 99999.99999; // This component is on the upper-triangular part and will not be read/written.

mat.ger_symm(10.0, &vec1, &vec2, 5.0);
assert_eq!(mat.lower_triangle(), expected.lower_triangle());
assert_eq!(mat.m12, 99999.99999); // This was untouched.
Source

pub fn syger<D2, D3, SB, SC>( &mut self, alpha: T, x: &Matrix<T, D2, Const<1>, SB>, y: &Matrix<T, D3, Const<1>, SC>, beta: T, )
where D2: Dim, D3: Dim, T: One, SB: Storage<T, D2>, SC: Storage<T, D3>, ShapeConstraint: DimEq<R1, D2> + DimEq<C1, D3>,

Computes self = alpha * x * y.transpose() + beta * self, where self is a symmetric matrix.

For hermitian complex matrices, use .hegerc instead. If beta is zero, self is never read. The result is symmetric. Only the lower-triangular (including the diagonal) part of self is read/written.

§Example
let mut mat = Matrix2::identity();
let vec1 = Vector2::new(1.0, 2.0);
let vec2 = Vector2::new(0.1, 0.2);
let expected = vec1 * vec2.transpose() * 10.0 + mat * 5.0;
mat.m12 = 99999.99999; // This component is on the upper-triangular part and will not be read/written.

mat.syger(10.0, &vec1, &vec2, 5.0);
assert_eq!(mat.lower_triangle(), expected.lower_triangle());
assert_eq!(mat.m12, 99999.99999); // This was untouched.
Source

pub fn hegerc<D2, D3, SB, SC>( &mut self, alpha: T, x: &Matrix<T, D2, Const<1>, SB>, y: &Matrix<T, D3, Const<1>, SC>, beta: T, )
where D2: Dim, D3: Dim, T: SimdComplexField, SB: Storage<T, D2>, SC: Storage<T, D3>, ShapeConstraint: DimEq<R1, D2> + DimEq<C1, D3>,

Computes self = alpha * x * y.adjoint() + beta * self, where self is an hermitian matrix.

If beta is zero, self is never read. The result is symmetric. Only the lower-triangular (including the diagonal) part of self is read/written.

§Example
let mut mat = Matrix2::identity();
let vec1 = Vector2::new(Complex::new(1.0, 3.0), Complex::new(2.0, 4.0));
let vec2 = Vector2::new(Complex::new(0.2, 0.4), Complex::new(0.1, 0.3));
let expected = vec1 * vec2.adjoint() * Complex::new(10.0, 20.0) + mat * Complex::new(5.0, 15.0);
mat.m12 = Complex::new(99999.99999, 88888.88888); // This component is on the upper-triangular part and will not be read/written.

mat.hegerc(Complex::new(10.0, 20.0), &vec1, &vec2, Complex::new(5.0, 15.0));
assert_eq!(mat.lower_triangle(), expected.lower_triangle());
assert_eq!(mat.m12, Complex::new(99999.99999, 88888.88888)); // This was untouched.
Source

pub fn quadform_tr_with_workspace<D2, S2, R3, C3, S3, D4, S4>( &mut self, work: &mut Matrix<T, D2, Const<1>, S2>, alpha: T, lhs: &Matrix<T, R3, C3, S3>, mid: &Matrix<T, D4, D4, S4>, beta: T, )
where D2: Dim, R3: Dim, C3: Dim, D4: Dim, S2: StorageMut<T, D2>, S3: Storage<T, R3, C3>, S4: Storage<T, D4, D4>, ShapeConstraint: DimEq<D1, D2> + DimEq<D1, R3> + DimEq<D2, R3> + DimEq<C3, D4>,

Computes the quadratic form self = alpha * lhs * mid * lhs.transpose() + beta * self.

This uses the provided workspace work to avoid allocations for intermediate results.

§Example
// Note that all those would also work with statically-sized matrices.
// We use DMatrix/DVector since that's the only case where pre-allocating the
// workspace is actually useful (assuming the same workspace is re-used for
// several computations) because it avoids repeated dynamic allocations.
let mut mat = DMatrix::identity(2, 2);
let lhs = DMatrix::from_row_slice(2, 3, &[1.0, 2.0, 3.0,
                                          4.0, 5.0, 6.0]);
let mid = DMatrix::from_row_slice(3, 3, &[0.1, 0.2, 0.3,
                                          0.5, 0.6, 0.7,
                                          0.9, 1.0, 1.1]);
// The random shows that values on the workspace do not
// matter as they will be overwritten.
let mut workspace = DVector::new_random(2);
let expected = &lhs * &mid * lhs.transpose() * 10.0 + &mat * 5.0;

mat.quadform_tr_with_workspace(&mut workspace, 10.0, &lhs, &mid, 5.0);
assert_relative_eq!(mat, expected);
Source

pub fn quadform_tr<R3, C3, S3, D4, S4>( &mut self, alpha: T, lhs: &Matrix<T, R3, C3, S3>, mid: &Matrix<T, D4, D4, S4>, beta: T, )
where R3: Dim, C3: Dim, D4: Dim, S3: Storage<T, R3, C3>, S4: Storage<T, D4, D4>, ShapeConstraint: DimEq<D1, D1> + DimEq<D1, R3> + DimEq<C3, D4>, DefaultAllocator: Allocator<D1>,

Computes the quadratic form self = alpha * lhs * mid * lhs.transpose() + beta * self.

This allocates a workspace vector of dimension D1 for intermediate results. If D1 is a type-level integer, then the allocation is performed on the stack. Use .quadform_tr_with_workspace(...) instead to avoid allocations.

§Example
let mut mat = Matrix2::identity();
let lhs = Matrix2x3::new(1.0, 2.0, 3.0,
                         4.0, 5.0, 6.0);
let mid = Matrix3::new(0.1, 0.2, 0.3,
                       0.5, 0.6, 0.7,
                       0.9, 1.0, 1.1);
let expected = lhs * mid * lhs.transpose() * 10.0 + mat * 5.0;

mat.quadform_tr(10.0, &lhs, &mid, 5.0);
assert_relative_eq!(mat, expected);
Source

pub fn quadform_with_workspace<D2, S2, D3, S3, R4, C4, S4>( &mut self, work: &mut Matrix<T, D2, Const<1>, S2>, alpha: T, mid: &Matrix<T, D3, D3, S3>, rhs: &Matrix<T, R4, C4, S4>, beta: T, )
where D2: Dim, D3: Dim, R4: Dim, C4: Dim, S2: StorageMut<T, D2>, S3: Storage<T, D3, D3>, S4: Storage<T, R4, C4>, ShapeConstraint: DimEq<D3, R4> + DimEq<D1, C4> + DimEq<D2, D3> + AreMultipliable<C4, R4, D2, Const<1>>,

Computes the quadratic form self = alpha * rhs.transpose() * mid * rhs + beta * self.

This uses the provided workspace work to avoid allocations for intermediate results.

§Example
// Note that all those would also work with statically-sized matrices.
// We use DMatrix/DVector since that's the only case where pre-allocating the
// workspace is actually useful (assuming the same workspace is re-used for
// several computations) because it avoids repeated dynamic allocations.
let mut mat = DMatrix::identity(2, 2);
let rhs = DMatrix::from_row_slice(3, 2, &[1.0, 2.0,
                                          3.0, 4.0,
                                          5.0, 6.0]);
let mid = DMatrix::from_row_slice(3, 3, &[0.1, 0.2, 0.3,
                                          0.5, 0.6, 0.7,
                                          0.9, 1.0, 1.1]);
// The random shows that values on the workspace do not
// matter as they will be overwritten.
let mut workspace = DVector::new_random(3);
let expected = rhs.transpose() * &mid * &rhs * 10.0 + &mat * 5.0;

mat.quadform_with_workspace(&mut workspace, 10.0, &mid, &rhs, 5.0);
assert_relative_eq!(mat, expected);
Source

pub fn quadform<D2, S2, R3, C3, S3>( &mut self, alpha: T, mid: &Matrix<T, D2, D2, S2>, rhs: &Matrix<T, R3, C3, S3>, beta: T, )
where D2: Dim, R3: Dim, C3: Dim, S2: Storage<T, D2, D2>, S3: Storage<T, R3, C3>, ShapeConstraint: DimEq<D2, R3> + DimEq<D1, C3> + AreMultipliable<C3, R3, D2, Const<1>>, DefaultAllocator: Allocator<D2>,

Computes the quadratic form self = alpha * rhs.transpose() * mid * rhs + beta * self.

This allocates a workspace vector of dimension D2 for intermediate results. If D2 is a type-level integer, then the allocation is performed on the stack. Use .quadform_with_workspace(...) instead to avoid allocations.

§Example
let mut mat = Matrix2::identity();
let rhs = Matrix3x2::new(1.0, 2.0,
                         3.0, 4.0,
                         5.0, 6.0);
let mid = Matrix3::new(0.1, 0.2, 0.3,
                       0.5, 0.6, 0.7,
                       0.9, 1.0, 1.1);
let expected = rhs.transpose() * mid * rhs * 10.0 + mat * 5.0;

mat.quadform(10.0, &mid, &rhs, 5.0);
assert_relative_eq!(mat, expected);
Source

pub fn neg_mut(&mut self)

Negates self in-place.

Source

pub fn add_to<R2, C2, SB, R3, C3, SC>( &self, rhs: &Matrix<T, R2, C2, SB>, out: &mut Matrix<T, R3, C3, SC>, )
where R2: Dim, C2: Dim, R3: Dim, C3: Dim, SB: Storage<T, R2, C2>, SC: StorageMut<T, R3, C3>, ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2> + SameNumberOfRows<R1, R3> + SameNumberOfColumns<C1, C3>,

Equivalent to self + rhs but stores the result into out to avoid allocations.

Source

pub fn sub_to<R2, C2, SB, R3, C3, SC>( &self, rhs: &Matrix<T, R2, C2, SB>, out: &mut Matrix<T, R3, C3, SC>, )
where R2: Dim, C2: Dim, R3: Dim, C3: Dim, SB: Storage<T, R2, C2>, SC: StorageMut<T, R3, C3>, ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2> + SameNumberOfRows<R1, R3> + SameNumberOfColumns<C1, C3>,

Equivalent to self + rhs but stores the result into out to avoid allocations.

Source

pub fn tr_mul<R2, C2, SB>( &self, rhs: &Matrix<T, R2, C2, SB>, ) -> Matrix<T, C1, C2, <DefaultAllocator as Allocator<C1, C2>>::Buffer<T>>
where R2: Dim, C2: Dim, SB: Storage<T, R2, C2>, DefaultAllocator: Allocator<C1, C2>, ShapeConstraint: SameNumberOfRows<R1, R2>,

Equivalent to self.transpose() * rhs.

Source

pub fn ad_mul<R2, C2, SB>( &self, rhs: &Matrix<T, R2, C2, SB>, ) -> Matrix<T, C1, C2, <DefaultAllocator as Allocator<C1, C2>>::Buffer<T>>
where R2: Dim, C2: Dim, T: SimdComplexField, SB: Storage<T, R2, C2>, DefaultAllocator: Allocator<C1, C2>, ShapeConstraint: SameNumberOfRows<R1, R2>,

Equivalent to self.adjoint() * rhs.

Source

pub fn tr_mul_to<R2, C2, SB, R3, C3, SC>( &self, rhs: &Matrix<T, R2, C2, SB>, out: &mut Matrix<T, R3, C3, SC>, )
where R2: Dim, C2: Dim, R3: Dim, C3: Dim, SB: Storage<T, R2, C2>, SC: StorageMut<T, R3, C3>, ShapeConstraint: SameNumberOfRows<R1, R2> + DimEq<C1, R3> + DimEq<C2, C3>,

Equivalent to self.transpose() * rhs but stores the result into out to avoid allocations.

Source

pub fn ad_mul_to<R2, C2, SB, R3, C3, SC>( &self, rhs: &Matrix<T, R2, C2, SB>, out: &mut Matrix<T, R3, C3, SC>, )
where R2: Dim, C2: Dim, R3: Dim, C3: Dim, T: SimdComplexField, SB: Storage<T, R2, C2>, SC: StorageMut<T, R3, C3>, ShapeConstraint: SameNumberOfRows<R1, R2> + DimEq<C1, R3> + DimEq<C2, C3>,

Equivalent to self.adjoint() * rhs but stores the result into out to avoid allocations.

Source

pub fn mul_to<R2, C2, SB, R3, C3, SC>( &self, rhs: &Matrix<T, R2, C2, SB>, out: &mut Matrix<T, R3, C3, SC>, )
where R2: Dim, C2: Dim, R3: Dim, C3: Dim, SB: Storage<T, R2, C2>, SC: StorageMut<T, R3, C3>, ShapeConstraint: SameNumberOfRows<R3, R1> + SameNumberOfColumns<C3, C2> + AreMultipliable<R1, C1, R2, C2>,

Equivalent to self * rhs but stores the result into out to avoid allocations.

Source

pub fn kronecker<R2, C2, SB>( &self, rhs: &Matrix<T, R2, C2, SB>, ) -> Matrix<T, <R1 as DimMul<R2>>::Output, <C1 as DimMul<C2>>::Output, <DefaultAllocator as Allocator<<R1 as DimMul<R2>>::Output, <C1 as DimMul<C2>>::Output>>::Buffer<T>>
where R2: Dim, C2: Dim, T: ClosedMulAssign, R1: DimMul<R2>, C1: DimMul<C2>, SB: Storage<T, R2, C2>, DefaultAllocator: Allocator<<R1 as DimMul<R2>>::Output, <C1 as DimMul<C2>>::Output>,

The kronecker product of two matrices (aka. tensor product of the corresponding linear maps).

Source

pub fn append_scaling( &self, scaling: T, ) -> Matrix<T, D, D, <DefaultAllocator as Allocator<D, D>>::Buffer<T>>

Computes the transformation equal to self followed by an uniform scaling factor.

Source

pub fn prepend_scaling( &self, scaling: T, ) -> Matrix<T, D, D, <DefaultAllocator as Allocator<D, D>>::Buffer<T>>

Computes the transformation equal to an uniform scaling factor followed by self.

Source

pub fn append_nonuniform_scaling<SB>( &self, scaling: &Matrix<T, <D as DimNameSub<Const<1>>>::Output, Const<1>, SB>, ) -> Matrix<T, D, D, <DefaultAllocator as Allocator<D, D>>::Buffer<T>>
where D: DimNameSub<Const<1>>, SB: Storage<T, <D as DimNameSub<Const<1>>>::Output>, DefaultAllocator: Allocator<D, D>,

Computes the transformation equal to self followed by a non-uniform scaling factor.

Source

pub fn prepend_nonuniform_scaling<SB>( &self, scaling: &Matrix<T, <D as DimNameSub<Const<1>>>::Output, Const<1>, SB>, ) -> Matrix<T, D, D, <DefaultAllocator as Allocator<D, D>>::Buffer<T>>
where D: DimNameSub<Const<1>>, SB: Storage<T, <D as DimNameSub<Const<1>>>::Output>, DefaultAllocator: Allocator<D, D>,

Computes the transformation equal to a non-uniform scaling factor followed by self.

Source

pub fn append_translation<SB>( &self, shift: &Matrix<T, <D as DimNameSub<Const<1>>>::Output, Const<1>, SB>, ) -> Matrix<T, D, D, <DefaultAllocator as Allocator<D, D>>::Buffer<T>>
where D: DimNameSub<Const<1>>, SB: Storage<T, <D as DimNameSub<Const<1>>>::Output>, DefaultAllocator: Allocator<D, D>,

Computes the transformation equal to self followed by a translation.

Source

pub fn prepend_translation<SB>( &self, shift: &Matrix<T, <D as DimNameSub<Const<1>>>::Output, Const<1>, SB>, ) -> Matrix<T, D, D, <DefaultAllocator as Allocator<D, D>>::Buffer<T>>
where D: DimNameSub<Const<1>>, SB: Storage<T, <D as DimNameSub<Const<1>>>::Output>, DefaultAllocator: Allocator<D, D> + Allocator<<D as DimNameSub<Const<1>>>::Output>,

Computes the transformation equal to a translation followed by self.

Source

pub fn append_scaling_mut(&mut self, scaling: T)
where S: StorageMut<T, D, D>, D: DimNameSub<Const<1>>,

Computes in-place the transformation equal to self followed by an uniform scaling factor.

Source

pub fn prepend_scaling_mut(&mut self, scaling: T)
where S: StorageMut<T, D, D>, D: DimNameSub<Const<1>>,

Computes in-place the transformation equal to an uniform scaling factor followed by self.

Source

pub fn append_nonuniform_scaling_mut<SB>( &mut self, scaling: &Matrix<T, <D as DimNameSub<Const<1>>>::Output, Const<1>, SB>, )
where S: StorageMut<T, D, D>, D: DimNameSub<Const<1>>, SB: Storage<T, <D as DimNameSub<Const<1>>>::Output>,

Computes in-place the transformation equal to self followed by a non-uniform scaling factor.

Source

pub fn prepend_nonuniform_scaling_mut<SB>( &mut self, scaling: &Matrix<T, <D as DimNameSub<Const<1>>>::Output, Const<1>, SB>, )
where S: StorageMut<T, D, D>, D: DimNameSub<Const<1>>, SB: Storage<T, <D as DimNameSub<Const<1>>>::Output>,

Computes in-place the transformation equal to a non-uniform scaling factor followed by self.

Source

pub fn append_translation_mut<SB>( &mut self, shift: &Matrix<T, <D as DimNameSub<Const<1>>>::Output, Const<1>, SB>, )
where S: StorageMut<T, D, D>, D: DimNameSub<Const<1>>, SB: Storage<T, <D as DimNameSub<Const<1>>>::Output>,

Computes the transformation equal to self followed by a translation.

Source

pub fn prepend_translation_mut<SB>( &mut self, shift: &Matrix<T, <D as DimNameSub<Const<1>>>::Output, Const<1>, SB>, )
where D: DimNameSub<Const<1>>, S: StorageMut<T, D, D>, SB: Storage<T, <D as DimNameSub<Const<1>>>::Output>, DefaultAllocator: Allocator<<D as DimNameSub<Const<1>>>::Output>,

Computes the transformation equal to a translation followed by self.

Source

pub fn transform_vector( &self, v: &Matrix<T, <D as DimNameSub<Const<1>>>::Output, Const<1>, <DefaultAllocator as Allocator<<D as DimNameSub<Const<1>>>::Output>>::Buffer<T>>, ) -> Matrix<T, <D as DimNameSub<Const<1>>>::Output, Const<1>, <DefaultAllocator as Allocator<<D as DimNameSub<Const<1>>>::Output>>::Buffer<T>>

Transforms the given vector, assuming the matrix self uses homogeneous coordinates.

Source

pub fn transform_point(&self, pt: &OPoint<T, Const<2>>) -> OPoint<T, Const<2>>

Transforms the given point, assuming the matrix self uses homogeneous coordinates.

Source

pub fn transform_point(&self, pt: &OPoint<T, Const<3>>) -> OPoint<T, Const<3>>

Transforms the given point, assuming the matrix self uses homogeneous coordinates.

Source

pub fn abs( &self, ) -> Matrix<T, R, C, <DefaultAllocator as Allocator<R, C>>::Buffer<T>>

Computes the component-wise absolute value.

§Example
let a = Matrix2::new(0.0, 1.0,
                     -2.0, -3.0);
assert_eq!(a.abs(), Matrix2::new(0.0, 1.0, 2.0, 3.0))
Source

pub fn component_mul<R2, C2, SB>( &self, rhs: &Matrix<T, R2, C2, SB>, ) -> Matrix<T, <ShapeConstraint as SameNumberOfRows<R1, R2>>::Representative, <ShapeConstraint as SameNumberOfColumns<C1, C2>>::Representative, <DefaultAllocator as Allocator<<ShapeConstraint as SameNumberOfRows<R1, R2>>::Representative, <ShapeConstraint as SameNumberOfColumns<C1, C2>>::Representative>>::Buffer<T>>
where T: ClosedMulAssign, R2: Dim, C2: Dim, SB: Storage<T, R2, C2>, DefaultAllocator: SameShapeAllocator<R1, C1, R2, C2>, ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2>,

Componentwise matrix or vector multiplication.

§Example
let a = Matrix2::new(0.0, 1.0, 2.0, 3.0);
let b = Matrix2::new(4.0, 5.0, 6.0, 7.0);
let expected = Matrix2::new(0.0, 5.0, 12.0, 21.0);

assert_eq!(a.component_mul(&b), expected);
Source

pub fn cmpy<R2, C2, SB, R3, C3, SC>( &mut self, alpha: T, a: &Matrix<T, R2, C2, SB>, b: &Matrix<T, R3, C3, SC>, beta: T, )
where T: ClosedMulAssign<Output = T> + Zero<Output = T> + Mul + Add, R2: Dim, C2: Dim, R3: Dim, C3: Dim, SA: StorageMut<T, R1, C1>, SB: Storage<T, R2, C2>, SC: Storage<T, R3, C3>, ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2> + SameNumberOfRows<R1, R3> + SameNumberOfColumns<C1, C3>,

Computes componentwise self[i] = alpha * a[i] * b[i] + beta * self[i].

§Example
let mut m = Matrix2::new(0.0, 1.0, 2.0, 3.0);
let a = Matrix2::new(0.0, 1.0, 2.0, 3.0);
let b = Matrix2::new(4.0, 5.0, 6.0, 7.0);
let expected = (a.component_mul(&b) * 5.0) + m * 10.0;

m.cmpy(5.0, &a, &b, 10.0);
assert_eq!(m, expected);
Source

pub fn component_mul_assign<R2, C2, SB>(&mut self, rhs: &Matrix<T, R2, C2, SB>)
where T: ClosedMulAssign, R2: Dim, C2: Dim, SA: StorageMut<T, R1, C1>, SB: Storage<T, R2, C2>, ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2>,

Inplace componentwise matrix or vector multiplication.

§Example
let mut a = Matrix2::new(0.0, 1.0, 2.0, 3.0);
let b = Matrix2::new(4.0, 5.0, 6.0, 7.0);
let expected = Matrix2::new(0.0, 5.0, 12.0, 21.0);

a.component_mul_assign(&b);

assert_eq!(a, expected);
Source

pub fn component_mul_mut<R2, C2, SB>(&mut self, rhs: &Matrix<T, R2, C2, SB>)
where T: ClosedMulAssign, R2: Dim, C2: Dim, SA: StorageMut<T, R1, C1>, SB: Storage<T, R2, C2>, ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2>,

👎Deprecated: This is renamed using the _assign suffix instead of the _mut suffix.

Inplace componentwise matrix or vector multiplication.

§Example
let mut a = Matrix2::new(0.0, 1.0, 2.0, 3.0);
let b = Matrix2::new(4.0, 5.0, 6.0, 7.0);
let expected = Matrix2::new(0.0, 5.0, 12.0, 21.0);

a.component_mul_assign(&b);

assert_eq!(a, expected);
Source

pub fn component_div<R2, C2, SB>( &self, rhs: &Matrix<T, R2, C2, SB>, ) -> Matrix<T, <ShapeConstraint as SameNumberOfRows<R1, R2>>::Representative, <ShapeConstraint as SameNumberOfColumns<C1, C2>>::Representative, <DefaultAllocator as Allocator<<ShapeConstraint as SameNumberOfRows<R1, R2>>::Representative, <ShapeConstraint as SameNumberOfColumns<C1, C2>>::Representative>>::Buffer<T>>
where T: ClosedDivAssign, R2: Dim, C2: Dim, SB: Storage<T, R2, C2>, DefaultAllocator: SameShapeAllocator<R1, C1, R2, C2>, ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2>,

Componentwise matrix or vector division.

§Example
let a = Matrix2::new(0.0, 1.0, 2.0, 3.0);
let b = Matrix2::new(4.0, 5.0, 6.0, 7.0);
let expected = Matrix2::new(0.0, 1.0 / 5.0, 2.0 / 6.0, 3.0 / 7.0);

assert_eq!(a.component_div(&b), expected);
Source

pub fn cdpy<R2, C2, SB, R3, C3, SC>( &mut self, alpha: T, a: &Matrix<T, R2, C2, SB>, b: &Matrix<T, R3, C3, SC>, beta: T, )
where T: ClosedDivAssign + Zero<Output = T> + Mul<Output = T> + Add, R2: Dim, C2: Dim, R3: Dim, C3: Dim, SA: StorageMut<T, R1, C1>, SB: Storage<T, R2, C2>, SC: Storage<T, R3, C3>, ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2> + SameNumberOfRows<R1, R3> + SameNumberOfColumns<C1, C3>,

Computes componentwise self[i] = alpha * a[i] / b[i] + beta * self[i].

§Example
let mut m = Matrix2::new(0.0, 1.0, 2.0, 3.0);
let a = Matrix2::new(4.0, 5.0, 6.0, 7.0);
let b = Matrix2::new(4.0, 5.0, 6.0, 7.0);
let expected = (a.component_div(&b) * 5.0) + m * 10.0;

m.cdpy(5.0, &a, &b, 10.0);
assert_eq!(m, expected);
Source

pub fn component_div_assign<R2, C2, SB>(&mut self, rhs: &Matrix<T, R2, C2, SB>)
where T: ClosedDivAssign, R2: Dim, C2: Dim, SA: StorageMut<T, R1, C1>, SB: Storage<T, R2, C2>, ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2>,

Inplace componentwise matrix or vector division.

§Example
let mut a = Matrix2::new(0.0, 1.0, 2.0, 3.0);
let b = Matrix2::new(4.0, 5.0, 6.0, 7.0);
let expected = Matrix2::new(0.0, 1.0 / 5.0, 2.0 / 6.0, 3.0 / 7.0);

a.component_div_assign(&b);

assert_eq!(a, expected);
Source

pub fn component_div_mut<R2, C2, SB>(&mut self, rhs: &Matrix<T, R2, C2, SB>)
where T: ClosedDivAssign, R2: Dim, C2: Dim, SA: StorageMut<T, R1, C1>, SB: Storage<T, R2, C2>, ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2>,

👎Deprecated: This is renamed using the _assign suffix instead of the _mut suffix.

Inplace componentwise matrix or vector division.

§Example
let mut a = Matrix2::new(0.0, 1.0, 2.0, 3.0);
let b = Matrix2::new(4.0, 5.0, 6.0, 7.0);
let expected = Matrix2::new(0.0, 1.0 / 5.0, 2.0 / 6.0, 3.0 / 7.0);

a.component_div_assign(&b);

assert_eq!(a, expected);
Source

pub fn inf( &self, other: &Matrix<T, R1, C1, SA>, ) -> Matrix<T, R1, C1, <DefaultAllocator as Allocator<R1, C1>>::Buffer<T>>

Computes the infimum (aka. componentwise min) of two matrices/vectors.

§Example
let u = Matrix2::new(4.0, 2.0, 1.0, -2.0);
let v = Matrix2::new(2.0, 4.0, -2.0, 1.0);
let expected = Matrix2::new(2.0, 2.0, -2.0, -2.0);
assert_eq!(u.inf(&v), expected)
Source

pub fn sup( &self, other: &Matrix<T, R1, C1, SA>, ) -> Matrix<T, R1, C1, <DefaultAllocator as Allocator<R1, C1>>::Buffer<T>>

Computes the supremum (aka. componentwise max) of two matrices/vectors.

§Example
let u = Matrix2::new(4.0, 2.0, 1.0, -2.0);
let v = Matrix2::new(2.0, 4.0, -2.0, 1.0);
let expected = Matrix2::new(4.0, 4.0, 1.0, 1.0);
assert_eq!(u.sup(&v), expected)
Source

pub fn inf_sup( &self, other: &Matrix<T, R1, C1, SA>, ) -> (Matrix<T, R1, C1, <DefaultAllocator as Allocator<R1, C1>>::Buffer<T>>, Matrix<T, R1, C1, <DefaultAllocator as Allocator<R1, C1>>::Buffer<T>>)

Computes the (infimum, supremum) of two matrices/vectors.

§Example
let u = Matrix2::new(4.0, 2.0, 1.0, -2.0);
let v = Matrix2::new(2.0, 4.0, -2.0, 1.0);
let expected = (Matrix2::new(2.0, 2.0, -2.0, -2.0), Matrix2::new(4.0, 4.0, 1.0, 1.0));
assert_eq!(u.inf_sup(&v), expected)
Source

pub fn add_scalar( &self, rhs: T, ) -> Matrix<T, R1, C1, <DefaultAllocator as Allocator<R1, C1>>::Buffer<T>>

Adds a scalar to self.

§Example
let u = Matrix2::new(1.0, 2.0, 3.0, 4.0);
let s = 10.0;
let expected = Matrix2::new(11.0, 12.0, 13.0, 14.0);
assert_eq!(u.add_scalar(s), expected)
Source

pub fn add_scalar_mut(&mut self, rhs: T)
where T: ClosedAddAssign, SA: StorageMut<T, R1, C1>,

Adds a scalar to self in-place.

§Example
let mut u = Matrix2::new(1.0, 2.0, 3.0, 4.0);
let s = 10.0;
u.add_scalar_mut(s);
let expected = Matrix2::new(11.0, 12.0, 13.0, 14.0);
assert_eq!(u, expected)
Source

pub fn upper_triangle( &self, ) -> Matrix<T, R, C, <DefaultAllocator as Allocator<R, C>>::Buffer<T>>

Extracts the upper triangular part of this matrix (including the diagonal).

Source

pub fn lower_triangle( &self, ) -> Matrix<T, R, C, <DefaultAllocator as Allocator<R, C>>::Buffer<T>>

Extracts the lower triangular part of this matrix (including the diagonal).

Source

pub fn select_rows<'a, I>( &self, irows: I, ) -> Matrix<T, Dyn, C, <DefaultAllocator as Allocator<Dyn, C>>::Buffer<T>>

Creates a new matrix by extracting the given set of rows from self.

Source

pub fn select_columns<'a, I>( &self, icols: I, ) -> Matrix<T, R, Dyn, <DefaultAllocator as Allocator<R, Dyn>>::Buffer<T>>

Creates a new matrix by extracting the given set of columns from self.

Source

pub fn set_diagonal<R2, S2>(&mut self, diag: &Matrix<T, R2, Const<1>, S2>)
where R2: Dim, R: DimMin<C>, S2: RawStorage<T, R2>, ShapeConstraint: DimEq<<R as DimMin<C>>::Output, R2>,

Fills the diagonal of this matrix with the content of the given vector.

Source

pub fn set_partial_diagonal(&mut self, diag: impl Iterator<Item = T>)

Fills the diagonal of this matrix with the content of the given iterator.

This will fill as many diagonal elements as the iterator yields, up to the minimum of the number of rows and columns of self, and starting with the diagonal element at index (0, 0).

Source

pub fn set_row<C2, S2>(&mut self, i: usize, row: &Matrix<T, Const<1>, C2, S2>)
where C2: Dim, S2: RawStorage<T, Const<1>, C2>, ShapeConstraint: SameNumberOfColumns<C, C2>,

Fills the selected row of this matrix with the content of the given vector.

Source

pub fn set_column<R2, S2>( &mut self, i: usize, column: &Matrix<T, R2, Const<1>, S2>, )
where R2: Dim, S2: RawStorage<T, R2>, ShapeConstraint: SameNumberOfRows<R, R2>,

Fills the selected column of this matrix with the content of the given vector.

Source

pub fn fill_with(&mut self, val: impl Fn() -> T)

Sets all the elements of this matrix to the value returned by the closure.

Source

pub fn fill(&mut self, val: T)
where T: Scalar,

Sets all the elements of this matrix to val.

Source

pub fn fill_with_identity(&mut self)
where T: Scalar + Zero + One,

Fills self with the identity matrix.

Source

pub fn fill_diagonal(&mut self, val: T)
where T: Scalar,

Sets all the diagonal elements of this matrix to val.

Source

pub fn fill_row(&mut self, i: usize, val: T)
where T: Scalar,

Sets all the elements of the selected row to val.

Source

pub fn fill_column(&mut self, j: usize, val: T)
where T: Scalar,

Sets all the elements of the selected column to val.

Source

pub fn fill_lower_triangle(&mut self, val: T, shift: usize)
where T: Scalar,

Sets all the elements of the lower-triangular part of this matrix to val.

The parameter shift allows some subdiagonals to be left untouched:

  • If shift = 0 then the diagonal is overwritten as well.
  • If shift = 1 then the diagonal is left untouched.
  • If shift > 1, then the diagonal and the first shift - 1 subdiagonals are left untouched.
Source

pub fn fill_upper_triangle(&mut self, val: T, shift: usize)
where T: Scalar,

Sets all the elements of the lower-triangular part of this matrix to val.

The parameter shift allows some superdiagonals to be left untouched:

  • If shift = 0 then the diagonal is overwritten as well.
  • If shift = 1 then the diagonal is left untouched.
  • If shift > 1, then the diagonal and the first shift - 1 superdiagonals are left untouched.
Source

pub fn fill_lower_triangle_with_upper_triangle(&mut self)

Copies the upper-triangle of this matrix to its lower-triangular part.

This makes the matrix symmetric. Panics if the matrix is not square.

Source

pub fn fill_upper_triangle_with_lower_triangle(&mut self)

Copies the upper-triangle of this matrix to its upper-triangular part.

This makes the matrix symmetric. Panics if the matrix is not square.

Source

pub fn swap_rows(&mut self, irow1: usize, irow2: usize)

Swaps two rows in-place.

Source

pub fn swap_columns(&mut self, icol1: usize, icol2: usize)

Swaps two columns in-place.

Source

pub fn get<'a, I>( &'a self, index: I, ) -> Option<<I as MatrixIndex<'a, T, R, C, S>>::Output>
where I: MatrixIndex<'a, T, R, C, S>,

Produces a view of the data at the given index, or None if the index is out of bounds.

Source

pub fn get_mut<'a, I>( &'a mut self, index: I, ) -> Option<<I as MatrixIndexMut<'a, T, R, C, S>>::OutputMut>
where S: RawStorageMut<T, R, C>, I: MatrixIndexMut<'a, T, R, C, S>,

Produces a mutable view of the data at the given index, or None if the index is out of bounds.

Source

pub fn index<'a, I>( &'a self, index: I, ) -> <I as MatrixIndex<'a, T, R, C, S>>::Output
where I: MatrixIndex<'a, T, R, C, S>,

Produces a view of the data at the given index, or panics if the index is out of bounds.

Source

pub fn index_mut<'a, I>( &'a mut self, index: I, ) -> <I as MatrixIndexMut<'a, T, R, C, S>>::OutputMut
where S: RawStorageMut<T, R, C>, I: MatrixIndexMut<'a, T, R, C, S>,

Produces a mutable view of the data at the given index, or panics if the index is out of bounds.

Source

pub unsafe fn get_unchecked<'a, I>( &'a self, index: I, ) -> <I as MatrixIndex<'a, T, R, C, S>>::Output
where I: MatrixIndex<'a, T, R, C, S>,

Produces a view of the data at the given index, without doing any bounds checking.

§Safety

index must within bounds of the array.

Source

pub unsafe fn get_unchecked_mut<'a, I>( &'a mut self, index: I, ) -> <I as MatrixIndexMut<'a, T, R, C, S>>::OutputMut
where S: RawStorageMut<T, R, C>, I: MatrixIndexMut<'a, T, R, C, S>,

Returns a mutable view of the data at the given index, without doing any bounds checking.

§Safety

index must within bounds of the array.

Source

pub fn shape(&self) -> (usize, usize)

The shape of this matrix returned as the tuple (number of rows, number of columns).

§Example
let mat = Matrix3x4::<f32>::zeros();
assert_eq!(mat.shape(), (3, 4));
Source

pub fn shape_generic(&self) -> (R, C)

The shape of this matrix wrapped into their representative types (Const or Dyn).

Source

pub fn nrows(&self) -> usize

The number of rows of this matrix.

§Example
let mat = Matrix3x4::<f32>::zeros();
assert_eq!(mat.nrows(), 3);
Source

pub fn ncols(&self) -> usize

The number of columns of this matrix.

§Example
let mat = Matrix3x4::<f32>::zeros();
assert_eq!(mat.ncols(), 4);
Source

pub fn strides(&self) -> (usize, usize)

The strides (row stride, column stride) of this matrix.

§Example
let mat = DMatrix::<f32>::zeros(10, 10);
let view = mat.view_with_steps((0, 0), (5, 3), (1, 2));
// The column strides is the number of steps (here 2) multiplied by the corresponding dimension.
assert_eq!(mat.strides(), (1, 10));
Source

pub fn vector_to_matrix_index(&self, i: usize) -> (usize, usize)

Computes the row and column coordinates of the i-th element of this matrix seen as a vector.

§Example
let m = Matrix2::new(1, 2,
                     3, 4);
let i = m.vector_to_matrix_index(3);
assert_eq!(i, (1, 1));
assert_eq!(m[i], m[3]);
Source

pub fn as_ptr(&self) -> *const T

Returns a pointer to the start of the matrix.

If the matrix is not empty, this pointer is guaranteed to be aligned and non-null.

§Example
let m = Matrix2::new(1, 2,
                     3, 4);
let ptr = m.as_ptr();
assert_eq!(unsafe { *ptr }, m[0]);
Source

pub fn relative_eq<R2, C2, SB>( &self, other: &Matrix<T, R2, C2, SB>, eps: <T as AbsDiffEq>::Epsilon, max_relative: <T as AbsDiffEq>::Epsilon, ) -> bool
where T: RelativeEq + Scalar, R2: Dim, C2: Dim, SB: Storage<T, R2, C2>, <T as AbsDiffEq>::Epsilon: Clone, ShapeConstraint: SameNumberOfRows<R, R2> + SameNumberOfColumns<C, C2>,

Tests whether self and rhs are equal up to a given epsilon.

See relative_eq from the RelativeEq trait for more details.

Source

pub fn eq<R2, C2, SB>(&self, other: &Matrix<T, R2, C2, SB>) -> bool
where T: PartialEq, R2: Dim, C2: Dim, SB: RawStorage<T, R2, C2>, ShapeConstraint: SameNumberOfRows<R, R2> + SameNumberOfColumns<C, C2>,

Tests whether self and rhs are exactly equal.

Source

pub fn clone_owned( &self, ) -> Matrix<T, R, C, <DefaultAllocator as Allocator<R, C>>::Buffer<T>>
where T: Scalar, S: Storage<T, R, C>, DefaultAllocator: Allocator<R, C>,

Clones this matrix to one that owns its data.

Source

pub fn clone_owned_sum<R2, C2>( &self, ) -> Matrix<T, <ShapeConstraint as SameNumberOfRows<R, R2>>::Representative, <ShapeConstraint as SameNumberOfColumns<C, C2>>::Representative, <DefaultAllocator as Allocator<<ShapeConstraint as SameNumberOfRows<R, R2>>::Representative, <ShapeConstraint as SameNumberOfColumns<C, C2>>::Representative>>::Buffer<T>>
where T: Scalar, S: Storage<T, R, C>, R2: Dim, C2: Dim, DefaultAllocator: SameShapeAllocator<R, C, R2, C2>, ShapeConstraint: SameNumberOfRows<R, R2> + SameNumberOfColumns<C, C2>,

Clones this matrix into one that owns its data. The actual type of the result depends on matrix storage combination rules for addition.

Source

pub fn transpose_to<R2, C2, SB>(&self, out: &mut Matrix<T, R2, C2, SB>)
where T: Scalar, R2: Dim, C2: Dim, SB: RawStorageMut<T, R2, C2>, ShapeConstraint: SameNumberOfRows<R, C2> + SameNumberOfColumns<C, R2>,

Transposes self and store the result into out.

Source

pub fn transpose( &self, ) -> Matrix<T, C, R, <DefaultAllocator as Allocator<C, R>>::Buffer<T>>

Transposes self.

Source

pub fn map<T2, F>( &self, f: F, ) -> Matrix<T2, R, C, <DefaultAllocator as Allocator<R, C>>::Buffer<T2>>
where T2: Scalar, F: FnMut(T) -> T2, T: Scalar, DefaultAllocator: Allocator<R, C>,

Returns a matrix containing the result of f applied to each of its entries.

Source

pub fn fold_with<T2>( &self, init_f: impl FnOnce(Option<&T>) -> T2, f: impl FnMut(T2, &T) -> T2, ) -> T2
where T: Scalar,

Similar to self.iter().fold(init, f) except that init is replaced by a closure.

The initialization closure is given the first component of this matrix:

  • If the matrix has no component (0 rows or 0 columns) then init_f is called with None and its return value is the value returned by this method.
  • If the matrix has has least one component, then init_f is called with the first component to compute the initial value. Folding then continues on all the remaining components of the matrix.
Source

pub fn map_with_location<T2, F>( &self, f: F, ) -> Matrix<T2, R, C, <DefaultAllocator as Allocator<R, C>>::Buffer<T2>>
where T2: Scalar, F: FnMut(usize, usize, T) -> T2, T: Scalar, DefaultAllocator: Allocator<R, C>,

Returns a matrix containing the result of f applied to each of its entries. Unlike map, f also gets passed the row and column index, i.e. f(row, col, value).

Source

pub fn zip_map<T2, N3, S2, F>( &self, rhs: &Matrix<T2, R, C, S2>, f: F, ) -> Matrix<N3, R, C, <DefaultAllocator as Allocator<R, C>>::Buffer<N3>>
where T: Scalar, T2: Scalar, N3: Scalar, S2: RawStorage<T2, R, C>, F: FnMut(T, T2) -> N3, DefaultAllocator: Allocator<R, C>,

Returns a matrix containing the result of f applied to each entries of self and rhs.

Source

pub fn zip_zip_map<T2, N3, N4, S2, S3, F>( &self, b: &Matrix<T2, R, C, S2>, c: &Matrix<N3, R, C, S3>, f: F, ) -> Matrix<N4, R, C, <DefaultAllocator as Allocator<R, C>>::Buffer<N4>>
where T: Scalar, T2: Scalar, N3: Scalar, N4: Scalar, S2: RawStorage<T2, R, C>, S3: RawStorage<N3, R, C>, F: FnMut(T, T2, N3) -> N4, DefaultAllocator: Allocator<R, C>,

Returns a matrix containing the result of f applied to each entries of self and b, and c.

Source

pub fn fold<Acc>(&self, init: Acc, f: impl FnMut(Acc, T) -> Acc) -> Acc
where T: Scalar,

Folds a function f on each entry of self.

Source

pub fn zip_fold<T2, R2, C2, S2, Acc>( &self, rhs: &Matrix<T2, R2, C2, S2>, init: Acc, f: impl FnMut(Acc, T, T2) -> Acc, ) -> Acc
where T: Scalar, T2: Scalar, R2: Dim, C2: Dim, S2: RawStorage<T2, R2, C2>, ShapeConstraint: SameNumberOfRows<R, R2> + SameNumberOfColumns<C, C2>,

Folds a function f on each pairs of entries from self and rhs.

Source

pub fn apply<F>(&mut self, f: F)
where F: FnMut(&mut T), S: RawStorageMut<T, R, C>,

Applies a closure f to modify each component of self.

Source

pub fn zip_apply<T2, R2, C2, S2>( &mut self, rhs: &Matrix<T2, R2, C2, S2>, f: impl FnMut(&mut T, T2), )
where S: RawStorageMut<T, R, C>, T2: Scalar, R2: Dim, C2: Dim, S2: RawStorage<T2, R2, C2>, ShapeConstraint: SameNumberOfRows<R, R2> + SameNumberOfColumns<C, C2>,

Replaces each component of self by the result of a closure f applied on its components joined with the components from rhs.

Source

pub fn zip_zip_apply<T2, R2, C2, S2, N3, R3, C3, S3>( &mut self, b: &Matrix<T2, R2, C2, S2>, c: &Matrix<N3, R3, C3, S3>, f: impl FnMut(&mut T, T2, N3), )
where S: RawStorageMut<T, R, C>, T2: Scalar, R2: Dim, C2: Dim, S2: RawStorage<T2, R2, C2>, N3: Scalar, R3: Dim, C3: Dim, S3: RawStorage<N3, R3, C3>, ShapeConstraint: SameNumberOfRows<R, R2> + SameNumberOfColumns<C, C2>,

Replaces each component of self by the result of a closure f applied on its components joined with the components from b and c.

Source

pub fn iter(&self) -> MatrixIter<'_, T, R, C, S>

Iterates through this matrix coordinates in column-major order.

§Example
let mat = Matrix2x3::new(11, 12, 13,
                         21, 22, 23);
let mut it = mat.iter();
assert_eq!(*it.next().unwrap(), 11);
assert_eq!(*it.next().unwrap(), 21);
assert_eq!(*it.next().unwrap(), 12);
assert_eq!(*it.next().unwrap(), 22);
assert_eq!(*it.next().unwrap(), 13);
assert_eq!(*it.next().unwrap(), 23);
assert!(it.next().is_none());
Source

pub fn row_iter(&self) -> RowIter<'_, T, R, C, S>

Iterate through the rows of this matrix.

§Example
let mut a = Matrix2x3::new(1, 2, 3,
                           4, 5, 6);
for (i, row) in a.row_iter().enumerate() {
    assert_eq!(row, a.row(i))
}
Source

pub fn column_iter(&self) -> ColumnIter<'_, T, R, C, S>

Iterate through the columns of this matrix.

§Example
let mut a = Matrix2x3::new(1, 2, 3,
                           4, 5, 6);
for (i, column) in a.column_iter().enumerate() {
    assert_eq!(column, a.column(i))
}
Source

pub fn iter_mut(&mut self) -> MatrixIterMut<'_, T, R, C, S>
where S: RawStorageMut<T, R, C>,

Mutably iterates through this matrix coordinates.

Source

pub fn row_iter_mut(&mut self) -> RowIterMut<'_, T, R, C, S>
where S: RawStorageMut<T, R, C>,

Mutably iterates through this matrix rows.

§Example
let mut a = Matrix2x3::new(1, 2, 3,
                           4, 5, 6);
for (i, mut row) in a.row_iter_mut().enumerate() {
    row *= (i + 1) * 10;
}

let expected = Matrix2x3::new(10, 20, 30,
                              80, 100, 120);
assert_eq!(a, expected);
Source

pub fn column_iter_mut(&mut self) -> ColumnIterMut<'_, T, R, C, S>
where S: RawStorageMut<T, R, C>,

Mutably iterates through this matrix columns.

§Example
let mut a = Matrix2x3::new(1, 2, 3,
                           4, 5, 6);
for (i, mut col) in a.column_iter_mut().enumerate() {
    col *= (i + 1) * 10;
}

let expected = Matrix2x3::new(10, 40, 90,
                              40, 100, 180);
assert_eq!(a, expected);
Source

pub fn as_mut_ptr(&mut self) -> *mut T

Returns a mutable pointer to the start of the matrix.

If the matrix is not empty, this pointer is guaranteed to be aligned and non-null.

Source

pub unsafe fn swap_unchecked( &mut self, row_cols1: (usize, usize), row_cols2: (usize, usize), )

Swaps two entries without bound-checking.

§Safety

Both (r, c) must have r < nrows(), c < ncols().

Source

pub fn swap(&mut self, row_cols1: (usize, usize), row_cols2: (usize, usize))

Swaps two entries.

Source

pub fn copy_from_slice(&mut self, slice: &[T])
where T: Scalar,

Fills this matrix with the content of a slice. Both must hold the same number of elements.

The components of the slice are assumed to be ordered in column-major order.

Source

pub fn copy_from<R2, C2, SB>(&mut self, other: &Matrix<T, R2, C2, SB>)
where T: Scalar, R2: Dim, C2: Dim, SB: RawStorage<T, R2, C2>, ShapeConstraint: SameNumberOfRows<R, R2> + SameNumberOfColumns<C, C2>,

Fills this matrix with the content of another one. Both must have the same shape.

Source

pub fn tr_copy_from<R2, C2, SB>(&mut self, other: &Matrix<T, R2, C2, SB>)
where T: Scalar, R2: Dim, C2: Dim, SB: RawStorage<T, R2, C2>, ShapeConstraint: DimEq<R, C2> + SameNumberOfColumns<C, R2>,

Fills this matrix with the content of the transpose another one.

Source

pub unsafe fn vget_unchecked(&self, i: usize) -> &T

Gets a reference to the i-th element of this column vector without bound checking.

§Safety

i must be less than D.

Source

pub unsafe fn vget_unchecked_mut(&mut self, i: usize) -> &mut T

Gets a mutable reference to the i-th element of this column vector without bound checking.

§Safety

i must be less than D.

Source

pub fn as_slice(&self) -> &[T]

Extracts a slice containing the entire matrix entries ordered column-by-columns.

Source

pub fn as_mut_slice(&mut self) -> &mut [T]

Extracts a mutable slice containing the entire matrix entries ordered column-by-columns.

Source

pub fn transpose_mut(&mut self)

Transposes the square matrix self in-place.

Source

pub fn adjoint_to<R2, C2, SB>(&self, out: &mut Matrix<T, R2, C2, SB>)
where R2: Dim, C2: Dim, SB: RawStorageMut<T, R2, C2>, ShapeConstraint: SameNumberOfRows<R, C2> + SameNumberOfColumns<C, R2>,

Takes the adjoint (aka. conjugate-transpose) of self and store the result into out.

Source

pub fn adjoint( &self, ) -> Matrix<T, C, R, <DefaultAllocator as Allocator<C, R>>::Buffer<T>>

The adjoint (aka. conjugate-transpose) of self.

Source

pub fn conjugate_transpose_to<R2, C2, SB>( &self, out: &mut Matrix<T, R2, C2, SB>, )
where R2: Dim, C2: Dim, SB: RawStorageMut<T, R2, C2>, ShapeConstraint: SameNumberOfRows<R, C2> + SameNumberOfColumns<C, R2>,

👎Deprecated: Renamed self.adjoint_to(out).

Takes the conjugate and transposes self and store the result into out.

Source

pub fn conjugate_transpose( &self, ) -> Matrix<T, C, R, <DefaultAllocator as Allocator<C, R>>::Buffer<T>>

👎Deprecated: Renamed self.adjoint().

The conjugate transposition of self.

Source

pub fn conjugate( &self, ) -> Matrix<T, R, C, <DefaultAllocator as Allocator<R, C>>::Buffer<T>>

The conjugate of self.

Source

pub fn unscale( &self, real: <T as SimdComplexField>::SimdRealField, ) -> Matrix<T, R, C, <DefaultAllocator as Allocator<R, C>>::Buffer<T>>

Divides each component of the complex matrix self by the given real.

Source

pub fn scale( &self, real: <T as SimdComplexField>::SimdRealField, ) -> Matrix<T, R, C, <DefaultAllocator as Allocator<R, C>>::Buffer<T>>

Multiplies each component of the complex matrix self by the given real.

Source

pub fn conjugate_mut(&mut self)

The conjugate of the complex matrix self computed in-place.

Source

pub fn unscale_mut(&mut self, real: <T as SimdComplexField>::SimdRealField)

Divides each component of the complex matrix self by the given real.

Source

pub fn scale_mut(&mut self, real: <T as SimdComplexField>::SimdRealField)

Multiplies each component of the complex matrix self by the given real.

Source

pub fn conjugate_transform_mut(&mut self)

👎Deprecated: Renamed to self.adjoint_mut().

Sets self to its adjoint.

Source

pub fn adjoint_mut(&mut self)

Sets self to its adjoint (aka. conjugate-transpose).

Source

pub fn diagonal( &self, ) -> Matrix<T, D, Const<1>, <DefaultAllocator as Allocator<D>>::Buffer<T>>

The diagonal of this matrix.

Source

pub fn map_diagonal<T2>( &self, f: impl FnMut(T) -> T2, ) -> Matrix<T2, D, Const<1>, <DefaultAllocator as Allocator<D>>::Buffer<T2>>

Apply the given function to this matrix’s diagonal and returns it.

This is a more efficient version of self.diagonal().map(f) since this allocates only once.

Source

pub fn trace(&self) -> T

Computes a trace of a square matrix, i.e., the sum of its diagonal elements.

Source

pub fn symmetric_part( &self, ) -> Matrix<T, D, D, <DefaultAllocator as Allocator<D, D>>::Buffer<T>>

The symmetric part of self, i.e., 0.5 * (self + self.transpose()).

Source

pub fn hermitian_part( &self, ) -> Matrix<T, D, D, <DefaultAllocator as Allocator<D, D>>::Buffer<T>>

The hermitian part of self, i.e., 0.5 * (self + self.adjoint()).

Source

pub fn to_homogeneous( &self, ) -> Matrix<T, <D as DimAdd<Const<1>>>::Output, <D as DimAdd<Const<1>>>::Output, <DefaultAllocator as Allocator<<D as DimAdd<Const<1>>>::Output, <D as DimAdd<Const<1>>>::Output>>::Buffer<T>>
where DefaultAllocator: Allocator<<D as DimAdd<Const<1>>>::Output, <D as DimAdd<Const<1>>>::Output>,

Yields the homogeneous matrix for this matrix, i.e., appending an additional dimension and and setting the diagonal element to 1.

Source

pub fn to_homogeneous( &self, ) -> Matrix<T, <D as DimAdd<Const<1>>>::Output, Const<1>, <DefaultAllocator as Allocator<<D as DimAdd<Const<1>>>::Output>>::Buffer<T>>

Computes the coordinates in projective space of this vector, i.e., appends a 0 to its coordinates.

Source

pub fn push( &self, element: T, ) -> Matrix<T, <D as DimAdd<Const<1>>>::Output, Const<1>, <DefaultAllocator as Allocator<<D as DimAdd<Const<1>>>::Output>>::Buffer<T>>

Constructs a new vector of higher dimension by appending element to the end of self.

Source

pub fn perp<R2, C2, SB>(&self, b: &Matrix<T, R2, C2, SB>) -> T
where R2: Dim, C2: Dim, SB: RawStorage<T, R2, C2>, ShapeConstraint: SameNumberOfRows<R, Const<2>> + SameNumberOfColumns<C, Const<1>> + SameNumberOfRows<R2, Const<2>> + SameNumberOfColumns<C2, Const<1>>,

The perpendicular product between two 2D column vectors, i.e. a.x * b.y - a.y * b.x.

Source

pub fn cross<R2, C2, SB>( &self, b: &Matrix<T, R2, C2, SB>, ) -> Matrix<T, <ShapeConstraint as SameNumberOfRows<R, R2>>::Representative, <ShapeConstraint as SameNumberOfColumns<C, C2>>::Representative, <DefaultAllocator as Allocator<<ShapeConstraint as SameNumberOfRows<R, R2>>::Representative, <ShapeConstraint as SameNumberOfColumns<C, C2>>::Representative>>::Buffer<T>>
where R2: Dim, C2: Dim, SB: RawStorage<T, R2, C2>, DefaultAllocator: SameShapeAllocator<R, C, R2, C2>, ShapeConstraint: SameNumberOfRows<R, R2> + SameNumberOfColumns<C, C2>,

The 3D cross product between two vectors.

Panics if the shape is not 3D vector. In the future, this will be implemented only for dynamically-sized matrices and statically-sized 3D matrices.

Source

pub fn cross_matrix( &self, ) -> Matrix<T, Const<3>, Const<3>, <DefaultAllocator as Allocator<Const<3>, Const<3>>>::Buffer<T>>

Computes the matrix M such that for all vector v we have M * v == self.cross(&v).

Source

pub fn angle<R2, C2, SB>( &self, other: &Matrix<T, R2, C2, SB>, ) -> <T as SimdComplexField>::SimdRealField
where R2: Dim, C2: Dim, SB: Storage<T, R2, C2>, ShapeConstraint: DimEq<R, R2> + DimEq<C, C2>,

The smallest angle between two vectors.

Source

pub fn as_scalar(&self) -> &T

Returns a reference to the single element in this matrix.

As opposed to indexing, using this provides type-safety when flattening dimensions.

§Example
let v = Vector3::new(0., 0., 1.);
let inner_product: f32 = *(v.transpose() * v).as_scalar();
 let v = Vector3::new(0., 0., 1.);
 let inner_product = (v * v.transpose()).item(); // Typo, does not compile.
Source

pub fn as_scalar_mut(&mut self) -> &mut T
where S: RawStorageMut<T, Const<1>>,

Get a mutable reference to the single element in this matrix

As opposed to indexing, using this provides type-safety when flattening dimensions.

§Example
let v = Vector3::new(0., 0., 1.);
let mut inner_product = (v.transpose() * v);
*inner_product.as_scalar_mut() = 3.;
 let v = Vector3::new(0., 0., 1.);
 let mut inner_product = (v * v.transpose());
 *inner_product.as_scalar_mut() = 3.;
Source

pub fn to_scalar(&self) -> T
where T: Clone,

Convert this 1x1 matrix by reference into a scalar.

As opposed to indexing, using this provides type-safety when flattening dimensions.

§Example
let v = Vector3::new(0., 0., 1.);
let mut inner_product: f32 = (v.transpose() * v).to_scalar();
 let v = Vector3::new(0., 0., 1.);
 let mut inner_product: f32 = (v * v.transpose()).to_scalar();
Source

pub fn row( &self, i: usize, ) -> Matrix<T, Const<1>, C, ViewStorage<'_, T, Const<1>, C, <S as RawStorage<T, R, C>>::RStride, <S as RawStorage<T, R, C>>::CStride>>

Returns a view containing the i-th row of this matrix.

Source

pub fn row_part( &self, i: usize, n: usize, ) -> Matrix<T, Const<1>, Dyn, ViewStorage<'_, T, Const<1>, Dyn, <S as RawStorage<T, R, C>>::RStride, <S as RawStorage<T, R, C>>::CStride>>

Returns a view containing the n first elements of the i-th row of this matrix.

Source

pub fn rows( &self, first_row: usize, nrows: usize, ) -> Matrix<T, Dyn, C, ViewStorage<'_, T, Dyn, C, <S as RawStorage<T, R, C>>::RStride, <S as RawStorage<T, R, C>>::CStride>>

Extracts from this matrix a set of consecutive rows.

Source

pub fn rows_with_step( &self, first_row: usize, nrows: usize, step: usize, ) -> Matrix<T, Dyn, C, ViewStorage<'_, T, Dyn, C, Dyn, <S as RawStorage<T, R, C>>::CStride>>

Extracts from this matrix a set of consecutive rows regularly skipping step rows.

Source

pub fn fixed_rows<const RVIEW: usize>( &self, first_row: usize, ) -> Matrix<T, Const<RVIEW>, C, ViewStorage<'_, T, Const<RVIEW>, C, <S as RawStorage<T, R, C>>::RStride, <S as RawStorage<T, R, C>>::CStride>>

Extracts a compile-time number of consecutive rows from this matrix.

Source

pub fn fixed_rows_with_step<const RVIEW: usize>( &self, first_row: usize, step: usize, ) -> Matrix<T, Const<RVIEW>, C, ViewStorage<'_, T, Const<RVIEW>, C, Dyn, <S as RawStorage<T, R, C>>::CStride>>

Extracts from this matrix a compile-time number of rows regularly skipping step rows.

Source

pub fn rows_generic<RView>( &self, row_start: usize, nrows: RView, ) -> Matrix<T, RView, C, ViewStorage<'_, T, RView, C, <S as RawStorage<T, R, C>>::RStride, <S as RawStorage<T, R, C>>::CStride>>
where RView: Dim,

Extracts from this matrix nrows rows regularly skipping step rows. Both argument may or may not be values known at compile-time.

Source

pub fn rows_generic_with_step<RView>( &self, row_start: usize, nrows: RView, step: usize, ) -> Matrix<T, RView, C, ViewStorage<'_, T, RView, C, Dyn, <S as RawStorage<T, R, C>>::CStride>>
where RView: Dim,

Extracts from this matrix nrows rows regularly skipping step rows. Both argument may or may not be values known at compile-time.

Source

pub fn column( &self, i: usize, ) -> Matrix<T, R, Const<1>, ViewStorage<'_, T, R, Const<1>, <S as RawStorage<T, R, C>>::RStride, <S as RawStorage<T, R, C>>::CStride>>

Returns a view containing the i-th column of this matrix.

Source

pub fn column_part( &self, i: usize, n: usize, ) -> Matrix<T, Dyn, Const<1>, ViewStorage<'_, T, Dyn, Const<1>, <S as RawStorage<T, R, C>>::RStride, <S as RawStorage<T, R, C>>::CStride>>

Returns a view containing the n first elements of the i-th column of this matrix.

Source

pub fn columns( &self, first_col: usize, ncols: usize, ) -> Matrix<T, R, Dyn, ViewStorage<'_, T, R, Dyn, <S as RawStorage<T, R, C>>::RStride, <S as RawStorage<T, R, C>>::CStride>>

Extracts from this matrix a set of consecutive columns.

Source

pub fn columns_with_step( &self, first_col: usize, ncols: usize, step: usize, ) -> Matrix<T, R, Dyn, ViewStorage<'_, T, R, Dyn, <S as RawStorage<T, R, C>>::RStride, Dyn>>

Extracts from this matrix a set of consecutive columns regularly skipping step columns.

Source

pub fn fixed_columns<const CVIEW: usize>( &self, first_col: usize, ) -> Matrix<T, R, Const<CVIEW>, ViewStorage<'_, T, R, Const<CVIEW>, <S as RawStorage<T, R, C>>::RStride, <S as RawStorage<T, R, C>>::CStride>>

Extracts a compile-time number of consecutive columns from this matrix.

Source

pub fn fixed_columns_with_step<const CVIEW: usize>( &self, first_col: usize, step: usize, ) -> Matrix<T, R, Const<CVIEW>, ViewStorage<'_, T, R, Const<CVIEW>, <S as RawStorage<T, R, C>>::RStride, Dyn>>

Extracts from this matrix a compile-time number of columns regularly skipping step columns.

Source

pub fn columns_generic<CView>( &self, first_col: usize, ncols: CView, ) -> Matrix<T, R, CView, ViewStorage<'_, T, R, CView, <S as RawStorage<T, R, C>>::RStride, <S as RawStorage<T, R, C>>::CStride>>
where CView: Dim,

Extracts from this matrix ncols columns. The number of columns may or may not be known at compile-time.

Source

pub fn columns_generic_with_step<CView>( &self, first_col: usize, ncols: CView, step: usize, ) -> Matrix<T, R, CView, ViewStorage<'_, T, R, CView, <S as RawStorage<T, R, C>>::RStride, Dyn>>
where CView: Dim,

Extracts from this matrix ncols columns skipping step columns. Both argument may or may not be values known at compile-time.

Source

pub fn slice( &self, start: (usize, usize), shape: (usize, usize), ) -> Matrix<T, Dyn, Dyn, ViewStorage<'_, T, Dyn, Dyn, <S as RawStorage<T, R, C>>::RStride, <S as RawStorage<T, R, C>>::CStride>>

👎Deprecated: Use view instead. See issue #1076 for more information.

Slices this matrix starting at its component (irow, icol) and with (nrows, ncols) consecutive elements.

Source

pub fn view( &self, start: (usize, usize), shape: (usize, usize), ) -> Matrix<T, Dyn, Dyn, ViewStorage<'_, T, Dyn, Dyn, <S as RawStorage<T, R, C>>::RStride, <S as RawStorage<T, R, C>>::CStride>>

Return a view of this matrix starting at its component (irow, icol) and with (nrows, ncols) consecutive elements.

Source

pub fn slice_with_steps( &self, start: (usize, usize), shape: (usize, usize), steps: (usize, usize), ) -> Matrix<T, Dyn, Dyn, ViewStorage<'_, T, Dyn, Dyn, Dyn, Dyn>>

👎Deprecated: Use view_with_steps instead. See issue #1076 for more information.

Slices this matrix starting at its component (start.0, start.1) and with (shape.0, shape.1) components. Each row (resp. column) of the sliced matrix is separated by steps.0 (resp. steps.1) ignored rows (resp. columns) of the original matrix.

Source

pub fn view_with_steps( &self, start: (usize, usize), shape: (usize, usize), steps: (usize, usize), ) -> Matrix<T, Dyn, Dyn, ViewStorage<'_, T, Dyn, Dyn, Dyn, Dyn>>

Return a view of this matrix starting at its component (start.0, start.1) and with (shape.0, shape.1) components. Each row (resp. column) of the matrix view is separated by steps.0 (resp. steps.1) ignored rows (resp. columns) of the original matrix.

Source

pub fn fixed_slice<const RVIEW: usize, const CVIEW: usize>( &self, irow: usize, icol: usize, ) -> Matrix<T, Const<RVIEW>, Const<CVIEW>, ViewStorage<'_, T, Const<RVIEW>, Const<CVIEW>, <S as RawStorage<T, R, C>>::RStride, <S as RawStorage<T, R, C>>::CStride>>

👎Deprecated: Use fixed_view instead. See issue #1076 for more information.

Slices this matrix starting at its component (irow, icol) and with (RVIEW, CVIEW) consecutive components.

Source

pub fn fixed_view<const RVIEW: usize, const CVIEW: usize>( &self, irow: usize, icol: usize, ) -> Matrix<T, Const<RVIEW>, Const<CVIEW>, ViewStorage<'_, T, Const<RVIEW>, Const<CVIEW>, <S as RawStorage<T, R, C>>::RStride, <S as RawStorage<T, R, C>>::CStride>>

Return a view of this matrix starting at its component (irow, icol) and with (RVIEW, CVIEW) consecutive components.

Source

pub fn fixed_slice_with_steps<const RVIEW: usize, const CVIEW: usize>( &self, start: (usize, usize), steps: (usize, usize), ) -> Matrix<T, Const<RVIEW>, Const<CVIEW>, ViewStorage<'_, T, Const<RVIEW>, Const<CVIEW>, Dyn, Dyn>>

👎Deprecated: Use fixed_view_with_steps instead. See issue #1076 for more information.

Slices this matrix starting at its component (start.0, start.1) and with (RVIEW, CVIEW) components. Each row (resp. column) of the sliced matrix is separated by steps.0 (resp. steps.1) ignored rows (resp. columns) of the original matrix.

Source

pub fn fixed_view_with_steps<const RVIEW: usize, const CVIEW: usize>( &self, start: (usize, usize), steps: (usize, usize), ) -> Matrix<T, Const<RVIEW>, Const<CVIEW>, ViewStorage<'_, T, Const<RVIEW>, Const<CVIEW>, Dyn, Dyn>>

Returns a view of this matrix starting at its component (start.0, start.1) and with (RVIEW, CVIEW) components. Each row (resp. column) of the matrix view is separated by steps.0 (resp. steps.1) ignored rows (resp. columns) of the original matrix.

Source

pub fn generic_slice<RView, CView>( &self, start: (usize, usize), shape: (RView, CView), ) -> Matrix<T, RView, CView, ViewStorage<'_, T, RView, CView, <S as RawStorage<T, R, C>>::RStride, <S as RawStorage<T, R, C>>::CStride>>
where RView: Dim, CView: Dim,

👎Deprecated: Use generic_view instead. See issue #1076 for more information.

Creates a slice that may or may not have a fixed size and stride.

Source

pub fn generic_view<RView, CView>( &self, start: (usize, usize), shape: (RView, CView), ) -> Matrix<T, RView, CView, ViewStorage<'_, T, RView, CView, <S as RawStorage<T, R, C>>::RStride, <S as RawStorage<T, R, C>>::CStride>>
where RView: Dim, CView: Dim,

Creates a matrix view that may or may not have a fixed size and stride.

Source

pub fn generic_slice_with_steps<RView, CView>( &self, start: (usize, usize), shape: (RView, CView), steps: (usize, usize), ) -> Matrix<T, RView, CView, ViewStorage<'_, T, RView, CView, Dyn, Dyn>>
where RView: Dim, CView: Dim,

👎Deprecated: Use generic_view_with_steps instead. See issue #1076 for more information.

Creates a slice that may or may not have a fixed size and stride.

Source

pub fn generic_view_with_steps<RView, CView>( &self, start: (usize, usize), shape: (RView, CView), steps: (usize, usize), ) -> Matrix<T, RView, CView, ViewStorage<'_, T, RView, CView, Dyn, Dyn>>
where RView: Dim, CView: Dim,

Creates a matrix view that may or may not have a fixed size and stride.

Source

pub fn rows_range_pair<Range1, Range2>( &self, r1: Range1, r2: Range2, ) -> (Matrix<T, <Range1 as DimRange<R>>::Size, C, ViewStorage<'_, T, <Range1 as DimRange<R>>::Size, C, <S as RawStorage<T, R, C>>::RStride, <S as RawStorage<T, R, C>>::CStride>>, Matrix<T, <Range2 as DimRange<R>>::Size, C, ViewStorage<'_, T, <Range2 as DimRange<R>>::Size, C, <S as RawStorage<T, R, C>>::RStride, <S as RawStorage<T, R, C>>::CStride>>)
where Range1: DimRange<R>, Range2: DimRange<R>,

Splits this NxM matrix into two parts delimited by two ranges.

Panics if the ranges overlap or if the first range is empty.

Source

pub fn columns_range_pair<Range1, Range2>( &self, r1: Range1, r2: Range2, ) -> (Matrix<T, R, <Range1 as DimRange<C>>::Size, ViewStorage<'_, T, R, <Range1 as DimRange<C>>::Size, <S as RawStorage<T, R, C>>::RStride, <S as RawStorage<T, R, C>>::CStride>>, Matrix<T, R, <Range2 as DimRange<C>>::Size, ViewStorage<'_, T, R, <Range2 as DimRange<C>>::Size, <S as RawStorage<T, R, C>>::RStride, <S as RawStorage<T, R, C>>::CStride>>)
where Range1: DimRange<C>, Range2: DimRange<C>,

Splits this NxM matrix into two parts delimited by two ranges.

Panics if the ranges overlap or if the first range is empty.

Source

pub fn row_mut( &mut self, i: usize, ) -> Matrix<T, Const<1>, C, ViewStorageMut<'_, T, Const<1>, C, <S as RawStorage<T, R, C>>::RStride, <S as RawStorage<T, R, C>>::CStride>>

Returns a view containing the i-th row of this matrix.

Source

pub fn row_part_mut( &mut self, i: usize, n: usize, ) -> Matrix<T, Const<1>, Dyn, ViewStorageMut<'_, T, Const<1>, Dyn, <S as RawStorage<T, R, C>>::RStride, <S as RawStorage<T, R, C>>::CStride>>

Returns a view containing the n first elements of the i-th row of this matrix.

Source

pub fn rows_mut( &mut self, first_row: usize, nrows: usize, ) -> Matrix<T, Dyn, C, ViewStorageMut<'_, T, Dyn, C, <S as RawStorage<T, R, C>>::RStride, <S as RawStorage<T, R, C>>::CStride>>

Extracts from this matrix a set of consecutive rows.

Source

pub fn rows_with_step_mut( &mut self, first_row: usize, nrows: usize, step: usize, ) -> Matrix<T, Dyn, C, ViewStorageMut<'_, T, Dyn, C, Dyn, <S as RawStorage<T, R, C>>::CStride>>

Extracts from this matrix a set of consecutive rows regularly skipping step rows.

Source

pub fn fixed_rows_mut<const RVIEW: usize>( &mut self, first_row: usize, ) -> Matrix<T, Const<RVIEW>, C, ViewStorageMut<'_, T, Const<RVIEW>, C, <S as RawStorage<T, R, C>>::RStride, <S as RawStorage<T, R, C>>::CStride>>

Extracts a compile-time number of consecutive rows from this matrix.

Source

pub fn fixed_rows_with_step_mut<const RVIEW: usize>( &mut self, first_row: usize, step: usize, ) -> Matrix<T, Const<RVIEW>, C, ViewStorageMut<'_, T, Const<RVIEW>, C, Dyn, <S as RawStorage<T, R, C>>::CStride>>

Extracts from this matrix a compile-time number of rows regularly skipping step rows.

Source

pub fn rows_generic_mut<RView>( &mut self, row_start: usize, nrows: RView, ) -> Matrix<T, RView, C, ViewStorageMut<'_, T, RView, C, <S as RawStorage<T, R, C>>::RStride, <S as RawStorage<T, R, C>>::CStride>>
where RView: Dim,

Extracts from this matrix nrows rows regularly skipping step rows. Both argument may or may not be values known at compile-time.

Source

pub fn rows_generic_with_step_mut<RView>( &mut self, row_start: usize, nrows: RView, step: usize, ) -> Matrix<T, RView, C, ViewStorageMut<'_, T, RView, C, Dyn, <S as RawStorage<T, R, C>>::CStride>>
where RView: Dim,

Extracts from this matrix nrows rows regularly skipping step rows. Both argument may or may not be values known at compile-time.

Source

pub fn column_mut( &mut self, i: usize, ) -> Matrix<T, R, Const<1>, ViewStorageMut<'_, T, R, Const<1>, <S as RawStorage<T, R, C>>::RStride, <S as RawStorage<T, R, C>>::CStride>>

Returns a view containing the i-th column of this matrix.

Source

pub fn column_part_mut( &mut self, i: usize, n: usize, ) -> Matrix<T, Dyn, Const<1>, ViewStorageMut<'_, T, Dyn, Const<1>, <S as RawStorage<T, R, C>>::RStride, <S as RawStorage<T, R, C>>::CStride>>

Returns a view containing the n first elements of the i-th column of this matrix.

Source

pub fn columns_mut( &mut self, first_col: usize, ncols: usize, ) -> Matrix<T, R, Dyn, ViewStorageMut<'_, T, R, Dyn, <S as RawStorage<T, R, C>>::RStride, <S as RawStorage<T, R, C>>::CStride>>

Extracts from this matrix a set of consecutive columns.

Source

pub fn columns_with_step_mut( &mut self, first_col: usize, ncols: usize, step: usize, ) -> Matrix<T, R, Dyn, ViewStorageMut<'_, T, R, Dyn, <S as RawStorage<T, R, C>>::RStride, Dyn>>

Extracts from this matrix a set of consecutive columns regularly skipping step columns.

Source

pub fn fixed_columns_mut<const CVIEW: usize>( &mut self, first_col: usize, ) -> Matrix<T, R, Const<CVIEW>, ViewStorageMut<'_, T, R, Const<CVIEW>, <S as RawStorage<T, R, C>>::RStride, <S as RawStorage<T, R, C>>::CStride>>

Extracts a compile-time number of consecutive columns from this matrix.

Source

pub fn fixed_columns_with_step_mut<const CVIEW: usize>( &mut self, first_col: usize, step: usize, ) -> Matrix<T, R, Const<CVIEW>, ViewStorageMut<'_, T, R, Const<CVIEW>, <S as RawStorage<T, R, C>>::RStride, Dyn>>

Extracts from this matrix a compile-time number of columns regularly skipping step columns.

Source

pub fn columns_generic_mut<CView>( &mut self, first_col: usize, ncols: CView, ) -> Matrix<T, R, CView, ViewStorageMut<'_, T, R, CView, <S as RawStorage<T, R, C>>::RStride, <S as RawStorage<T, R, C>>::CStride>>
where CView: Dim,

Extracts from this matrix ncols columns. The number of columns may or may not be known at compile-time.

Source

pub fn columns_generic_with_step_mut<CView>( &mut self, first_col: usize, ncols: CView, step: usize, ) -> Matrix<T, R, CView, ViewStorageMut<'_, T, R, CView, <S as RawStorage<T, R, C>>::RStride, Dyn>>
where CView: Dim,

Extracts from this matrix ncols columns skipping step columns. Both argument may or may not be values known at compile-time.

Source

pub fn slice_mut( &mut self, start: (usize, usize), shape: (usize, usize), ) -> Matrix<T, Dyn, Dyn, ViewStorageMut<'_, T, Dyn, Dyn, <S as RawStorage<T, R, C>>::RStride, <S as RawStorage<T, R, C>>::CStride>>

👎Deprecated: Use view_mut instead. See issue #1076 for more information.

Slices this matrix starting at its component (irow, icol) and with (nrows, ncols) consecutive elements.

Source

pub fn view_mut( &mut self, start: (usize, usize), shape: (usize, usize), ) -> Matrix<T, Dyn, Dyn, ViewStorageMut<'_, T, Dyn, Dyn, <S as RawStorage<T, R, C>>::RStride, <S as RawStorage<T, R, C>>::CStride>>

Return a view of this matrix starting at its component (irow, icol) and with (nrows, ncols) consecutive elements.

Source

pub fn slice_with_steps_mut( &mut self, start: (usize, usize), shape: (usize, usize), steps: (usize, usize), ) -> Matrix<T, Dyn, Dyn, ViewStorageMut<'_, T, Dyn, Dyn, Dyn, Dyn>>

👎Deprecated: Use view_with_steps_mut instead. See issue #1076 for more information.

Slices this matrix starting at its component (start.0, start.1) and with (shape.0, shape.1) components. Each row (resp. column) of the sliced matrix is separated by steps.0 (resp. steps.1) ignored rows (resp. columns) of the original matrix.

Source

pub fn view_with_steps_mut( &mut self, start: (usize, usize), shape: (usize, usize), steps: (usize, usize), ) -> Matrix<T, Dyn, Dyn, ViewStorageMut<'_, T, Dyn, Dyn, Dyn, Dyn>>

Return a view of this matrix starting at its component (start.0, start.1) and with (shape.0, shape.1) components. Each row (resp. column) of the matrix view is separated by steps.0 (resp. steps.1) ignored rows (resp. columns) of the original matrix.

Source

pub fn fixed_slice_mut<const RVIEW: usize, const CVIEW: usize>( &mut self, irow: usize, icol: usize, ) -> Matrix<T, Const<RVIEW>, Const<CVIEW>, ViewStorageMut<'_, T, Const<RVIEW>, Const<CVIEW>, <S as RawStorage<T, R, C>>::RStride, <S as RawStorage<T, R, C>>::CStride>>

👎Deprecated: Use fixed_view_mut instead. See issue #1076 for more information.

Slices this matrix starting at its component (irow, icol) and with (RVIEW, CVIEW) consecutive components.

Source

pub fn fixed_view_mut<const RVIEW: usize, const CVIEW: usize>( &mut self, irow: usize, icol: usize, ) -> Matrix<T, Const<RVIEW>, Const<CVIEW>, ViewStorageMut<'_, T, Const<RVIEW>, Const<CVIEW>, <S as RawStorage<T, R, C>>::RStride, <S as RawStorage<T, R, C>>::CStride>>

Return a view of this matrix starting at its component (irow, icol) and with (RVIEW, CVIEW) consecutive components.

Source

pub fn fixed_slice_with_steps_mut<const RVIEW: usize, const CVIEW: usize>( &mut self, start: (usize, usize), steps: (usize, usize), ) -> Matrix<T, Const<RVIEW>, Const<CVIEW>, ViewStorageMut<'_, T, Const<RVIEW>, Const<CVIEW>, Dyn, Dyn>>

👎Deprecated: Use fixed_view_with_steps_mut instead. See issue #1076 for more information.

Slices this matrix starting at its component (start.0, start.1) and with (RVIEW, CVIEW) components. Each row (resp. column) of the sliced matrix is separated by steps.0 (resp. steps.1) ignored rows (resp. columns) of the original matrix.

Source

pub fn fixed_view_with_steps_mut<const RVIEW: usize, const CVIEW: usize>( &mut self, start: (usize, usize), steps: (usize, usize), ) -> Matrix<T, Const<RVIEW>, Const<CVIEW>, ViewStorageMut<'_, T, Const<RVIEW>, Const<CVIEW>, Dyn, Dyn>>

Returns a view of this matrix starting at its component (start.0, start.1) and with (RVIEW, CVIEW) components. Each row (resp. column) of the matrix view is separated by steps.0 (resp. steps.1) ignored rows (resp. columns) of the original matrix.

Source

pub fn generic_slice_mut<RView, CView>( &mut self, start: (usize, usize), shape: (RView, CView), ) -> Matrix<T, RView, CView, ViewStorageMut<'_, T, RView, CView, <S as RawStorage<T, R, C>>::RStride, <S as RawStorage<T, R, C>>::CStride>>
where RView: Dim, CView: Dim,

👎Deprecated: Use generic_view_mut instead. See issue #1076 for more information.

Creates a slice that may or may not have a fixed size and stride.

Source

pub fn generic_view_mut<RView, CView>( &mut self, start: (usize, usize), shape: (RView, CView), ) -> Matrix<T, RView, CView, ViewStorageMut<'_, T, RView, CView, <S as RawStorage<T, R, C>>::RStride, <S as RawStorage<T, R, C>>::CStride>>
where RView: Dim, CView: Dim,

Creates a matrix view that may or may not have a fixed size and stride.

Source

pub fn generic_slice_with_steps_mut<RView, CView>( &mut self, start: (usize, usize), shape: (RView, CView), steps: (usize, usize), ) -> Matrix<T, RView, CView, ViewStorageMut<'_, T, RView, CView, Dyn, Dyn>>
where RView: Dim, CView: Dim,

👎Deprecated: Use generic_view_with_steps_mut instead. See issue #1076 for more information.

Creates a slice that may or may not have a fixed size and stride.

Source

pub fn generic_view_with_steps_mut<RView, CView>( &mut self, start: (usize, usize), shape: (RView, CView), steps: (usize, usize), ) -> Matrix<T, RView, CView, ViewStorageMut<'_, T, RView, CView, Dyn, Dyn>>
where RView: Dim, CView: Dim,

Creates a matrix view that may or may not have a fixed size and stride.

Source

pub fn rows_range_pair_mut<Range1, Range2>( &mut self, r1: Range1, r2: Range2, ) -> (Matrix<T, <Range1 as DimRange<R>>::Size, C, ViewStorageMut<'_, T, <Range1 as DimRange<R>>::Size, C, <S as RawStorage<T, R, C>>::RStride, <S as RawStorage<T, R, C>>::CStride>>, Matrix<T, <Range2 as DimRange<R>>::Size, C, ViewStorageMut<'_, T, <Range2 as DimRange<R>>::Size, C, <S as RawStorage<T, R, C>>::RStride, <S as RawStorage<T, R, C>>::CStride>>)
where Range1: DimRange<R>, Range2: DimRange<R>,

Splits this NxM matrix into two parts delimited by two ranges.

Panics if the ranges overlap or if the first range is empty.

Source

pub fn columns_range_pair_mut<Range1, Range2>( &mut self, r1: Range1, r2: Range2, ) -> (Matrix<T, R, <Range1 as DimRange<C>>::Size, ViewStorageMut<'_, T, R, <Range1 as DimRange<C>>::Size, <S as RawStorage<T, R, C>>::RStride, <S as RawStorage<T, R, C>>::CStride>>, Matrix<T, R, <Range2 as DimRange<C>>::Size, ViewStorageMut<'_, T, R, <Range2 as DimRange<C>>::Size, <S as RawStorage<T, R, C>>::RStride, <S as RawStorage<T, R, C>>::CStride>>)
where Range1: DimRange<C>, Range2: DimRange<C>,

Splits this NxM matrix into two parts delimited by two ranges.

Panics if the ranges overlap or if the first range is empty.

Source

pub fn slice_range<RowRange, ColRange>( &self, rows: RowRange, cols: ColRange, ) -> Matrix<T, <RowRange as DimRange<R>>::Size, <ColRange as DimRange<C>>::Size, ViewStorage<'_, T, <RowRange as DimRange<R>>::Size, <ColRange as DimRange<C>>::Size, <S as RawStorage<T, R, C>>::RStride, <S as RawStorage<T, R, C>>::CStride>>
where RowRange: DimRange<R>, ColRange: DimRange<C>,

👎Deprecated: Use view_range instead. See issue #1076 for more information.

Slices a sub-matrix containing the rows indexed by the range rows and the columns indexed by the range cols.

Source

pub fn view_range<RowRange, ColRange>( &self, rows: RowRange, cols: ColRange, ) -> Matrix<T, <RowRange as DimRange<R>>::Size, <ColRange as DimRange<C>>::Size, ViewStorage<'_, T, <RowRange as DimRange<R>>::Size, <ColRange as DimRange<C>>::Size, <S as RawStorage<T, R, C>>::RStride, <S as RawStorage<T, R, C>>::CStride>>
where RowRange: DimRange<R>, ColRange: DimRange<C>,

Returns a view containing the rows indexed by the range rows and the columns indexed by the range cols.

Source

pub fn rows_range<RowRange>( &self, rows: RowRange, ) -> Matrix<T, <RowRange as DimRange<R>>::Size, C, ViewStorage<'_, T, <RowRange as DimRange<R>>::Size, C, <S as RawStorage<T, R, C>>::RStride, <S as RawStorage<T, R, C>>::CStride>>
where RowRange: DimRange<R>,

View containing all the rows indexed by the range rows.

Source

pub fn columns_range<ColRange>( &self, cols: ColRange, ) -> Matrix<T, R, <ColRange as DimRange<C>>::Size, ViewStorage<'_, T, R, <ColRange as DimRange<C>>::Size, <S as RawStorage<T, R, C>>::RStride, <S as RawStorage<T, R, C>>::CStride>>
where ColRange: DimRange<C>,

View containing all the columns indexed by the range rows.

Source

pub fn slice_range_mut<RowRange, ColRange>( &mut self, rows: RowRange, cols: ColRange, ) -> Matrix<T, <RowRange as DimRange<R>>::Size, <ColRange as DimRange<C>>::Size, ViewStorageMut<'_, T, <RowRange as DimRange<R>>::Size, <ColRange as DimRange<C>>::Size, <S as RawStorage<T, R, C>>::RStride, <S as RawStorage<T, R, C>>::CStride>>
where RowRange: DimRange<R>, ColRange: DimRange<C>,

👎Deprecated: Use view_range_mut instead. See issue #1076 for more information.

Slices a mutable sub-matrix containing the rows indexed by the range rows and the columns indexed by the range cols.

Source

pub fn view_range_mut<RowRange, ColRange>( &mut self, rows: RowRange, cols: ColRange, ) -> Matrix<T, <RowRange as DimRange<R>>::Size, <ColRange as DimRange<C>>::Size, ViewStorageMut<'_, T, <RowRange as DimRange<R>>::Size, <ColRange as DimRange<C>>::Size, <S as RawStorage<T, R, C>>::RStride, <S as RawStorage<T, R, C>>::CStride>>
where RowRange: DimRange<R>, ColRange: DimRange<C>,

Return a mutable view containing the rows indexed by the range rows and the columns indexed by the range cols.

Source

pub fn rows_range_mut<RowRange>( &mut self, rows: RowRange, ) -> Matrix<T, <RowRange as DimRange<R>>::Size, C, ViewStorageMut<'_, T, <RowRange as DimRange<R>>::Size, C, <S as RawStorage<T, R, C>>::RStride, <S as RawStorage<T, R, C>>::CStride>>
where RowRange: DimRange<R>,

Mutable view containing all the rows indexed by the range rows.

Source

pub fn columns_range_mut<ColRange>( &mut self, cols: ColRange, ) -> Matrix<T, R, <ColRange as DimRange<C>>::Size, ViewStorageMut<'_, T, R, <ColRange as DimRange<C>>::Size, <S as RawStorage<T, R, C>>::RStride, <S as RawStorage<T, R, C>>::CStride>>
where ColRange: DimRange<C>,

Mutable view containing all the columns indexed by the range cols.

Source

pub fn as_view<RView, CView, RViewStride, CViewStride>( &self, ) -> Matrix<T, RView, CView, ViewStorage<'_, T, RView, CView, RViewStride, CViewStride>>
where RView: Dim, CView: Dim, RViewStride: Dim, CViewStride: Dim, ShapeConstraint: DimEq<R, RView> + DimEq<C, CView> + DimEq<RViewStride, <S as RawStorage<T, R, C>>::RStride> + DimEq<CViewStride, <S as RawStorage<T, R, C>>::CStride>,

Returns this matrix as a view.

The returned view type is generally ambiguous unless specified. This is particularly useful when working with functions or methods that take matrix views as input.

§Panics

Panics if the dimensions of the view and the matrix are not compatible and this cannot be proven at compile-time. This might happen, for example, when constructing a static view of size 3x3 from a dynamically sized matrix of dimension 5x5.

§Examples
use nalgebra::{DMatrixSlice, SMatrixView};

fn consume_view(_: DMatrixSlice<f64>) {}

let matrix = nalgebra::Matrix3::zeros();
consume_view(matrix.as_view());

let dynamic_view: DMatrixSlice<f64> = matrix.as_view();
let static_view_from_dyn: SMatrixView<f64, 3, 3> = dynamic_view.as_view();
Source

pub fn as_view_mut<RView, CView, RViewStride, CViewStride>( &mut self, ) -> Matrix<T, RView, CView, ViewStorageMut<'_, T, RView, CView, RViewStride, CViewStride>>
where RView: Dim, CView: Dim, RViewStride: Dim, CViewStride: Dim, ShapeConstraint: DimEq<R, RView> + DimEq<C, CView> + DimEq<RViewStride, <S as RawStorage<T, R, C>>::RStride> + DimEq<CViewStride, <S as RawStorage<T, R, C>>::CStride>,

Returns this matrix as a mutable view.

The returned view type is generally ambiguous unless specified. This is particularly useful when working with functions or methods that take matrix views as input.

§Panics

Panics if the dimensions of the view and the matrix are not compatible and this cannot be proven at compile-time. This might happen, for example, when constructing a static view of size 3x3 from a dynamically sized matrix of dimension 5x5.

§Examples
use nalgebra::{DMatrixViewMut, SMatrixViewMut};

fn consume_view(_: DMatrixViewMut<f64>) {}

let mut matrix = nalgebra::Matrix3::zeros();
consume_view(matrix.as_view_mut());

let mut dynamic_view: DMatrixViewMut<f64> = matrix.as_view_mut();
let static_view_from_dyn: SMatrixViewMut<f64, 3, 3> = dynamic_view.as_view_mut();
Source

pub fn norm_squared(&self) -> <T as SimdComplexField>::SimdRealField

The squared L2 norm of this vector.

Source

pub fn norm(&self) -> <T as SimdComplexField>::SimdRealField

The L2 norm of this matrix.

Use .apply_norm to apply a custom norm.

Source

pub fn metric_distance<R2, C2, S2>( &self, rhs: &Matrix<T, R2, C2, S2>, ) -> <T as SimdComplexField>::SimdRealField
where T: SimdComplexField, R2: Dim, C2: Dim, S2: Storage<T, R2, C2>, ShapeConstraint: SameNumberOfRows<R, R2> + SameNumberOfColumns<C, C2>,

Compute the distance between self and rhs using the metric induced by the euclidean norm.

Use .apply_metric_distance to apply a custom norm.

Source

pub fn apply_norm( &self, norm: &impl Norm<T>, ) -> <T as SimdComplexField>::SimdRealField

Uses the given norm to compute the norm of self.

§Example

let v = Vector3::new(1.0, 2.0, 3.0);
assert_eq!(v.apply_norm(&UniformNorm), 3.0);
assert_eq!(v.apply_norm(&LpNorm(1)), 6.0);
assert_eq!(v.apply_norm(&EuclideanNorm), v.norm());
Source

pub fn apply_metric_distance<R2, C2, S2>( &self, rhs: &Matrix<T, R2, C2, S2>, norm: &impl Norm<T>, ) -> <T as SimdComplexField>::SimdRealField
where T: SimdComplexField, R2: Dim, C2: Dim, S2: Storage<T, R2, C2>, ShapeConstraint: SameNumberOfRows<R, R2> + SameNumberOfColumns<C, C2>,

Uses the metric induced by the given norm to compute the metric distance between self and rhs.

§Example

let v1 = Vector3::new(1.0, 2.0, 3.0);
let v2 = Vector3::new(10.0, 20.0, 30.0);

assert_eq!(v1.apply_metric_distance(&v2, &UniformNorm), 27.0);
assert_eq!(v1.apply_metric_distance(&v2, &LpNorm(1)), 27.0 + 18.0 + 9.0);
assert_eq!(v1.apply_metric_distance(&v2, &EuclideanNorm), (v1 - v2).norm());
Source

pub fn magnitude(&self) -> <T as SimdComplexField>::SimdRealField

A synonym for the norm of this matrix.

Aka the length.

This function is simply implemented as a call to norm()

Source

pub fn magnitude_squared(&self) -> <T as SimdComplexField>::SimdRealField

A synonym for the squared norm of this matrix.

Aka the squared length.

This function is simply implemented as a call to norm_squared()

Source

pub fn set_magnitude( &mut self, magnitude: <T as SimdComplexField>::SimdRealField, )
where T: SimdComplexField, S: StorageMut<T, R, C>,

Sets the magnitude of this vector.

Source

pub fn normalize( &self, ) -> Matrix<T, R, C, <DefaultAllocator as Allocator<R, C>>::Buffer<T>>

Returns a normalized version of this matrix.

Source

pub fn lp_norm(&self, p: i32) -> <T as SimdComplexField>::SimdRealField

The Lp norm of this matrix.

Source

pub fn simd_try_normalize( &self, min_norm: <T as SimdComplexField>::SimdRealField, ) -> SimdOption<Matrix<T, R, C, <DefaultAllocator as Allocator<R, C>>::Buffer<T>>>

Attempts to normalize self.

The components of this matrix can be SIMD types.

Source

pub fn try_set_magnitude( &mut self, magnitude: <T as ComplexField>::RealField, min_magnitude: <T as ComplexField>::RealField, )
where T: ComplexField, S: StorageMut<T, R, C>,

Sets the magnitude of this vector unless it is smaller than min_magnitude.

If self.magnitude() is smaller than min_magnitude, it will be left unchanged. Otherwise this is equivalent to: *self = self.normalize() * magnitude.

Source

pub fn cap_magnitude( &self, max: <T as ComplexField>::RealField, ) -> Matrix<T, R, C, <DefaultAllocator as Allocator<R, C>>::Buffer<T>>

Returns a new vector with the same magnitude as self clamped between 0.0 and max.

Source

pub fn simd_cap_magnitude( &self, max: <T as SimdComplexField>::SimdRealField, ) -> Matrix<T, R, C, <DefaultAllocator as Allocator<R, C>>::Buffer<T>>

Returns a new vector with the same magnitude as self clamped between 0.0 and max.

Source

pub fn try_normalize( &self, min_norm: <T as ComplexField>::RealField, ) -> Option<Matrix<T, R, C, <DefaultAllocator as Allocator<R, C>>::Buffer<T>>>

Returns a normalized version of this matrix unless its norm as smaller or equal to eps.

The components of this matrix cannot be SIMD types (see simd_try_normalize) instead.

Source

pub fn normalize_mut(&mut self) -> <T as SimdComplexField>::SimdRealField

Normalizes this matrix in-place and returns its norm.

The components of the matrix cannot be SIMD types (see simd_try_normalize_mut instead).

Source

pub fn simd_try_normalize_mut( &mut self, min_norm: <T as SimdComplexField>::SimdRealField, ) -> SimdOption<<T as SimdComplexField>::SimdRealField>

Normalizes this matrix in-place and return its norm.

The components of the matrix can be SIMD types.

Source

pub fn try_normalize_mut( &mut self, min_norm: <T as ComplexField>::RealField, ) -> Option<<T as ComplexField>::RealField>
where T: ComplexField,

Normalizes this matrix in-place or does nothing if its norm is smaller or equal to eps.

If the normalization succeeded, returns the old norm of this matrix.

Source

pub fn len(&self) -> usize

The total number of elements of this matrix.

§Examples:
let mat = Matrix3x4::<f32>::zeros();
assert_eq!(mat.len(), 12);
Source

pub fn is_empty(&self) -> bool

Returns true if the matrix contains no elements.

§Examples:
let mat = Matrix3x4::<f32>::zeros();
assert!(!mat.is_empty());
Source

pub fn is_square(&self) -> bool

Indicates if this is a square matrix.

Source

pub fn is_identity(&self, eps: <T as AbsDiffEq>::Epsilon) -> bool
where T: Zero + One + RelativeEq, <T as AbsDiffEq>::Epsilon: Clone,

Indicated if this is the identity matrix within a relative error of eps.

If the matrix is diagonal, this checks that diagonal elements (i.e. at coordinates (i, i) for i from 0 to min(R, C)) are equal one; and that all other elements are zero.

Source

pub fn is_orthogonal(&self, eps: <T as AbsDiffEq>::Epsilon) -> bool

Checks that Mᵀ × M = Id.

In this definition Id is approximately equal to the identity matrix with a relative error equal to eps.

Source

pub fn is_special_orthogonal(&self, eps: T) -> bool
where D: DimMin<D, Output = D>, DefaultAllocator: Allocator<D>,

Checks that this matrix is orthogonal and has a determinant equal to 1.

Source

pub fn is_invertible(&self) -> bool

Returns true if this matrix is invertible.

Source

pub fn compress_rows( &self, f: impl Fn(Matrix<T, R, Const<1>, ViewStorage<'_, T, R, Const<1>, <S as RawStorage<T, R, C>>::RStride, <S as RawStorage<T, R, C>>::CStride>>) -> T, ) -> Matrix<T, Const<1>, C, <DefaultAllocator as Allocator<Const<1>, C>>::Buffer<T>>

Returns a row vector where each element is the result of the application of f on the corresponding column of the original matrix.

Source

pub fn compress_rows_tr( &self, f: impl Fn(Matrix<T, R, Const<1>, ViewStorage<'_, T, R, Const<1>, <S as RawStorage<T, R, C>>::RStride, <S as RawStorage<T, R, C>>::CStride>>) -> T, ) -> Matrix<T, C, Const<1>, <DefaultAllocator as Allocator<C>>::Buffer<T>>

Returns a column vector where each element is the result of the application of f on the corresponding column of the original matrix.

This is the same as self.compress_rows(f).transpose().

Source

pub fn compress_columns( &self, init: Matrix<T, R, Const<1>, <DefaultAllocator as Allocator<R>>::Buffer<T>>, f: impl Fn(&mut Matrix<T, R, Const<1>, <DefaultAllocator as Allocator<R>>::Buffer<T>>, Matrix<T, R, Const<1>, ViewStorage<'_, T, R, Const<1>, <S as RawStorage<T, R, C>>::RStride, <S as RawStorage<T, R, C>>::CStride>>), ) -> Matrix<T, R, Const<1>, <DefaultAllocator as Allocator<R>>::Buffer<T>>

Returns a column vector resulting from the folding of f on each column of this matrix.

Source

pub fn sum(&self) -> T
where T: ClosedAddAssign + Zero,

The sum of all the elements of this matrix.

§Example

let m = Matrix2x3::new(1.0, 2.0, 3.0,
                       4.0, 5.0, 6.0);
assert_eq!(m.sum(), 21.0);
Source

pub fn row_sum( &self, ) -> Matrix<T, Const<1>, C, <DefaultAllocator as Allocator<Const<1>, C>>::Buffer<T>>

The sum of all the rows of this matrix.

Use .row_sum_tr if you need the result in a column vector instead.

§Example

let m = Matrix2x3::new(1.0, 2.0, 3.0,
                       4.0, 5.0, 6.0);
assert_eq!(m.row_sum(), RowVector3::new(5.0, 7.0, 9.0));

let mint = Matrix3x2::new(1, 2,
                          3, 4,
                          5, 6);
assert_eq!(mint.row_sum(), RowVector2::new(9,12));
Source

pub fn row_sum_tr( &self, ) -> Matrix<T, C, Const<1>, <DefaultAllocator as Allocator<C>>::Buffer<T>>

The sum of all the rows of this matrix. The result is transposed and returned as a column vector.

§Example

let m = Matrix2x3::new(1.0, 2.0, 3.0,
                       4.0, 5.0, 6.0);
assert_eq!(m.row_sum_tr(), Vector3::new(5.0, 7.0, 9.0));

let mint = Matrix3x2::new(1, 2,
                          3, 4,
                          5, 6);
assert_eq!(mint.row_sum_tr(), Vector2::new(9, 12));
Source

pub fn column_sum( &self, ) -> Matrix<T, R, Const<1>, <DefaultAllocator as Allocator<R>>::Buffer<T>>

The sum of all the columns of this matrix.

§Example

let m = Matrix2x3::new(1.0, 2.0, 3.0,
                       4.0, 5.0, 6.0);
assert_eq!(m.column_sum(), Vector2::new(6.0, 15.0));

let mint = Matrix3x2::new(1, 2,
                          3, 4,
                          5, 6);
assert_eq!(mint.column_sum(), Vector3::new(3, 7, 11));
Source

pub fn product(&self) -> T
where T: ClosedMulAssign + One,

The product of all the elements of this matrix.

§Example

let m = Matrix2x3::new(1.0, 2.0, 3.0,
                       4.0, 5.0, 6.0);
assert_eq!(m.product(), 720.0);
Source

pub fn row_product( &self, ) -> Matrix<T, Const<1>, C, <DefaultAllocator as Allocator<Const<1>, C>>::Buffer<T>>

The product of all the rows of this matrix.

Use .row_sum_tr if you need the result in a column vector instead.

§Example

let m = Matrix2x3::new(1.0, 2.0, 3.0,
                       4.0, 5.0, 6.0);
assert_eq!(m.row_product(), RowVector3::new(4.0, 10.0, 18.0));

let mint = Matrix3x2::new(1, 2,
                          3, 4,
                          5, 6);
assert_eq!(mint.row_product(), RowVector2::new(15, 48));
Source

pub fn row_product_tr( &self, ) -> Matrix<T, C, Const<1>, <DefaultAllocator as Allocator<C>>::Buffer<T>>

The product of all the rows of this matrix. The result is transposed and returned as a column vector.

§Example

let m = Matrix2x3::new(1.0, 2.0, 3.0,
                       4.0, 5.0, 6.0);
assert_eq!(m.row_product_tr(), Vector3::new(4.0, 10.0, 18.0));

let mint = Matrix3x2::new(1, 2,
                          3, 4,
                          5, 6);
assert_eq!(mint.row_product_tr(), Vector2::new(15, 48));
Source

pub fn column_product( &self, ) -> Matrix<T, R, Const<1>, <DefaultAllocator as Allocator<R>>::Buffer<T>>

The product of all the columns of this matrix.

§Example

let m = Matrix2x3::new(1.0, 2.0, 3.0,
                       4.0, 5.0, 6.0);
assert_eq!(m.column_product(), Vector2::new(6.0, 120.0));

let mint = Matrix3x2::new(1, 2,
                          3, 4,
                          5, 6);
assert_eq!(mint.column_product(), Vector3::new(2, 12, 30));
Source

pub fn variance(&self) -> T
where T: Field + SupersetOf<f64>,

The variance of all the elements of this matrix.

§Example

let m = Matrix2x3::new(1.0, 2.0, 3.0,
                       4.0, 5.0, 6.0);
assert_relative_eq!(m.variance(), 35.0 / 12.0, epsilon = 1.0e-8);
Source

pub fn row_variance( &self, ) -> Matrix<T, Const<1>, C, <DefaultAllocator as Allocator<Const<1>, C>>::Buffer<T>>

The variance of all the rows of this matrix.

Use .row_variance_tr if you need the result in a column vector instead.

§Example

let m = Matrix2x3::new(1.0, 2.0, 3.0,
                       4.0, 5.0, 6.0);
assert_eq!(m.row_variance(), RowVector3::new(2.25, 2.25, 2.25));
Source

pub fn row_variance_tr( &self, ) -> Matrix<T, C, Const<1>, <DefaultAllocator as Allocator<C>>::Buffer<T>>

The variance of all the rows of this matrix. The result is transposed and returned as a column vector.

§Example

let m = Matrix2x3::new(1.0, 2.0, 3.0,
                       4.0, 5.0, 6.0);
assert_eq!(m.row_variance_tr(), Vector3::new(2.25, 2.25, 2.25));
Source

pub fn column_variance( &self, ) -> Matrix<T, R, Const<1>, <DefaultAllocator as Allocator<R>>::Buffer<T>>

The variance of all the columns of this matrix.

§Example

let m = Matrix2x3::new(1.0, 2.0, 3.0,
                       4.0, 5.0, 6.0);
assert_relative_eq!(m.column_variance(), Vector2::new(2.0 / 3.0, 2.0 / 3.0), epsilon = 1.0e-8);
Source

pub fn mean(&self) -> T
where T: Field + SupersetOf<f64>,

The mean of all the elements of this matrix.

§Example

let m = Matrix2x3::new(1.0, 2.0, 3.0,
                       4.0, 5.0, 6.0);
assert_eq!(m.mean(), 3.5);
Source

pub fn row_mean( &self, ) -> Matrix<T, Const<1>, C, <DefaultAllocator as Allocator<Const<1>, C>>::Buffer<T>>

The mean of all the rows of this matrix.

Use .row_mean_tr if you need the result in a column vector instead.

§Example

let m = Matrix2x3::new(1.0, 2.0, 3.0,
                       4.0, 5.0, 6.0);
assert_eq!(m.row_mean(), RowVector3::new(2.5, 3.5, 4.5));
Source

pub fn row_mean_tr( &self, ) -> Matrix<T, C, Const<1>, <DefaultAllocator as Allocator<C>>::Buffer<T>>

The mean of all the rows of this matrix. The result is transposed and returned as a column vector.

§Example

let m = Matrix2x3::new(1.0, 2.0, 3.0,
                       4.0, 5.0, 6.0);
assert_eq!(m.row_mean_tr(), Vector3::new(2.5, 3.5, 4.5));
Source

pub fn column_mean( &self, ) -> Matrix<T, R, Const<1>, <DefaultAllocator as Allocator<R>>::Buffer<T>>

The mean of all the columns of this matrix.

§Example

let m = Matrix2x3::new(1.0, 2.0, 3.0,
                       4.0, 5.0, 6.0);
assert_eq!(m.column_mean(), Vector2::new(2.0, 5.0));
Source

pub fn xx(&self) -> Matrix<T, Const<2>, Const<1>, ArrayStorage<T, 2, 1>>
where <D as ToTypenum>::Typenum: Cmp<UTerm, Output = Greater>,

Builds a new vector from components of self.

Source

pub fn xxx(&self) -> Matrix<T, Const<3>, Const<1>, ArrayStorage<T, 3, 1>>
where <D as ToTypenum>::Typenum: Cmp<UTerm, Output = Greater>,

Builds a new vector from components of self.

Source

pub fn xy(&self) -> Matrix<T, Const<2>, Const<1>, ArrayStorage<T, 2, 1>>
where <D as ToTypenum>::Typenum: Cmp<UInt<UTerm, B1>, Output = Greater>,

Builds a new vector from components of self.

Source

pub fn yx(&self) -> Matrix<T, Const<2>, Const<1>, ArrayStorage<T, 2, 1>>
where <D as ToTypenum>::Typenum: Cmp<UInt<UTerm, B1>, Output = Greater>,

Builds a new vector from components of self.

Source

pub fn yy(&self) -> Matrix<T, Const<2>, Const<1>, ArrayStorage<T, 2, 1>>
where <D as ToTypenum>::Typenum: Cmp<UInt<UTerm, B1>, Output = Greater>,

Builds a new vector from components of self.

Source

pub fn xxy(&self) -> Matrix<T, Const<3>, Const<1>, ArrayStorage<T, 3, 1>>
where <D as ToTypenum>::Typenum: Cmp<UInt<UTerm, B1>, Output = Greater>,

Builds a new vector from components of self.

Source

pub fn xyx(&self) -> Matrix<T, Const<3>, Const<1>, ArrayStorage<T, 3, 1>>
where <D as ToTypenum>::Typenum: Cmp<UInt<UTerm, B1>, Output = Greater>,

Builds a new vector from components of self.

Source

pub fn xyy(&self) -> Matrix<T, Const<3>, Const<1>, ArrayStorage<T, 3, 1>>
where <D as ToTypenum>::Typenum: Cmp<UInt<UTerm, B1>, Output = Greater>,

Builds a new vector from components of self.

Source

pub fn yxx(&self) -> Matrix<T, Const<3>, Const<1>, ArrayStorage<T, 3, 1>>
where <D as ToTypenum>::Typenum: Cmp<UInt<UTerm, B1>, Output = Greater>,

Builds a new vector from components of self.

Source

pub fn yxy(&self) -> Matrix<T, Const<3>, Const<1>, ArrayStorage<T, 3, 1>>
where <D as ToTypenum>::Typenum: Cmp<UInt<UTerm, B1>, Output = Greater>,

Builds a new vector from components of self.

Source

pub fn yyx(&self) -> Matrix<T, Const<3>, Const<1>, ArrayStorage<T, 3, 1>>
where <D as ToTypenum>::Typenum: Cmp<UInt<UTerm, B1>, Output = Greater>,

Builds a new vector from components of self.

Source

pub fn yyy(&self) -> Matrix<T, Const<3>, Const<1>, ArrayStorage<T, 3, 1>>
where <D as ToTypenum>::Typenum: Cmp<UInt<UTerm, B1>, Output = Greater>,

Builds a new vector from components of self.

Source

pub fn xz(&self) -> Matrix<T, Const<2>, Const<1>, ArrayStorage<T, 2, 1>>
where <D as ToTypenum>::Typenum: Cmp<UInt<UInt<UTerm, B1>, B0>, Output = Greater>,

Builds a new vector from components of self.

Source

pub fn yz(&self) -> Matrix<T, Const<2>, Const<1>, ArrayStorage<T, 2, 1>>
where <D as ToTypenum>::Typenum: Cmp<UInt<UInt<UTerm, B1>, B0>, Output = Greater>,

Builds a new vector from components of self.

Source

pub fn zx(&self) -> Matrix<T, Const<2>, Const<1>, ArrayStorage<T, 2, 1>>
where <D as ToTypenum>::Typenum: Cmp<UInt<UInt<UTerm, B1>, B0>, Output = Greater>,

Builds a new vector from components of self.

Source

pub fn zy(&self) -> Matrix<T, Const<2>, Const<1>, ArrayStorage<T, 2, 1>>
where <D as ToTypenum>::Typenum: Cmp<UInt<UInt<UTerm, B1>, B0>, Output = Greater>,

Builds a new vector from components of self.

Source

pub fn zz(&self) -> Matrix<T, Const<2>, Const<1>, ArrayStorage<T, 2, 1>>
where <D as ToTypenum>::Typenum: Cmp<UInt<UInt<UTerm, B1>, B0>, Output = Greater>,

Builds a new vector from components of self.

Source

pub fn xxz(&self) -> Matrix<T, Const<3>, Const<1>, ArrayStorage<T, 3, 1>>
where <D as ToTypenum>::Typenum: Cmp<UInt<UInt<UTerm, B1>, B0>, Output = Greater>,

Builds a new vector from components of self.

Source

pub fn xyz(&self) -> Matrix<T, Const<3>, Const<1>, ArrayStorage<T, 3, 1>>
where <D as ToTypenum>::Typenum: Cmp<UInt<UInt<UTerm, B1>, B0>, Output = Greater>,

Builds a new vector from components of self.

Source

pub fn xzx(&self) -> Matrix<T, Const<3>, Const<1>, ArrayStorage<T, 3, 1>>
where <D as ToTypenum>::Typenum: Cmp<UInt<UInt<UTerm, B1>, B0>, Output = Greater>,

Builds a new vector from components of self.

Source

pub fn xzy(&self) -> Matrix<T, Const<3>, Const<1>, ArrayStorage<T, 3, 1>>
where <D as ToTypenum>::Typenum: Cmp<UInt<UInt<UTerm, B1>, B0>, Output = Greater>,

Builds a new vector from components of self.

Source

pub fn xzz(&self) -> Matrix<T, Const<3>, Const<1>, ArrayStorage<T, 3, 1>>
where <D as ToTypenum>::Typenum: Cmp<UInt<UInt<UTerm, B1>, B0>, Output = Greater>,

Builds a new vector from components of self.

Source

pub fn yxz(&self) -> Matrix<T, Const<3>, Const<1>, ArrayStorage<T, 3, 1>>
where <D as ToTypenum>::Typenum: Cmp<UInt<UInt<UTerm, B1>, B0>, Output = Greater>,

Builds a new vector from components of self.

Source

pub fn yyz(&self) -> Matrix<T, Const<3>, Const<1>, ArrayStorage<T, 3, 1>>
where <D as ToTypenum>::Typenum: Cmp<UInt<UInt<UTerm, B1>, B0>, Output = Greater>,

Builds a new vector from components of self.

Source

pub fn yzx(&self) -> Matrix<T, Const<3>, Const<1>, ArrayStorage<T, 3, 1>>
where <D as ToTypenum>::Typenum: Cmp<UInt<UInt<UTerm, B1>, B0>, Output = Greater>,

Builds a new vector from components of self.

Source

pub fn yzy(&self) -> Matrix<T, Const<3>, Const<1>, ArrayStorage<T, 3, 1>>
where <D as ToTypenum>::Typenum: Cmp<UInt<UInt<UTerm, B1>, B0>, Output = Greater>,

Builds a new vector from components of self.

Source

pub fn yzz(&self) -> Matrix<T, Const<3>, Const<1>, ArrayStorage<T, 3, 1>>
where <D as ToTypenum>::Typenum: Cmp<UInt<UInt<UTerm, B1>, B0>, Output = Greater>,

Builds a new vector from components of self.

Source

pub fn zxx(&self) -> Matrix<T, Const<3>, Const<1>, ArrayStorage<T, 3, 1>>
where <D as ToTypenum>::Typenum: Cmp<UInt<UInt<UTerm, B1>, B0>, Output = Greater>,

Builds a new vector from components of self.

Source

pub fn zxy(&self) -> Matrix<T, Const<3>, Const<1>, ArrayStorage<T, 3, 1>>
where <D as ToTypenum>::Typenum: Cmp<UInt<UInt<UTerm, B1>, B0>, Output = Greater>,

Builds a new vector from components of self.

Source

pub fn zxz(&self) -> Matrix<T, Const<3>, Const<1>, ArrayStorage<T, 3, 1>>
where <D as ToTypenum>::Typenum: Cmp<UInt<UInt<UTerm, B1>, B0>, Output = Greater>,

Builds a new vector from components of self.

Source

pub fn zyx(&self) -> Matrix<T, Const<3>, Const<1>, ArrayStorage<T, 3, 1>>
where <D as ToTypenum>::Typenum: Cmp<UInt<UInt<UTerm, B1>, B0>, Output = Greater>,

Builds a new vector from components of self.

Source

pub fn zyy(&self) -> Matrix<T, Const<3>, Const<1>, ArrayStorage<T, 3, 1>>
where <D as ToTypenum>::Typenum: Cmp<UInt<UInt<UTerm, B1>, B0>, Output = Greater>,

Builds a new vector from components of self.

Source

pub fn zyz(&self) -> Matrix<T, Const<3>, Const<1>, ArrayStorage<T, 3, 1>>
where <D as ToTypenum>::Typenum: Cmp<UInt<UInt<UTerm, B1>, B0>, Output = Greater>,

Builds a new vector from components of self.

Source

pub fn zzx(&self) -> Matrix<T, Const<3>, Const<1>, ArrayStorage<T, 3, 1>>
where <D as ToTypenum>::Typenum: Cmp<UInt<UInt<UTerm, B1>, B0>, Output = Greater>,

Builds a new vector from components of self.

Source

pub fn zzy(&self) -> Matrix<T, Const<3>, Const<1>, ArrayStorage<T, 3, 1>>
where <D as ToTypenum>::Typenum: Cmp<UInt<UInt<UTerm, B1>, B0>, Output = Greater>,

Builds a new vector from components of self.

Source

pub fn zzz(&self) -> Matrix<T, Const<3>, Const<1>, ArrayStorage<T, 3, 1>>
where <D as ToTypenum>::Typenum: Cmp<UInt<UInt<UTerm, B1>, B0>, Output = Greater>,

Builds a new vector from components of self.

Source

pub fn lerp<S2>( &self, rhs: &Matrix<T, D, Const<1>, S2>, t: T, ) -> Matrix<T, D, Const<1>, <DefaultAllocator as Allocator<D>>::Buffer<T>>
where S2: Storage<T, D>, DefaultAllocator: Allocator<D>,

Returns self * (1.0 - t) + rhs * t, i.e., the linear blend of the vectors x and y using the scalar value a.

The value for a is not restricted to the range [0, 1].

§Examples:
let x = Vector3::new(1.0, 2.0, 3.0);
let y = Vector3::new(10.0, 20.0, 30.0);
assert_eq!(x.lerp(&y, 0.1), Vector3::new(1.9, 3.8, 5.7));
Source

pub fn slerp<S2>( &self, rhs: &Matrix<T, D, Const<1>, S2>, t: T, ) -> Matrix<T, D, Const<1>, <DefaultAllocator as Allocator<D>>::Buffer<T>>
where S2: Storage<T, D>, T: RealField, DefaultAllocator: Allocator<D>,

Computes the spherical linear interpolation between two non-zero vectors.

The result is a unit vector.

§Examples:

let v1 =Vector2::new(1.0, 2.0);
let v2 = Vector2::new(2.0, -3.0);

let v = v1.slerp(&v2, 1.0);

assert_eq!(v, v2.normalize());
Source

pub fn amax(&self) -> T

Returns the absolute value of the component with the largest absolute value.

§Example
assert_eq!(Vector3::new(-1.0, 2.0, 3.0).amax(), 3.0);
assert_eq!(Vector3::new(-1.0, -2.0, -3.0).amax(), 3.0);
Source

pub fn camax(&self) -> <T as SimdComplexField>::SimdRealField

Returns the the 1-norm of the complex component with the largest 1-norm.

§Example
assert_eq!(Vector3::new(
    Complex::new(-3.0, -2.0),
    Complex::new(1.0, 2.0),
    Complex::new(1.0, 3.0)).camax(), 5.0);
Source

pub fn max(&self) -> T
where T: SimdPartialOrd + Zero,

Returns the component with the largest value.

§Example
assert_eq!(Vector3::new(-1.0, 2.0, 3.0).max(), 3.0);
assert_eq!(Vector3::new(-1.0, -2.0, -3.0).max(), -1.0);
assert_eq!(Vector3::new(5u32, 2, 3).max(), 5);
Source

pub fn amin(&self) -> T

Returns the absolute value of the component with the smallest absolute value.

§Example
assert_eq!(Vector3::new(-1.0, 2.0, -3.0).amin(), 1.0);
assert_eq!(Vector3::new(10.0, 2.0, 30.0).amin(), 2.0);
Source

pub fn camin(&self) -> <T as SimdComplexField>::SimdRealField

Returns the the 1-norm of the complex component with the smallest 1-norm.

§Example
assert_eq!(Vector3::new(
    Complex::new(-3.0, -2.0),
    Complex::new(1.0, 2.0),
    Complex::new(1.0, 3.0)).camin(), 3.0);
Source

pub fn min(&self) -> T
where T: SimdPartialOrd + Zero,

Returns the component with the smallest value.

§Example
assert_eq!(Vector3::new(-1.0, 2.0, 3.0).min(), -1.0);
assert_eq!(Vector3::new(1.0, 2.0, 3.0).min(), 1.0);
assert_eq!(Vector3::new(5u32, 2, 3).min(), 2);
Source

pub fn icamax_full(&self) -> (usize, usize)
where T: ComplexField,

Computes the index of the matrix component with the largest absolute value.

§Examples:
let mat = Matrix2x3::new(Complex::new(11.0, 1.0), Complex::new(-12.0, 2.0), Complex::new(13.0, 3.0),
                         Complex::new(21.0, 43.0), Complex::new(22.0, 5.0), Complex::new(-23.0, 0.0));
assert_eq!(mat.icamax_full(), (1, 0));
Source

pub fn iamax_full(&self) -> (usize, usize)

Computes the index of the matrix component with the largest absolute value.

§Examples:
let mat = Matrix2x3::new(11, -12, 13,
                         21, 22, -23);
assert_eq!(mat.iamax_full(), (1, 2));
Source

pub fn icamax(&self) -> usize
where T: ComplexField,

Computes the index of the vector component with the largest complex or real absolute value.

§Examples:
let vec = Vector3::new(Complex::new(11.0, 3.0), Complex::new(-15.0, 0.0), Complex::new(13.0, 5.0));
assert_eq!(vec.icamax(), 2);
Source

pub fn argmax(&self) -> (usize, T)
where T: PartialOrd,

Computes the index and value of the vector component with the largest value.

§Examples:
let vec = Vector3::new(11, -15, 13);
assert_eq!(vec.argmax(), (2, 13));
Source

pub fn imax(&self) -> usize
where T: PartialOrd,

Computes the index of the vector component with the largest value.

§Examples:
let vec = Vector3::new(11, -15, 13);
assert_eq!(vec.imax(), 2);
Source

pub fn iamax(&self) -> usize
where T: PartialOrd + Signed,

Computes the index of the vector component with the largest absolute value.

§Examples:
let vec = Vector3::new(11, -15, 13);
assert_eq!(vec.iamax(), 1);
Source

pub fn argmin(&self) -> (usize, T)
where T: PartialOrd,

Computes the index and value of the vector component with the smallest value.

§Examples:
let vec = Vector3::new(11, -15, 13);
assert_eq!(vec.argmin(), (1, -15));
Source

pub fn imin(&self) -> usize
where T: PartialOrd,

Computes the index of the vector component with the smallest value.

§Examples:
let vec = Vector3::new(11, -15, 13);
assert_eq!(vec.imin(), 1);
Source

pub fn iamin(&self) -> usize
where T: PartialOrd + Signed,

Computes the index of the vector component with the smallest absolute value.

§Examples:
let vec = Vector3::new(11, -15, 13);
assert_eq!(vec.iamin(), 0);
Source

pub fn convolve_full<D2, S2>( &self, kernel: Matrix<T, D2, Const<1>, S2>, ) -> Matrix<T, <<D1 as DimAdd<D2>>::Output as DimSub<Const<1>>>::Output, Const<1>, <DefaultAllocator as Allocator<<<D1 as DimAdd<D2>>::Output as DimSub<Const<1>>>::Output>>::Buffer<T>>
where D1: DimAdd<D2>, D2: DimAdd<D1, Output = <D1 as DimAdd<D2>>::Output>, <D1 as DimAdd<D2>>::Output: DimSub<Const<1>>, S2: Storage<T, D2>, DefaultAllocator: Allocator<<<D1 as DimAdd<D2>>::Output as DimSub<Const<1>>>::Output>,

Returns the convolution of the target vector and a kernel.

§Arguments
  • kernel - A Vector with size > 0
§Errors

Inputs must satisfy vector.len() >= kernel.len() > 0.

Source

pub fn convolve_valid<D2, S2>( &self, kernel: Matrix<T, D2, Const<1>, S2>, ) -> Matrix<T, <<D1 as DimAdd<Const<1>>>::Output as DimSub<D2>>::Output, Const<1>, <DefaultAllocator as Allocator<<<D1 as DimAdd<Const<1>>>::Output as DimSub<D2>>::Output>>::Buffer<T>>
where D1: DimAdd<Const<1>>, D2: Dim, <D1 as DimAdd<Const<1>>>::Output: DimSub<D2>, S2: Storage<T, D2>, DefaultAllocator: Allocator<<<D1 as DimAdd<Const<1>>>::Output as DimSub<D2>>::Output>,

Returns the convolution of the target vector and a kernel.

The output convolution consists only of those elements that do not rely on the zero-padding.

§Arguments
  • kernel - A Vector with size > 0
§Errors

Inputs must satisfy self.len() >= kernel.len() > 0.

Source

pub fn convolve_same<D2, S2>( &self, kernel: Matrix<T, D2, Const<1>, S2>, ) -> Matrix<T, D1, Const<1>, <DefaultAllocator as Allocator<D1>>::Buffer<T>>
where D2: Dim, S2: Storage<T, D2>, DefaultAllocator: Allocator<D1>,

Returns the convolution of the target vector and a kernel.

The output convolution is the same size as vector, centered with respect to the ‘full’ output.

§Arguments
  • kernel - A Vector with size > 0
§Errors

Inputs must satisfy self.len() >= kernel.len() > 0.

Source

pub fn determinant(&self) -> T

Computes the matrix determinant.

If the matrix has a dimension larger than 3, an LU decomposition is used.

Source

pub fn try_inverse_mut(&mut self) -> bool

Attempts to invert this square matrix in-place. Returns false and leaves self untouched if inversion fails.

§Panics

Panics if self isn’t a square matrix.

Source

pub fn pow_mut(&mut self, exp: u32)

Raises this matrix to an integral power exp in-place.

Source

pub fn pow( &self, exp: u32, ) -> Matrix<T, D, D, <DefaultAllocator as Allocator<D, D>>::Buffer<T>>

Raise this matrix to an integral power exp.

Source

pub fn eigenvalues( &self, ) -> Option<Matrix<T, D, Const<1>, <DefaultAllocator as Allocator<D>>::Buffer<T>>>

Computes the eigenvalues of this matrix.

Source

pub fn complex_eigenvalues( &self, ) -> Matrix<Complex<T>, D, Const<1>, <DefaultAllocator as Allocator<D>>::Buffer<Complex<T>>>

Computes the eigenvalues of this matrix.

Source

pub fn solve_lower_triangular<R2, C2, S2>( &self, b: &Matrix<T, R2, C2, S2>, ) -> Option<Matrix<T, R2, C2, <DefaultAllocator as Allocator<R2, C2>>::Buffer<T>>>
where R2: Dim, C2: Dim, S2: Storage<T, R2, C2>, DefaultAllocator: Allocator<R2, C2>, ShapeConstraint: SameNumberOfRows<R2, D>,

Computes the solution of the linear system self . x = b where x is the unknown and only the lower-triangular part of self (including the diagonal) is considered not-zero.

Source

pub fn solve_upper_triangular<R2, C2, S2>( &self, b: &Matrix<T, R2, C2, S2>, ) -> Option<Matrix<T, R2, C2, <DefaultAllocator as Allocator<R2, C2>>::Buffer<T>>>
where R2: Dim, C2: Dim, S2: Storage<T, R2, C2>, DefaultAllocator: Allocator<R2, C2>, ShapeConstraint: SameNumberOfRows<R2, D>,

Computes the solution of the linear system self . x = b where x is the unknown and only the upper-triangular part of self (including the diagonal) is considered not-zero.

Source

pub fn solve_lower_triangular_mut<R2, C2, S2>( &self, b: &mut Matrix<T, R2, C2, S2>, ) -> bool
where R2: Dim, C2: Dim, S2: StorageMut<T, R2, C2>, ShapeConstraint: SameNumberOfRows<R2, D>,

Solves the linear system self . x = b where x is the unknown and only the lower-triangular part of self (including the diagonal) is considered not-zero.

Source

pub fn solve_lower_triangular_with_diag_mut<R2, C2, S2>( &self, b: &mut Matrix<T, R2, C2, S2>, diag: T, ) -> bool
where R2: Dim, C2: Dim, S2: StorageMut<T, R2, C2>, ShapeConstraint: SameNumberOfRows<R2, D>,

Solves the linear system self . x = b where x is the unknown and only the lower-triangular part of self is considered not-zero. The diagonal is never read as it is assumed to be equal to diag. Returns false and does not modify its inputs if diag is zero.

Source

pub fn solve_upper_triangular_mut<R2, C2, S2>( &self, b: &mut Matrix<T, R2, C2, S2>, ) -> bool
where R2: Dim, C2: Dim, S2: StorageMut<T, R2, C2>, ShapeConstraint: SameNumberOfRows<R2, D>,

Solves the linear system self . x = b where x is the unknown and only the upper-triangular part of self (including the diagonal) is considered not-zero.

Source

pub fn tr_solve_lower_triangular<R2, C2, S2>( &self, b: &Matrix<T, R2, C2, S2>, ) -> Option<Matrix<T, R2, C2, <DefaultAllocator as Allocator<R2, C2>>::Buffer<T>>>
where R2: Dim, C2: Dim, S2: Storage<T, R2, C2>, DefaultAllocator: Allocator<R2, C2>, ShapeConstraint: SameNumberOfRows<R2, D>,

Computes the solution of the linear system self.transpose() . x = b where x is the unknown and only the lower-triangular part of self (including the diagonal) is considered not-zero.

Source

pub fn tr_solve_upper_triangular<R2, C2, S2>( &self, b: &Matrix<T, R2, C2, S2>, ) -> Option<Matrix<T, R2, C2, <DefaultAllocator as Allocator<R2, C2>>::Buffer<T>>>
where R2: Dim, C2: Dim, S2: Storage<T, R2, C2>, DefaultAllocator: Allocator<R2, C2>, ShapeConstraint: SameNumberOfRows<R2, D>,

Computes the solution of the linear system self.transpose() . x = b where x is the unknown and only the upper-triangular part of self (including the diagonal) is considered not-zero.

Source

pub fn tr_solve_lower_triangular_mut<R2, C2, S2>( &self, b: &mut Matrix<T, R2, C2, S2>, ) -> bool
where R2: Dim, C2: Dim, S2: StorageMut<T, R2, C2>, ShapeConstraint: SameNumberOfRows<R2, D>,

Solves the linear system self.transpose() . x = b where x is the unknown and only the lower-triangular part of self (including the diagonal) is considered not-zero.

Source

pub fn tr_solve_upper_triangular_mut<R2, C2, S2>( &self, b: &mut Matrix<T, R2, C2, S2>, ) -> bool
where R2: Dim, C2: Dim, S2: StorageMut<T, R2, C2>, ShapeConstraint: SameNumberOfRows<R2, D>,

Solves the linear system self.transpose() . x = b where x is the unknown and only the upper-triangular part of self (including the diagonal) is considered not-zero.

Source

pub fn ad_solve_lower_triangular<R2, C2, S2>( &self, b: &Matrix<T, R2, C2, S2>, ) -> Option<Matrix<T, R2, C2, <DefaultAllocator as Allocator<R2, C2>>::Buffer<T>>>
where R2: Dim, C2: Dim, S2: Storage<T, R2, C2>, DefaultAllocator: Allocator<R2, C2>, ShapeConstraint: SameNumberOfRows<R2, D>,

Computes the solution of the linear system self.adjoint() . x = b where x is the unknown and only the lower-triangular part of self (including the diagonal) is considered not-zero.

Source

pub fn ad_solve_upper_triangular<R2, C2, S2>( &self, b: &Matrix<T, R2, C2, S2>, ) -> Option<Matrix<T, R2, C2, <DefaultAllocator as Allocator<R2, C2>>::Buffer<T>>>
where R2: Dim, C2: Dim, S2: Storage<T, R2, C2>, DefaultAllocator: Allocator<R2, C2>, ShapeConstraint: SameNumberOfRows<R2, D>,

Computes the solution of the linear system self.adjoint() . x = b where x is the unknown and only the upper-triangular part of self (including the diagonal) is considered not-zero.

Source

pub fn ad_solve_lower_triangular_mut<R2, C2, S2>( &self, b: &mut Matrix<T, R2, C2, S2>, ) -> bool
where R2: Dim, C2: Dim, S2: StorageMut<T, R2, C2>, ShapeConstraint: SameNumberOfRows<R2, D>,

Solves the linear system self.adjoint() . x = b where x is the unknown and only the lower-triangular part of self (including the diagonal) is considered not-zero.

Source

pub fn ad_solve_upper_triangular_mut<R2, C2, S2>( &self, b: &mut Matrix<T, R2, C2, S2>, ) -> bool
where R2: Dim, C2: Dim, S2: StorageMut<T, R2, C2>, ShapeConstraint: SameNumberOfRows<R2, D>,

Solves the linear system self.adjoint() . x = b where x is the unknown and only the upper-triangular part of self (including the diagonal) is considered not-zero.

Source

pub fn solve_lower_triangular_unchecked<R2, C2, S2>( &self, b: &Matrix<T, R2, C2, S2>, ) -> Matrix<T, R2, C2, <DefaultAllocator as Allocator<R2, C2>>::Buffer<T>>
where R2: Dim, C2: Dim, S2: Storage<T, R2, C2>, DefaultAllocator: Allocator<R2, C2>, ShapeConstraint: SameNumberOfRows<R2, D>,

Computes the solution of the linear system self . x = b where x is the unknown and only the lower-triangular part of self (including the diagonal) is considered not-zero.

Source

pub fn solve_upper_triangular_unchecked<R2, C2, S2>( &self, b: &Matrix<T, R2, C2, S2>, ) -> Matrix<T, R2, C2, <DefaultAllocator as Allocator<R2, C2>>::Buffer<T>>
where R2: Dim, C2: Dim, S2: Storage<T, R2, C2>, DefaultAllocator: Allocator<R2, C2>, ShapeConstraint: SameNumberOfRows<R2, D>,

Computes the solution of the linear system self . x = b where x is the unknown and only the upper-triangular part of self (including the diagonal) is considered not-zero.

Source

pub fn solve_lower_triangular_unchecked_mut<R2, C2, S2>( &self, b: &mut Matrix<T, R2, C2, S2>, )
where R2: Dim, C2: Dim, S2: StorageMut<T, R2, C2>, ShapeConstraint: SameNumberOfRows<R2, D>,

Solves the linear system self . x = b where x is the unknown and only the lower-triangular part of self (including the diagonal) is considered not-zero.

Source

pub fn solve_lower_triangular_with_diag_unchecked_mut<R2, C2, S2>( &self, b: &mut Matrix<T, R2, C2, S2>, diag: T, )
where R2: Dim, C2: Dim, S2: StorageMut<T, R2, C2>, ShapeConstraint: SameNumberOfRows<R2, D>,

Solves the linear system self . x = b where x is the unknown and only the lower-triangular part of self is considered not-zero. The diagonal is never read as it is assumed to be equal to diag. Returns false and does not modify its inputs if diag is zero.

Source

pub fn solve_upper_triangular_unchecked_mut<R2, C2, S2>( &self, b: &mut Matrix<T, R2, C2, S2>, )
where R2: Dim, C2: Dim, S2: StorageMut<T, R2, C2>, ShapeConstraint: SameNumberOfRows<R2, D>,

Solves the linear system self . x = b where x is the unknown and only the upper-triangular part of self (including the diagonal) is considered not-zero.

Source

pub fn tr_solve_lower_triangular_unchecked<R2, C2, S2>( &self, b: &Matrix<T, R2, C2, S2>, ) -> Matrix<T, R2, C2, <DefaultAllocator as Allocator<R2, C2>>::Buffer<T>>
where R2: Dim, C2: Dim, S2: Storage<T, R2, C2>, DefaultAllocator: Allocator<R2, C2>, ShapeConstraint: SameNumberOfRows<R2, D>,

Computes the solution of the linear system self.transpose() . x = b where x is the unknown and only the lower-triangular part of self (including the diagonal) is considered not-zero.

Source

pub fn tr_solve_upper_triangular_unchecked<R2, C2, S2>( &self, b: &Matrix<T, R2, C2, S2>, ) -> Matrix<T, R2, C2, <DefaultAllocator as Allocator<R2, C2>>::Buffer<T>>
where R2: Dim, C2: Dim, S2: Storage<T, R2, C2>, DefaultAllocator: Allocator<R2, C2>, ShapeConstraint: SameNumberOfRows<R2, D>,

Computes the solution of the linear system self.transpose() . x = b where x is the unknown and only the upper-triangular part of self (including the diagonal) is considered not-zero.

Source

pub fn tr_solve_lower_triangular_unchecked_mut<R2, C2, S2>( &self, b: &mut Matrix<T, R2, C2, S2>, )
where R2: Dim, C2: Dim, S2: StorageMut<T, R2, C2>, ShapeConstraint: SameNumberOfRows<R2, D>,

Solves the linear system self.transpose() . x = b where x is the unknown and only the lower-triangular part of self (including the diagonal) is considered not-zero.

Source

pub fn tr_solve_upper_triangular_unchecked_mut<R2, C2, S2>( &self, b: &mut Matrix<T, R2, C2, S2>, )
where R2: Dim, C2: Dim, S2: StorageMut<T, R2, C2>, ShapeConstraint: SameNumberOfRows<R2, D>,

Solves the linear system self.transpose() . x = b where x is the unknown and only the upper-triangular part of self (including the diagonal) is considered not-zero.

Source

pub fn ad_solve_lower_triangular_unchecked<R2, C2, S2>( &self, b: &Matrix<T, R2, C2, S2>, ) -> Matrix<T, R2, C2, <DefaultAllocator as Allocator<R2, C2>>::Buffer<T>>
where R2: Dim, C2: Dim, S2: Storage<T, R2, C2>, DefaultAllocator: Allocator<R2, C2>, ShapeConstraint: SameNumberOfRows<R2, D>,

Computes the solution of the linear system self.adjoint() . x = b where x is the unknown and only the lower-triangular part of self (including the diagonal) is considered not-zero.

Source

pub fn ad_solve_upper_triangular_unchecked<R2, C2, S2>( &self, b: &Matrix<T, R2, C2, S2>, ) -> Matrix<T, R2, C2, <DefaultAllocator as Allocator<R2, C2>>::Buffer<T>>
where R2: Dim, C2: Dim, S2: Storage<T, R2, C2>, DefaultAllocator: Allocator<R2, C2>, ShapeConstraint: SameNumberOfRows<R2, D>,

Computes the solution of the linear system self.adjoint() . x = b where x is the unknown and only the upper-triangular part of self (including the diagonal) is considered not-zero.

Source

pub fn ad_solve_lower_triangular_unchecked_mut<R2, C2, S2>( &self, b: &mut Matrix<T, R2, C2, S2>, )
where R2: Dim, C2: Dim, S2: StorageMut<T, R2, C2>, ShapeConstraint: SameNumberOfRows<R2, D>,

Solves the linear system self.adjoint() . x = b where x is the unknown and only the lower-triangular part of self (including the diagonal) is considered not-zero.

Source

pub fn ad_solve_upper_triangular_unchecked_mut<R2, C2, S2>( &self, b: &mut Matrix<T, R2, C2, S2>, )
where R2: Dim, C2: Dim, S2: StorageMut<T, R2, C2>, ShapeConstraint: SameNumberOfRows<R2, D>,

Solves the linear system self.adjoint() . x = b where x is the unknown and only the upper-triangular part of self (including the diagonal) is considered not-zero.

Source

pub fn singular_values_unordered( &self, ) -> Matrix<<T as ComplexField>::RealField, <R as DimMin<C>>::Output, Const<1>, <DefaultAllocator as Allocator<<R as DimMin<C>>::Output>>::Buffer<<T as ComplexField>::RealField>>

Computes the singular values of this matrix. The singular values are not guaranteed to be sorted in any particular order. If a descending order is required, consider using singular_values instead.

Source

pub fn rank(&self, eps: <T as ComplexField>::RealField) -> usize

Computes the rank of this matrix.

All singular values below eps are considered equal to 0.

Source

pub fn singular_values( &self, ) -> Matrix<<T as ComplexField>::RealField, <R as DimMin<C>>::Output, Const<1>, <DefaultAllocator as Allocator<<R as DimMin<C>>::Output>>::Buffer<<T as ComplexField>::RealField>>

Computes the singular values of this matrix. The singular values are guaranteed to be sorted in descending order. If this order is not required consider using singular_values_unordered.

Source

pub fn symmetric_eigenvalues( &self, ) -> Matrix<<T as ComplexField>::RealField, D, Const<1>, <DefaultAllocator as Allocator<D>>::Buffer<<T as ComplexField>::RealField>>

Computes the eigenvalues of this symmetric matrix.

Only the lower-triangular part of the matrix is read.

Trait Implementations§

Source§

impl<Right, Scalar> Add<&Right> for &X2<Scalar>
where Scalar: ScalarInterface<Output = Scalar> + Add, Right: X2NominalInterface<Scalar = Scalar> + Copy,

Source§

type Output = <X2<Scalar> as Add>::Output

The resulting type after applying the + operator.
Source§

fn add(self, right: &Right) -> <&X2<Scalar> as Add<&Right>>::Output

Performs the + operation. Read more
Source§

impl<Right, Scalar> Add<Right> for X2<Scalar>
where Scalar: ScalarInterface<Output = Scalar> + Add, Right: X2NominalInterface<Scalar = Scalar> + Copy,

Source§

type Output = X2<Scalar>

The resulting type after applying the + operator.
Source§

fn add(self, right: Right) -> <X2<Scalar> as Add<Right>>::Output

Performs the + operation. Read more
Source§

impl<Scalar> Clone for X2<Scalar>
where Scalar: Clone + ScalarInterface,

Source§

fn clone(&self) -> X2<Scalar>

Returns a copy of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl<Scalar> Debug for X2<Scalar>
where Scalar: ScalarInterface,

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
Source§

impl<Scalar> Default for X2<Scalar>
where Scalar: Default + ScalarInterface,

Source§

fn default() -> X2<Scalar>

Returns the “default value” for a type. Read more
Source§

impl<Scalar> Deref for X2<Scalar>
where Scalar: ScalarInterface,

Source§

type Target = Matrix<Scalar, Const<2>, Const<1>, ArrayStorage<Scalar, 2, 1>>

The resulting type after dereferencing.
Source§

fn deref(&self) -> &<X2<Scalar> as Deref>::Target

Dereferences the value.
Source§

impl<Scalar> DerefMut for X2<Scalar>
where Scalar: ScalarInterface,

Source§

fn deref_mut(&mut self) -> &mut <X2<Scalar> as Deref>::Target

Mutably dereferences the value.
Source§

impl<Scalar> Display for X2<Scalar>
where Scalar: ScalarInterface,

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
Source§

impl<Scalar> Hash for X2<Scalar>
where Scalar: Hash + ScalarInterface,

Source§

fn hash<__H>(&self, state: &mut __H)
where __H: Hasher,

Feeds this value into the given Hasher. Read more
1.3.0 · Source§

fn hash_slice<H>(data: &[Self], state: &mut H)
where H: Hasher, Self: Sized,

Feeds a slice of this type into the given Hasher. Read more
Source§

impl<Scalar> Neg for &X2<Scalar>
where Scalar: ScalarInterface + Neg<Output = Scalar>,

Source§

type Output = <X2<Scalar> as Neg>::Output

The resulting type after applying the - operator.
Source§

fn neg(self) -> <&X2<Scalar> as Neg>::Output

Performs the unary - operation. Read more
Source§

impl<Scalar> Neg for X2<Scalar>
where Scalar: ScalarInterface + Neg<Output = Scalar>,

Source§

type Output = X2<Scalar>

The resulting type after applying the - operator.
Source§

fn neg(self) -> <X2<Scalar> as Neg>::Output

Performs the unary - operation. Read more
Source§

impl<Scalar> PartialEq for X2<Scalar>
where Scalar: PartialEq + ScalarInterface,

Source§

fn eq(&self, other: &X2<Scalar>) -> bool

Tests for self and other values to be equal, and is used by ==.
1.0.0 · Source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Source§

impl<Right, Scalar> Sub<&Right> for &X2<Scalar>
where Scalar: ScalarInterface<Output = Scalar> + Sub, Right: X2NominalInterface<Scalar = Scalar> + Copy,

Source§

type Output = <X2<Scalar> as Sub>::Output

The resulting type after applying the - operator.
Source§

fn sub(self, right: &Right) -> <&X2<Scalar> as Sub<&Right>>::Output

Performs the - operation. Read more
Source§

impl<Right, Scalar> Sub<Right> for X2<Scalar>
where Scalar: ScalarInterface<Output = Scalar> + Sub, Right: X2NominalInterface<Scalar = Scalar> + Copy,

Source§

type Output = X2<Scalar>

The resulting type after applying the - operator.
Source§

fn sub(self, right: Right) -> <X2<Scalar> as Sub<Right>>::Output

Performs the - operation. Read more
Source§

impl<Scalar> X2BasicInterface for X2<Scalar>
where Scalar: ScalarInterface,

Source§

fn make( _0: <X2<Scalar> as X2NominalInterface>::Scalar, _1: <X2<Scalar> as X2NominalInterface>::Scalar, ) -> X2<Scalar>

Constructor.
Source§

fn make_nan() -> Self
where Self: Sized,

Make an instance filling fields with NaN.
Source§

fn make_default() -> Self
where Self: Sized,

Make an instance filling fields with default values.
Source§

impl<Scalar> X2CanonicalInterface for X2<Scalar>
where Scalar: ScalarInterface,

Source§

fn _0_ref(&self) -> &<X2<Scalar> as X2NominalInterface>::Scalar

First element.
Source§

fn _1_ref(&self) -> &<X2<Scalar> as X2NominalInterface>::Scalar

Second element.
Source§

fn _0_mut(&mut self) -> &mut <X2<Scalar> as X2NominalInterface>::Scalar

First element.
Source§

fn _1_mut(&mut self) -> &mut <X2<Scalar> as X2NominalInterface>::Scalar

Second element.
Source§

fn as_canonical(&self) -> &X2<<X2<Scalar> as X2NominalInterface>::Scalar>

Canonical representation of the vector.
Source§

fn as_canonical_mut( &mut self, ) -> &mut X2<<X2<Scalar> as X2NominalInterface>::Scalar>

Mutable canonical representation of the vector.
Source§

fn assign<Src>(&mut self, src: Src)
where Src: X2BasicInterface<Scalar = Self::Scalar>,

Assign value.
Source§

fn x_ref(&self) -> &Self::Scalar

First element.
Source§

fn y_ref(&self) -> &Self::Scalar

Second element.
Source§

fn x_mut(&mut self) -> &mut Self::Scalar

First element.
Source§

fn y_mut(&mut self) -> &mut Self::Scalar

Second element.
Source§

fn as_tuple(&self) -> &(Self::Scalar, Self::Scalar)

Interpret as tuple.
Source§

fn as_array(&self) -> &[Self::Scalar; 2]

Interpret as array.
Source§

fn as_slice(&self) -> &[Self::Scalar]

Interpret as slice.
Source§

fn as_tuple_mut(&mut self) -> &mut (Self::Scalar, Self::Scalar)

Interpret as mutable tuple.
Source§

fn as_array_mut(&mut self) -> &mut [Self::Scalar; 2]

Interpret as mutable array.
Source§

fn as_slice_mut(&mut self) -> &mut [Self::Scalar]

Interpret as mutable slice.
Source§

impl<Scalar> X2NominalInterface for X2<Scalar>
where Scalar: ScalarInterface,

Source§

type Scalar = Scalar

Type of element.
Source§

fn _0(&self) -> <X2<Scalar> as X2NominalInterface>::Scalar

First element.
Source§

fn _1(&self) -> <X2<Scalar> as X2NominalInterface>::Scalar

Second element.
Source§

fn x(&self) -> Self::Scalar

First element.
Source§

fn y(&self) -> Self::Scalar

Second element.
Source§

fn clone_as_tuple(&self) -> (Self::Scalar, Self::Scalar)

Clone as tuple.
Source§

fn clone_as_array(&self) -> [Self::Scalar; 2]

Clone as array.
Source§

fn clone_as_canonical(&self) -> X2<Self::Scalar>

Clone as canonical.
Source§

impl<Scalar> Copy for X2<Scalar>
where Scalar: Copy + ScalarInterface,

Source§

impl<Scalar> StructuralPartialEq for X2<Scalar>
where Scalar: ScalarInterface,

Auto Trait Implementations§

§

impl<Scalar> Freeze for X2<Scalar>
where Scalar: Freeze,

§

impl<Scalar> RefUnwindSafe for X2<Scalar>
where Scalar: RefUnwindSafe,

§

impl<Scalar> Send for X2<Scalar>
where Scalar: Send,

§

impl<Scalar> Sync for X2<Scalar>
where Scalar: Sync,

§

impl<Scalar> Unpin for X2<Scalar>
where Scalar: Unpin,

§

impl<Scalar> UnwindSafe for X2<Scalar>
where Scalar: UnwindSafe,

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<Scalar, Any> AsCgmathCanonicalInterface<Vector2<Scalar>> for Any
where Scalar: ScalarInterface, Any: X2CanonicalInterface<Scalar = Scalar> + Copy,

Source§

fn as_cgmath(&self) -> &Vector2<Scalar>

Interpret this data structure as cgmath analog to use its operations.
Source§

fn as_cgmath_mut(&mut self) -> &mut Vector2<Scalar>

Interpret this data structure mutably as cgmath analog to use its operations.
Source§

impl<Scalar, Any> AsCgmathNonCanonicalInterface<Vector2<Scalar>> for Any
where Scalar: ScalarInterface, Any: X2NominalInterface<Scalar = Scalar> + Copy,

Source§

fn clone_as_cgmath(&self) -> Vector2<Scalar>

Clone this data structure as cgmath analog to use its operations.
Source§

impl<T, Any> AsForeignCanonicalInterface<T> for Any

Source§

fn as_foreign(&self) -> &T

Interpret this data structure as nalgebra analog to use its operations.

Source§

fn as_foreign_mut(&mut self) -> &mut T

Interpret this data structure mutably as nalgebra analog to use its operations.

Source§

impl<T, Any> AsForeignNonCanonicalInterface<T> for Any

Source§

fn clone_as_foreign(&self) -> T

Clone this data structure as analog of a math lib of choice to use its operations.
Source§

impl<Scalar, Any> AsNalgebraCanonicalInterface<Matrix<Scalar, Const<2>, Const<1>, ArrayStorage<Scalar, 2, 1>>> for Any
where Scalar: ScalarInterface, Any: X2CanonicalInterface<Scalar = Scalar> + Copy,

Source§

fn as_nalgebra( &self, ) -> &Matrix<Scalar, Const<2>, Const<1>, ArrayStorage<Scalar, 2, 1>>

Interpret this data structure as nalgebra analog to use its operations.
Source§

fn as_nalgebra_mut( &mut self, ) -> &mut Matrix<Scalar, Const<2>, Const<1>, ArrayStorage<Scalar, 2, 1>>

Interpret this data structure mutably as nalgebra analog to use its operations.
Source§

impl<Scalar, Any> AsNalgebraNonCanonicalInterface<Matrix<Scalar, Const<2>, Const<1>, ArrayStorage<Scalar, 2, 1>>> for Any
where Scalar: ScalarInterface, Any: X2NominalInterface<Scalar = Scalar> + Copy,

Source§

fn clone_as_nalgebra( &self, ) -> Matrix<Scalar, Const<2>, Const<1>, ArrayStorage<Scalar, 2, 1>>

Clone this data structure as nalgebra analog to use its operations.
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> CloneToUninit for T
where T: Clone,

Source§

unsafe fn clone_to_uninit(&self, dest: *mut u8)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dest. Read more
Source§

impl<T> Downcast for T
where T: Any,

Source§

fn into_any(self: Box<T>) -> Box<dyn Any>

Convert Box<dyn Trait> (where Trait: Downcast) to Box<dyn Any>. Box<dyn Any> can then be further downcast into Box<ConcreteType> where ConcreteType implements Trait.
Source§

fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>

Convert Rc<Trait> (where Trait: Downcast) to Rc<Any>. Rc<Any> can then be further downcast into Rc<ConcreteType> where ConcreteType implements Trait.
Source§

fn as_any(&self) -> &(dyn Any + 'static)

Convert &Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot generate &Any’s vtable from &Trait’s.
Source§

fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)

Convert &mut Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot generate &mut Any’s vtable from &mut Trait’s.
Source§

impl<T> DowncastSync for T
where T: Any + Send + Sync,

Source§

fn into_any_arc(self: Arc<T>) -> Arc<dyn Any + Sync + Send>

Convert Arc<Trait> (where Trait: Downcast) to Arc<Any>. Arc<Any> can then be further downcast into Arc<ConcreteType> where ConcreteType implements Trait.
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<Scalar, Original, Target> From2<Original> for Target
where Scalar: ScalarInterface, Original: X2NominalInterface<Scalar = Scalar>, Target: X2BasicInterface<Scalar = Scalar>,

Source§

fn from2(original: Original) -> Target

Performs the conversion.
Source§

impl<T> Instrument for T

Source§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more
Source§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<Target, Original> Into2<Target> for Original
where Target: From2<Original>,

Source§

fn into2(self) -> Target

Performs the conversion.
Source§

impl<P, T> Receiver for P
where P: Deref<Target = T> + ?Sized, T: ?Sized,

Source§

type Target = T

🔬This is a nightly-only experimental API. (arbitrary_self_types)
The target type on which the method may be called.
Source§

impl<T> Same for T

Source§

type Output = T

Should always be Self
Source§

impl<SS, SP> SupersetOf<SS> for SP
where SS: SubsetOf<SP>,

Source§

fn to_subset(&self) -> Option<SS>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
Source§

fn is_in_subset(&self) -> bool

Checks if self is actually part of its subset T (and can be converted to it).
Source§

fn to_subset_unchecked(&self) -> SS

Use with care! Same as self.to_subset but without any property checks. Always succeeds.
Source§

fn from_subset(element: &SS) -> SP

The inclusion map: converts self to the equivalent element of its superset.
Source§

impl<T> ToOwned for T
where T: Clone,

Source§

type Owned = T

The resulting type after obtaining ownership.
Source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
Source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
Source§

impl<T> ToSmolStr for T
where T: Display + ?Sized,

Source§

impl<T> ToString for T
where T: Display + ?Sized,

Source§

fn to_string(&self) -> String

Converts the given value to a String. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<T> WithSubscriber for T

Source§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a WithDispatch wrapper. Read more
Source§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a WithDispatch wrapper. Read more
Source§

impl<T> ClosedNeg for T
where T: Neg<Output = T>,

Source§

impl<T> Scalar for T
where T: 'static + Clone + PartialEq + Debug,