winter_verifier/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
// Copyright (c) Facebook, Inc. and its affiliates.
//
// This source code is licensed under the MIT license found in the
// LICENSE file in the root directory of this source tree.

//! This crate contains Winterfell STARK verifier.
//!
//! This verifier can be used to verify STARK proofs generated by the Winterfell STARK prover.
//!
//! # Usage
//! To verify a proof that a computation was executed correctly, you'll need to do the following:
//!
//! 1. Define an *algebraic intermediate representation* (AIR) for you computation. This can be
//!    done by implementing [Air] trait.
//! 2. Execute [verify()] function and supply the AIR of your computation together with the
//!    [Proof] and related public inputs as parameters.
//!
//! # Performance
//! Proof verification is extremely fast and is nearly independent of the complexity of the
//! computation being verified. In vast majority of cases proofs can be verified in 3 - 5 ms
//! on a modern mid-range laptop CPU (using a single core).
//!
//! There is one exception, however: if a computation requires a lot of `sequence` assertions
//! (see [Assertion] for more info), the verification time will grow linearly in the number of
//! asserted values. But for the impact to be noticeable, the number of asserted values would
//! need to be in tens of thousands. And even for hundreds of thousands of asserted values, the
//! verification time should not exceed 50 ms.

#![no_std]

#[macro_use]
extern crate alloc;

use alloc::{string::ToString, vec::Vec};

pub use air::{
    proof::Proof, Air, AirContext, Assertion, BoundaryConstraint, BoundaryConstraintGroup,
    ConstraintCompositionCoefficients, ConstraintDivisor, DeepCompositionCoefficients,
    EvaluationFrame, FieldExtension, ProofOptions, TraceInfo, TransitionConstraintDegree,
};
use air::{AuxRandElements, GkrVerifier};
pub use crypto;
use crypto::{ElementHasher, Hasher, RandomCoin, VectorCommitment};
use fri::FriVerifier;
pub use math;
use math::{
    fields::{CubeExtension, QuadExtension},
    FieldElement, ToElements,
};
pub use utils::{
    ByteReader, ByteWriter, Deserializable, DeserializationError, Serializable, SliceReader,
};

mod channel;
use channel::VerifierChannel;

mod evaluator;
use evaluator::evaluate_constraints;

mod composer;
use composer::DeepComposer;

mod errors;
pub use errors::VerifierError;

// VERIFIER
// ================================================================================================

/// Verifies that the specified computation was executed correctly against the specified inputs.
///
/// Specifically, for a computation specified by `AIR` and `HashFn` type parameter, verifies that
/// the provided `proof` attests to the correct execution of the computation against public inputs
/// specified by `pub_inputs`. If the verification is successful, `Ok(())` is returned.
///
/// # Errors
/// Returns an error if combination of the provided proof and public inputs does not attest to
/// a correct execution of the computation. This could happen for many various reasons, including:
/// - The specified proof was generated for a different computation.
/// - The specified proof was generated for this computation but for different public inputs.
/// - The specified proof was generated with parameters not providing an acceptable security level.
pub fn verify<AIR, HashFn, RandCoin, VC>(
    proof: Proof,
    pub_inputs: AIR::PublicInputs,
    acceptable_options: &AcceptableOptions,
) -> Result<(), VerifierError>
where
    AIR: Air,
    HashFn: ElementHasher<BaseField = AIR::BaseField>,
    RandCoin: RandomCoin<BaseField = AIR::BaseField, Hasher = HashFn>,
    VC: VectorCommitment<HashFn>,
{
    // check that `proof` was generated with an acceptable set of parameters from the point of view
    // of the verifier
    acceptable_options.validate::<HashFn>(&proof)?;

    // build a seed for the public coin; the initial seed is a hash of the proof context and the
    // public inputs, but as the protocol progresses, the coin will be reseeded with the info
    // received from the prover
    let mut public_coin_seed = proof.context.to_elements();
    public_coin_seed.append(&mut pub_inputs.to_elements());

    // create AIR instance for the computation specified in the proof
    let air = AIR::new(proof.trace_info().clone(), pub_inputs, proof.options().clone());

    // figure out which version of the generic proof verification procedure to run. this is a sort
    // of static dispatch for selecting two generic parameter: extension field and hash function.
    match air.options().field_extension() {
        FieldExtension::None => {
            let public_coin = RandCoin::new(&public_coin_seed);
            let channel = VerifierChannel::new(&air, proof)?;
            perform_verification::<AIR, AIR::BaseField, HashFn, RandCoin, VC>(
                air,
                channel,
                public_coin,
            )
        },
        FieldExtension::Quadratic => {
            if !<QuadExtension<AIR::BaseField>>::is_supported() {
                return Err(VerifierError::UnsupportedFieldExtension(2));
            }
            let public_coin = RandCoin::new(&public_coin_seed);
            let channel = VerifierChannel::new(&air, proof)?;
            perform_verification::<AIR, QuadExtension<AIR::BaseField>, HashFn, RandCoin, VC>(
                air,
                channel,
                public_coin,
            )
        },
        FieldExtension::Cubic => {
            if !<CubeExtension<AIR::BaseField>>::is_supported() {
                return Err(VerifierError::UnsupportedFieldExtension(3));
            }
            let public_coin = RandCoin::new(&public_coin_seed);
            let channel = VerifierChannel::new(&air, proof)?;
            perform_verification::<AIR, CubeExtension<AIR::BaseField>, HashFn, RandCoin, VC>(
                air,
                channel,
                public_coin,
            )
        },
    }
}

// VERIFICATION PROCEDURE
// ================================================================================================
/// Performs the actual verification by reading the data from the `channel` and making sure it
/// attests to a correct execution of the computation specified by the provided `air`.
fn perform_verification<A, E, H, R, V>(
    air: A,
    mut channel: VerifierChannel<E, H, V>,
    mut public_coin: R,
) -> Result<(), VerifierError>
where
    E: FieldElement<BaseField = A::BaseField>,
    A: Air,
    H: ElementHasher<BaseField = A::BaseField>,
    R: RandomCoin<BaseField = A::BaseField, Hasher = H>,
    V: VectorCommitment<H>,
{
    // 1 ----- trace commitment -------------------------------------------------------------------
    // Read the commitments to evaluations of the trace polynomials over the LDE domain sent by the
    // prover. The commitments are used to update the public coin, and draw sets of random elements
    // from the coin (in the interactive version of the protocol the verifier sends these random
    // elements to the prover after each commitment is made). When there are multiple trace
    // commitments (i.e., the trace consists of more than one segment), each previous commitment is
    // used to draw random elements needed to construct the next trace segment. The last trace
    // commitment is used to draw a set of random coefficients which the prover uses to compute
    // constraint composition polynomial.
    const MAIN_TRACE_IDX: usize = 0;
    const AUX_TRACE_IDX: usize = 1;
    let trace_commitments = channel.read_trace_commitments();

    // reseed the coin with the commitment to the main trace segment
    public_coin.reseed(trace_commitments[MAIN_TRACE_IDX]);

    // process auxiliary trace segments (if any), to build a set of random elements for each segment
    let aux_trace_rand_elements = if air.trace_info().is_multi_segment() {
        if air.context().has_lagrange_kernel_aux_column() {
            let gkr_proof = {
                let gkr_proof_serialized = channel
                    .read_gkr_proof()
                    .expect("Expected an a GKR proof because trace has lagrange kernel column");

                Deserializable::read_from_bytes(gkr_proof_serialized)
                    .map_err(|err| VerifierError::ProofDeserializationError(err.to_string()))?
            };
            let gkr_rand_elements = air
                .get_gkr_proof_verifier::<E>()
                .verify::<E, _>(gkr_proof, &mut public_coin)
                .map_err(|err| VerifierError::GkrProofVerificationFailed(err.to_string()))?;

            let rand_elements = air.get_aux_rand_elements(&mut public_coin).expect(
                "failed to generate the random elements needed to build the auxiliary trace",
            );

            public_coin.reseed(trace_commitments[AUX_TRACE_IDX]);

            Some(AuxRandElements::new_with_gkr(rand_elements, gkr_rand_elements))
        } else {
            let rand_elements = air.get_aux_rand_elements(&mut public_coin).expect(
                "failed to generate the random elements needed to build the auxiliary trace",
            );

            public_coin.reseed(trace_commitments[AUX_TRACE_IDX]);

            Some(AuxRandElements::new(rand_elements))
        }
    } else {
        None
    };

    // build random coefficients for the composition polynomial
    let constraint_coeffs = air
        .get_constraint_composition_coefficients(&mut public_coin)
        .map_err(|_| VerifierError::RandomCoinError)?;

    // 2 ----- constraint commitment --------------------------------------------------------------
    // read the commitment to evaluations of the constraint composition polynomial over the LDE
    // domain sent by the prover, use it to update the public coin, and draw an out-of-domain point
    // z from the coin; in the interactive version of the protocol, the verifier sends this point z
    // to the prover, and the prover evaluates trace and constraint composition polynomials at z,
    // and sends the results back to the verifier.
    let constraint_commitment = channel.read_constraint_commitment();
    public_coin.reseed(constraint_commitment);
    let z = public_coin.draw::<E>().map_err(|_| VerifierError::RandomCoinError)?;

    // 3 ----- OOD consistency check --------------------------------------------------------------
    // make sure that evaluations obtained by evaluating constraints over the out-of-domain frame
    // are consistent with the evaluations of composition polynomial columns sent by the prover

    // read the out-of-domain trace frames (the main trace frame and auxiliary trace frame, if
    // provided) sent by the prover and evaluate constraints over them; also, reseed the public
    // coin with the OOD frames received from the prover.
    let ood_trace_frame = channel.read_ood_trace_frame();
    let ood_main_trace_frame = ood_trace_frame.main_frame();
    let ood_aux_trace_frame = ood_trace_frame.aux_frame();
    let ood_lagrange_kernel_frame = ood_trace_frame.lagrange_kernel_frame();
    let ood_constraint_evaluation_1 = evaluate_constraints(
        &air,
        constraint_coeffs,
        &ood_main_trace_frame,
        &ood_aux_trace_frame,
        ood_lagrange_kernel_frame,
        aux_trace_rand_elements.as_ref(),
        z,
    );
    public_coin.reseed(ood_trace_frame.hash::<H>());

    // read evaluations of composition polynomial columns sent by the prover, and reduce them into
    // a single value by computing \sum_{i=0}^{m-1}(z^(i * l) * value_i), where value_i is the
    // evaluation of the ith column polynomial H_i(X) at z, l is the trace length and m is
    // the number of composition column polynomials. This computes H(z) (i.e.
    // the evaluation of the composition polynomial at z) using the fact that
    // H(X) = \sum_{i=0}^{m-1} X^{i * l} H_i(X).
    // Also, reseed the public coin with the OOD constraint evaluations received from the prover.
    let ood_constraint_evaluations = channel.read_ood_constraint_evaluations();
    let ood_constraint_evaluation_2 =
        ood_constraint_evaluations
            .iter()
            .enumerate()
            .fold(E::ZERO, |result, (i, &value)| {
                result + z.exp_vartime(((i * (air.trace_length())) as u32).into()) * value
            });
    public_coin.reseed(H::hash_elements(&ood_constraint_evaluations));

    // finally, make sure the values are the same
    if ood_constraint_evaluation_1 != ood_constraint_evaluation_2 {
        return Err(VerifierError::InconsistentOodConstraintEvaluations);
    }

    // 4 ----- FRI commitments --------------------------------------------------------------------
    // draw coefficients for computing DEEP composition polynomial from the public coin; in the
    // interactive version of the protocol, the verifier sends these coefficients to the prover
    // and the prover uses them to compute the DEEP composition polynomial. the prover, then
    // applies FRI protocol to the evaluations of the DEEP composition polynomial.
    let deep_coefficients = air
        .get_deep_composition_coefficients::<E, R>(&mut public_coin)
        .map_err(|_| VerifierError::RandomCoinError)?;

    // instantiates a FRI verifier with the FRI layer commitments read from the channel. From the
    // verifier's perspective, this is equivalent to executing the commit phase of the FRI protocol.
    // The verifier uses these commitments to update the public coin and draw random points alpha
    // from them; in the interactive version of the protocol, the verifier sends these alphas to
    // the prover, and the prover uses them to compute and commit to the subsequent FRI layers.
    let fri_verifier = FriVerifier::new(
        &mut channel,
        &mut public_coin,
        air.options().to_fri_options(),
        air.trace_poly_degree(),
    )
    .map_err(VerifierError::FriVerificationFailed)?;
    // TODO: make sure air.lde_domain_size() == fri_verifier.domain_size()

    // 5 ----- trace and constraint queries -------------------------------------------------------
    // read proof-of-work nonce sent by the prover
    let pow_nonce = channel.read_pow_nonce();

    // make sure the proof-of-work specified by the grinding factor is satisfied
    if public_coin.check_leading_zeros(pow_nonce) < air.options().grinding_factor() {
        return Err(VerifierError::QuerySeedProofOfWorkVerificationFailed);
    }

    // draw pseudo-random query positions for the LDE domain from the public coin; in the
    // interactive version of the protocol, the verifier sends these query positions to the prover,
    // and the prover responds with decommitments against these positions for trace and constraint
    // composition polynomial evaluations.
    let mut query_positions = public_coin
        .draw_integers(air.options().num_queries(), air.lde_domain_size(), pow_nonce)
        .map_err(|_| VerifierError::RandomCoinError)?;

    // remove any potential duplicates from the positions as the prover will send openings only
    // for unique queries
    query_positions.sort_unstable();
    query_positions.dedup();

    // read evaluations of trace and constraint composition polynomials at the queried positions;
    // this also checks that the read values are valid against trace and constraint commitments
    let (queried_main_trace_states, queried_aux_trace_states) =
        channel.read_queried_trace_states(&query_positions)?;
    let queried_constraint_evaluations = channel.read_constraint_evaluations(&query_positions)?;

    // 6 ----- DEEP composition -------------------------------------------------------------------
    // compute evaluations of the DEEP composition polynomial at the queried positions
    let composer = DeepComposer::new(&air, &query_positions, z, deep_coefficients);
    let t_composition = composer.compose_trace_columns(
        queried_main_trace_states,
        queried_aux_trace_states,
        ood_main_trace_frame,
        ood_aux_trace_frame,
        ood_lagrange_kernel_frame,
    );
    let c_composition = composer
        .compose_constraint_evaluations(queried_constraint_evaluations, ood_constraint_evaluations);
    let deep_evaluations = composer.combine_compositions(t_composition, c_composition);

    // 7 ----- Verify low-degree proof -------------------------------------------------------------
    // make sure that evaluations of the DEEP composition polynomial we computed in the previous
    // step are in fact evaluations of a polynomial of degree equal to trace polynomial degree
    fri_verifier
        .verify(&mut channel, &deep_evaluations, &query_positions)
        .map_err(VerifierError::FriVerificationFailed)
}

// ACCEPTABLE OPTIONS
// ================================================================================================
// Specifies either the minimal, conjectured or proven, security level or a set of
// `ProofOptions` that are acceptable by the verification procedure.
pub enum AcceptableOptions {
    /// Minimal acceptable conjectured security level
    MinConjecturedSecurity(u32),
    /// Minimal acceptable proven security level
    MinProvenSecurity(u32),
    /// Set of acceptable proof parameters
    OptionSet(Vec<ProofOptions>),
}

impl AcceptableOptions {
    /// Checks that a proof was generated using an acceptable set of parameters.
    pub fn validate<H: Hasher>(&self, proof: &Proof) -> Result<(), VerifierError> {
        match self {
            AcceptableOptions::MinConjecturedSecurity(minimal_security) => {
                let proof_security = proof.security_level::<H>(true);
                if proof_security < *minimal_security {
                    return Err(VerifierError::InsufficientConjecturedSecurity(
                        *minimal_security,
                        proof_security,
                    ));
                }
            },
            AcceptableOptions::MinProvenSecurity(minimal_security) => {
                let proof_security = proof.security_level::<H>(false);
                if proof_security < *minimal_security {
                    return Err(VerifierError::InsufficientProvenSecurity(
                        *minimal_security,
                        proof_security,
                    ));
                }
            },
            AcceptableOptions::OptionSet(options) => {
                if !options.iter().any(|opt| opt == proof.options()) {
                    return Err(VerifierError::UnacceptableProofOptions);
                }
            },
        }
        Ok(())
    }
}