winter_prover/matrix/segments.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
// Copyright (c) Facebook, Inc. and its affiliates.
//
// This source code is licensed under the MIT license found in the
// LICENSE file in the root directory of this source tree.
use alloc::vec::Vec;
use core::ops::Deref;
use math::{fft::fft_inputs::FftInputs, FieldElement, StarkField};
#[cfg(feature = "concurrent")]
use utils::iterators::*;
use utils::uninit_vector;
use super::ColMatrix;
// CONSTANTS
// ================================================================================================
/// Segments with domain sizes under this number will be evaluated in a single thread.
const MIN_CONCURRENT_SIZE: usize = 1024;
// SEGMENT OF ROW-MAJOR MATRIX
// ================================================================================================
/// A set of columns of a matrix stored in row-major form.
///
/// The rows are stored in a single vector where each element is an array of size `N`. A segment
/// can store [StarkField] elements only, but can be instantiated from a [Matrix] of any extension
/// of the specified [StarkField]. In such a case, extension field elements are decomposed into
/// base field elements and then added to the segment.
#[derive(Clone, Debug)]
pub struct Segment<B: StarkField, const N: usize> {
data: Vec<[B; N]>,
}
impl<B: StarkField, const N: usize> Segment<B, N> {
// CONSTRUCTORS
// --------------------------------------------------------------------------------------------
/// Instantiates a new [Segment] by evaluating polynomials from the provided [ColMatrix]
/// starting at the specified offset.
///
/// The offset is assumed to be an offset into the view of the matrix where extension field
/// elements are decomposed into base field elements. This offset must be compatible with the
/// values supplied into [Matrix::get_base_element()] method.
///
/// Evaluation is performed over the domain specified by the provided twiddles and offsets.
///
/// # Panics
/// Panics if:
/// - `poly_offset` greater than or equal to the number of base field columns in `polys`.
/// - Number of offsets is not a power of two.
/// - Number of offsets is smaller than or equal to the polynomial size.
/// - The number of twiddles is not half the size of the polynomial size.
pub fn new<E>(polys: &ColMatrix<E>, poly_offset: usize, offsets: &[B], twiddles: &[B]) -> Self
where
E: FieldElement<BaseField = B>,
{
let poly_size = polys.num_rows();
let domain_size = offsets.len();
assert!(domain_size.is_power_of_two());
assert!(domain_size > poly_size);
assert_eq!(poly_size, twiddles.len() * 2);
assert!(poly_offset < polys.num_base_cols());
// allocate memory for the segment
let data = if polys.num_base_cols() - poly_offset >= N {
// if we will fill the entire segment, we allocate uninitialized memory
unsafe { uninit_vector::<[B; N]>(domain_size) }
} else {
// but if some columns in the segment will remain unfilled, we allocate memory initialized
// to zeros to make sure we don't end up with memory with undefined values
vec![[B::ZERO; N]; domain_size]
};
Self::new_with_buffer(data, polys, poly_offset, offsets, twiddles)
}
/// Instantiates a new [Segment] using the provided data buffer by evaluating polynomials in
/// the [ColMatrix] starting at the specified offset.
///
/// The offset is assumed to be an offset into the view of the matrix where extension field
/// elements are decomposed into base field elements. This offset must be compatible with the
/// values supplied into [Matrix::get_base_element()] method.
///
/// Evaluation is performed over the domain specified by the provided twiddles and offsets.
///
/// # Panics
/// Panics if:
/// - `poly_offset` greater than or equal to the number of base field columns in `polys`.
/// - Number of offsets is not a power of two.
/// - Number of offsets is smaller than or equal to the polynomial size.
/// - The number of twiddles is not half the size of the polynomial size.
/// - Number of offsets is smaller than the length of the data buffer
pub fn new_with_buffer<E>(
data_buffer: Vec<[B; N]>,
polys: &ColMatrix<E>,
poly_offset: usize,
offsets: &[B],
twiddles: &[B],
) -> Self
where
E: FieldElement<BaseField = B>,
{
let poly_size = polys.num_rows();
let domain_size = offsets.len();
let mut data = data_buffer;
assert!(domain_size.is_power_of_two());
assert!(domain_size > poly_size);
assert_eq!(poly_size, twiddles.len() * 2);
assert!(poly_offset < polys.num_base_cols());
assert_eq!(data.len(), domain_size);
// determine the number of polynomials to add to this segment; this number can be either N,
// or smaller than N when there are fewer than N polynomials remaining to be processed
let num_polys_remaining = polys.num_base_cols() - poly_offset;
let num_polys = if num_polys_remaining < N {
num_polys_remaining
} else {
N
};
// evaluate the polynomials either in a single thread or multiple threads, depending
// on whether `concurrent` feature is enabled and domain size is greater than 1024;
if cfg!(feature = "concurrent") && domain_size >= MIN_CONCURRENT_SIZE {
#[cfg(feature = "concurrent")]
data.par_chunks_mut(poly_size).zip(offsets.par_chunks(poly_size)).for_each(
|(d_chunk, o_chunk)| {
// TODO: investigate multi-threaded copy
if num_polys == N {
Self::copy_polys(d_chunk, polys, poly_offset, o_chunk);
} else {
Self::copy_polys_partial(d_chunk, polys, poly_offset, num_polys, o_chunk);
}
concurrent::split_radix_fft(d_chunk, twiddles);
},
);
#[cfg(feature = "concurrent")]
concurrent::permute(&mut data);
} else {
data.chunks_mut(poly_size).zip(offsets.chunks(poly_size)).for_each(
|(d_chunk, o_chunk)| {
if num_polys == N {
Self::copy_polys(d_chunk, polys, poly_offset, o_chunk);
} else {
Self::copy_polys_partial(d_chunk, polys, poly_offset, num_polys, o_chunk);
}
d_chunk.fft_in_place(twiddles);
},
);
data.permute();
}
Segment { data }
}
// PUBLIC ACCESSORS
// --------------------------------------------------------------------------------------------
/// Returns the number of rows in this segment.
pub fn num_rows(&self) -> usize {
self.data.len()
}
/// Returns the underlying vector of arrays for this segment.
pub fn into_data(self) -> Vec<[B; N]> {
self.data
}
// HELPER METHODS
// --------------------------------------------------------------------------------------------
/// Copies N polynomials starting at the specified base column offset (`poly_offset`) into the
/// specified destination. Each polynomial coefficient is offset by the specified offset.
fn copy_polys<E: FieldElement<BaseField = B>>(
dest: &mut [[B; N]],
polys: &ColMatrix<E>,
poly_offset: usize,
offsets: &[B],
) {
for row_idx in 0..dest.len() {
for i in 0..N {
let coeff = polys.get_base_element(poly_offset + i, row_idx);
dest[row_idx][i] = coeff * offsets[row_idx];
}
}
}
/// Similar to `clone_and_shift` method above, but copies `num_polys` polynomials instead of
/// `N` polynomials.
///
/// Assumes that `num_polys` is smaller than `N`.
fn copy_polys_partial<E: FieldElement<BaseField = B>>(
dest: &mut [[B; N]],
polys: &ColMatrix<E>,
poly_offset: usize,
num_polys: usize,
offsets: &[B],
) {
debug_assert!(num_polys < N);
for row_idx in 0..dest.len() {
for i in 0..num_polys {
let coeff = polys.get_base_element(poly_offset + i, row_idx);
dest[row_idx][i] = coeff * offsets[row_idx];
}
}
}
}
impl<B: StarkField, const N: usize> Deref for Segment<B, N> {
type Target = Vec<[B; N]>;
fn deref(&self) -> &Self::Target {
&self.data
}
}
// CONCURRENT FFT IMPLEMENTATION
// ================================================================================================
/// Multi-threaded implementations of FFT and permutation algorithms. These are very similar to
/// the functions implemented in `winter-math::fft::concurrent` module, but are adapted to work
/// with slices of element arrays.
#[cfg(feature = "concurrent")]
mod concurrent {
use math::fft::permute_index;
use utils::{iterators::*, rayon};
use super::{FftInputs, StarkField};
/// In-place recursive FFT with permuted output.
/// Adapted from: https://github.com/0xProject/OpenZKP/tree/master/algebra/primefield/src/fft
#[allow(clippy::needless_range_loop)]
pub fn split_radix_fft<B: StarkField, const N: usize>(data: &mut [[B; N]], twiddles: &[B]) {
// generator of the domain should be in the middle of twiddles
let n = data.len();
let g = twiddles[twiddles.len() / 2];
debug_assert_eq!(g.exp((n as u32).into()), B::ONE);
let inner_len = 1_usize << (n.ilog2() / 2);
let outer_len = n / inner_len;
let stretch = outer_len / inner_len;
debug_assert!(outer_len == inner_len || outer_len == 2 * inner_len);
debug_assert_eq!(outer_len * inner_len, n);
// transpose inner x inner x stretch square matrix
transpose_square_stretch(data, inner_len, stretch);
// apply inner FFTs
data.par_chunks_mut(outer_len)
.for_each(|row| row.fft_in_place_raw(twiddles, stretch, stretch, 0));
// transpose inner x inner x stretch square matrix
transpose_square_stretch(data, inner_len, stretch);
// apply outer FFTs
data.par_chunks_mut(outer_len).enumerate().for_each(|(i, row)| {
if i > 0 {
let i = permute_index(inner_len, i);
let inner_twiddle = g.exp_vartime((i as u32).into());
let mut outer_twiddle = inner_twiddle;
for element in row.iter_mut().skip(1) {
for col_idx in 0..N {
element[col_idx] *= outer_twiddle;
}
outer_twiddle *= inner_twiddle;
}
}
row.fft_in_place(twiddles)
});
}
// PERMUTATIONS
// --------------------------------------------------------------------------------------------
pub fn permute<T: Send>(v: &mut [T]) {
let n = v.len();
let num_batches = rayon::current_num_threads().next_power_of_two() * 2;
let batch_size = n / num_batches;
rayon::scope(|s| {
for batch_idx in 0..num_batches {
// create another mutable reference to the slice of values to use in a new thread;
// this is OK because we never write the same positions in the slice from different
// threads
let values = unsafe { &mut *(&mut v[..] as *mut [T]) };
s.spawn(move |_| {
let batch_start = batch_idx * batch_size;
let batch_end = batch_start + batch_size;
for i in batch_start..batch_end {
let j = permute_index(n, i);
if j > i {
values.swap(i, j);
}
}
});
}
});
}
// TRANSPOSING
// --------------------------------------------------------------------------------------------
fn transpose_square_stretch<T>(data: &mut [T], size: usize, stretch: usize) {
assert_eq!(data.len(), size * size * stretch);
match stretch {
1 => transpose_square_1(data, size),
2 => transpose_square_2(data, size),
_ => unimplemented!("only stretch sizes 1 and 2 are supported"),
}
}
fn transpose_square_1<T>(data: &mut [T], size: usize) {
debug_assert_eq!(data.len(), size * size);
debug_assert_eq!(size % 2, 0, "odd sizes are not supported");
// iterate over upper-left triangle, working in 2x2 blocks
// TODO: investigate concurrent implementation
for row in (0..size).step_by(2) {
let i = row * size + row;
data.swap(i + 1, i + size);
for col in (row..size).step_by(2).skip(1) {
let i = row * size + col;
let j = col * size + row;
data.swap(i, j);
data.swap(i + 1, j + size);
data.swap(i + size, j + 1);
data.swap(i + size + 1, j + size + 1);
}
}
}
fn transpose_square_2<T>(data: &mut [T], size: usize) {
debug_assert_eq!(data.len(), 2 * size * size);
// iterate over upper-left triangle, working in 1x2 blocks
// TODO: investigate concurrent implementation
for row in 0..size {
for col in (row..size).skip(1) {
let i = (row * size + col) * 2;
let j = (col * size + row) * 2;
data.swap(i, j);
data.swap(i + 1, j + 1);
}
}
}
}