1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
#[doc(hidden)]
pub mod imp;

mod attributes;
mod blob;
mod codes;
mod file;
mod filter;
mod guid;
mod row;
mod r#type;
mod type_name;

pub use attributes::*;
pub use blob::Blob;
pub use codes::*;
pub use file::*;
pub use filter::Filter;
pub use guid::GUID;
use imp::*;
pub use r#type::Type;
pub use row::*;
use std::collections::*;
pub use type_name::TypeName;

// TODO: move to riddle
#[derive(Copy, Clone, PartialEq, Eq, Debug, PartialOrd, Ord)]
pub enum TypeKind {
    Interface,
    Class,
    Enum,
    Struct,
    Delegate,
}

#[derive(Debug)]
pub enum Value {
    Bool(bool),
    U8(u8),
    I8(i8),
    U16(u16),
    I16(i16),
    U32(u32),
    I32(i32),
    U64(u64),
    I64(i64),
    F32(f32),
    F64(f64),
    String(String),
    TypeName(String),
    TypeRef(TypeDefOrRef),
    EnumDef(TypeDef, Box<Self>),
}

pub struct MethodDefSig {
    pub call_flags: MethodCallAttributes,
    pub return_type: Type,
    pub params: Vec<Type>,
}

#[derive(Clone, Debug)]
pub enum Item {
    Type(TypeDef),
    Const(Field),
    // TODO: get rid of the trailing String - that's just a hack to get around a silly Win32 metadata deficiency where parsing method signatures
    // requires knowing which namespace the method's surrounding interface was defined in.
    Fn(MethodDef, String),
}

pub struct Reader<'a> {
    files: &'a [File],
    items: BTreeMap<&'a str, BTreeMap<&'a str, Vec<Item>>>,

    // TODO: riddle should just avoid nested structs
    nested: HashMap<TypeDef, BTreeMap<&'a str, TypeDef>>,
}

impl<'a> Reader<'a> {
    pub fn new(files: &'a [File]) -> Self {
        let mut items = BTreeMap::<&'a str, BTreeMap<&'a str, Vec<Item>>>::new();
        let mut nested = HashMap::<TypeDef, BTreeMap<&'a str, TypeDef>>::new();
        for (file_index, file) in files.iter().enumerate() {
            for def in file.table::<TypeDef>(file_index) {
                let namespace = files.type_def_namespace(def);
                if namespace.is_empty() {
                    continue;
                }
                let namespace_items = items.entry(namespace).or_default();
                let name = files.type_def_name(def);
                if name == "Apis" {
                    for method in files.type_def_methods(def) {
                        let name = files.method_def_name(method);
                        namespace_items.entry(name).or_default().push(Item::Fn(method, namespace.to_string()));
                    }
                    for field in files.type_def_fields(def) {
                        let name = files.field_name(field);
                        namespace_items.entry(name).or_default().push(Item::Const(field));
                    }
                } else {
                    namespace_items.entry(trim_tick(name)).or_default().push(Item::Type(def));

                    // TODO: these should all be fields on the Apis class so we don't have to go looking for all of these as well.
                    if files.type_def_extends(def) == Some(TypeName::Enum) && !files.type_def_flags(def).contains(TypeAttributes::WindowsRuntime) && !files.has_attribute(def, "ScopedEnumAttribute") {
                        for field in files.type_def_fields(def).filter(|field| files.field_flags(*field).contains(FieldAttributes::Literal)) {
                            let name = files.field_name(field);
                            namespace_items.entry(name).or_default().push(Item::Const(field));
                        }
                    }
                }
            }
            for key in file.table::<NestedClass>(file_index) {
                let inner = files.nested_class_inner(key);
                let outer = files.nested_class_outer(key);
                let name = files.type_def_name(inner);
                nested.entry(outer).or_default().insert(name, inner);
            }
        }
        Self { files, items, nested }
    }

    pub fn namespaces(&self) -> impl Iterator<Item = &str> + '_ {
        self.items.keys().copied()
    }

    pub fn items(&'a self, filter: &'a Filter) -> impl Iterator<Item = Item> + '_ {
        self.items.iter().filter(move |(namespace, _)| filter.includes_namespace(namespace)).flat_map(move |(namespace, items)| items.iter().filter(move |(name, _)| filter.includes_type_name(TypeName::new(namespace, name)))).flat_map(move |(_, items)| items).cloned()
    }

    pub fn namespace_items(&'a self, namespace: &str, filter: &'a Filter) -> impl Iterator<Item = Item> + '_ {
        self.items.get_key_value(namespace).into_iter().flat_map(move |(namespace, items)| items.iter().filter(move |(name, _)| filter.includes_type_name(TypeName::new(namespace, name)))).flat_map(move |(_, items)| items).cloned()
    }

    fn get_item(&self, type_name: TypeName) -> impl Iterator<Item = Item> + '_ {
        if let Some(items) = self.items.get(type_name.namespace) {
            if let Some(items) = items.get(type_name.name) {
                return Some(items.iter().cloned()).into_iter().flatten();
            }
        }
        None.into_iter().flatten()
    }

    pub fn get_type_def(&self, type_name: TypeName) -> impl Iterator<Item = TypeDef> + '_ {
        self.get_item(type_name).filter_map(|item| if let Item::Type(def) = item { Some(def) } else { None })
    }

    pub fn get_method_def(&self, type_name: TypeName) -> impl Iterator<Item = (MethodDef, String)> + '_ {
        self.get_item(type_name).filter_map(|item| if let Item::Fn(def, namespace) = item { Some((def, namespace)) } else { None })
    }

    pub fn nested_types(&self, type_def: TypeDef) -> impl Iterator<Item = TypeDef> + '_ {
        self.nested.get(&type_def).map(|map| map.values().copied()).into_iter().flatten()
    }

    pub fn attribute_args(&self, row: Attribute) -> Vec<(String, Value)> {
        let AttributeType::MemberRef(member) = self.row_decode(row, 1);
        let mut sig = self.member_ref_signature(member);
        let mut values = self.row_blob(row, 2);
        let _prolog = values.read_u16();
        let _this_and_gen_param_count = sig.read_usize();
        let fixed_arg_count = sig.read_usize();
        let _ret_type = sig.read_usize();
        let mut args: Vec<(String, Value)> = Vec::with_capacity(fixed_arg_count);

        for _ in 0..fixed_arg_count {
            let arg = match self.type_from_blob(&mut sig, None, &[]) {
                Type::Bool => Value::Bool(values.read_bool()),
                Type::I8 => Value::I8(values.read_i8()),
                Type::U8 => Value::U8(values.read_u8()),
                Type::I16 => Value::I16(values.read_i16()),
                Type::U16 => Value::U16(values.read_u16()),
                Type::I32 => Value::I32(values.read_i32()),
                Type::U32 => Value::U32(values.read_u32()),
                Type::I64 => Value::I64(values.read_i64()),
                Type::U64 => Value::U64(values.read_u64()),
                Type::String => Value::String(values.read_str().to_string()),
                Type::TypeName => Value::TypeName(values.read_str().to_string()),
                Type::TypeDef(def, _) => Value::EnumDef(def, Box::new(values.read_integer(self.type_def_underlying_type(def)))),
                rest => unimplemented!("{rest:?}"),
            };

            args.push((String::new(), arg));
        }

        let named_arg_count = values.read_u16();
        args.reserve(named_arg_count as usize);

        for _ in 0..named_arg_count {
            let _id = values.read_u8();
            let arg_type = values.read_u8();
            let mut name = values.read_str().to_string();
            let arg = match arg_type {
                ELEMENT_TYPE_BOOLEAN => Value::Bool(values.read_bool()),
                ELEMENT_TYPE_I2 => Value::I16(values.read_i16()),
                ELEMENT_TYPE_I4 => Value::I32(values.read_i32()),
                ELEMENT_TYPE_U4 => Value::U32(values.read_u32()),
                ELEMENT_TYPE_STRING => Value::String(values.read_str().to_string()),
                0x50 => Value::TypeName(values.read_str().to_string()),
                0x55 => {
                    let def = self.get_type_def(TypeName::parse(&name)).next().expect("Type not found");
                    name = values.read_str().into();
                    Value::EnumDef(def, Box::new(values.read_integer(self.type_def_underlying_type(def))))
                }
                rest => unimplemented!("{rest:?}"),
            };
            args.push((name, arg));
        }

        assert_eq!(sig.slice.len(), 0);
        assert_eq!(values.slice.len(), 0);

        args
    }

    // TODO: enclosing craziness is only needed for nested structs - get rid of those in riddle and this goes away.
    pub fn field_type(&self, row: Field, enclosing: Option<TypeDef>) -> Type {
        let mut blob = self.row_blob(row, 2);
        blob.read_usize();
        blob.read_modifiers();
        let def = self.type_from_blob(&mut blob, enclosing, &[]);

        if self.has_attribute(row, "ConstAttribute") {
            def.to_const_type().to_const_ptr()
        } else {
            def
        }
    }

    pub fn interface_impl_type(&self, row: InterfaceImpl, generics: &[Type]) -> Type {
        self.type_from_ref(self.row_decode(row, 1), None, generics)
    }

    pub fn method_def_signature(&self, method: MethodDef, generics: &[Type]) -> MethodDefSig {
        let mut blob = self.row_blob(method, 4);
        let call_flags = MethodCallAttributes(blob.read_usize() as u8);
        let params = blob.read_usize();
        let return_type = self.type_from_blob(&mut blob, None, generics);

        MethodDefSig { call_flags, return_type, params: (0..params).map(|_| self.type_from_blob(&mut blob, None, generics)).collect() }
    }

    pub fn method_def_size(&self, method: MethodDef) -> usize {
        let sig = self.method_def_signature(method, &[]);
        sig.params.iter().fold(0, |sum, param| sum + std::cmp::max(4, self.type_size(param)))
    }

    pub fn type_def_type_name(&self, row: TypeDef) -> TypeName {
        TypeName::new(self.type_def_namespace(row), self.type_def_name(row))
    }

    pub fn type_def_underlying_type(&self, row: TypeDef) -> Type {
        let field = self.type_def_fields(row).next().expect("Field not found");
        if let Some(constant) = self.field_constant(field) {
            self.constant_type(constant)
        } else {
            self.field_type(field, Some(row))
        }
    }

    pub fn type_def_kind(&self, row: TypeDef) -> TypeKind {
        match self.type_def_extends(row) {
            None => TypeKind::Interface,
            Some(TypeName::Enum) => TypeKind::Enum,
            Some(TypeName::Delegate) => TypeKind::Delegate,
            Some(TypeName::Struct) => TypeKind::Struct,
            Some(_) => TypeKind::Class,
        }
    }

    pub fn type_def_size(&self, def: TypeDef) -> usize {
        match self.type_def_kind(def) {
            TypeKind::Struct => {
                if self.type_def_flags(def).contains(TypeAttributes::ExplicitLayout) {
                    self.type_def_fields(def).map(|field| self.type_size(&self.field_type(field, Some(def)))).max().unwrap_or(1)
                } else {
                    let mut sum = 0;
                    for field in self.type_def_fields(def) {
                        let size = self.type_size(&self.field_type(field, Some(def)));
                        let align = self.type_align(&self.field_type(field, Some(def)));
                        sum = (sum + (align - 1)) & !(align - 1);
                        sum += size;
                    }
                    sum
                }
            }
            TypeKind::Enum => self.type_size(&self.type_def_underlying_type(def)),
            _ => 4,
        }
    }

    fn type_def_align(&self, def: TypeDef) -> usize {
        match self.type_def_kind(def) {
            TypeKind::Struct => self.type_def_fields(def).map(|field| self.type_align(&self.field_type(field, Some(def)))).max().unwrap_or(1),
            TypeKind::Enum => self.type_align(&self.type_def_underlying_type(def)),
            _ => 4,
        }
    }

    fn type_align(&self, ty: &Type) -> usize {
        match ty {
            Type::I8 | Type::U8 => 1,
            Type::I16 | Type::U16 => 2,
            Type::I64 | Type::U64 | Type::F64 => 8,
            Type::GUID => 4,
            Type::TypeDef(def, _) => self.type_def_align(*def),
            Type::Win32Array(ty, len) => self.type_align(ty) * len,
            _ => 4,
        }
    }

    // TODO: this shouldn't be public - needed to work around Win32 metadata hackery.
    pub fn type_size(&self, ty: &Type) -> usize {
        match ty {
            Type::I8 | Type::U8 => 1,
            Type::I16 | Type::U16 => 2,
            Type::I64 | Type::U64 | Type::F64 => 8,
            Type::GUID => 16,
            Type::TypeDef(def, _) => self.type_def_size(*def),
            Type::Win32Array(ty, len) => self.type_size(ty) * len,
            Type::PrimitiveOrEnum(ty, _) => self.type_size(ty),
            _ => 4,
        }
    }

    pub fn type_def_or_ref(&self, code: TypeDefOrRef) -> TypeName {
        match code {
            TypeDefOrRef::TypeDef(row) => TypeName::new(self.type_def_namespace(row), self.type_def_name(row)),
            TypeDefOrRef::TypeRef(row) => TypeName::new(self.type_ref_namespace(row), self.type_ref_name(row)),
            rest => unimplemented!("{rest:?}"),
        }
    }

    fn type_from_ref(&self, code: TypeDefOrRef, enclosing: Option<TypeDef>, generics: &[Type]) -> Type {
        if let TypeDefOrRef::TypeSpec(def) = code {
            let mut blob = self.type_spec_signature(def);
            return self.type_from_blob_impl(&mut blob, None, generics);
        }

        let mut full_name = self.type_def_or_ref(code);

        // TODO: remove this
        for (known_name, kind) in CORE_TYPES {
            if full_name == known_name {
                return kind;
            }
        }

        // TODO: remove this
        for (from, to) in REMAP_TYPES {
            if full_name == from {
                full_name = to;
                break;
            }
        }

        if let Some(outer) = enclosing {
            if full_name.namespace.is_empty() {
                let nested = &self.nested[&outer];
                let Some(inner) = nested.get(full_name.name) else {
                    panic!("Nested type not found: {}.{}", self.type_def_type_name(outer), full_name.name);
                };
                return Type::TypeDef(*inner, Vec::new());
            }
        }

        if let Some(def) = self.get_type_def(full_name).next() {
            Type::TypeDef(def, Vec::new())
        } else {
            Type::TypeRef(code)
        }
    }

    // TODO: this shouldn't be public
    pub fn type_from_blob(&self, blob: &mut Blob, enclosing: Option<TypeDef>, generics: &[Type]) -> Type {
        // Used by WinRT to indicate that a struct input parameter is passed by reference rather than by value on the ABI.
        let is_const = blob.read_modifiers().iter().any(|def| self.type_def_or_ref(*def) == TypeName::IsConst);

        // Used by WinRT to indicate an output parameter, but there are other ways to determine this direction so here
        // it is only used to distinguish between slices and heap-allocated arrays.
        let is_ref = blob.read_expected(ELEMENT_TYPE_BYREF as usize);

        if blob.read_expected(ELEMENT_TYPE_VOID as usize) {
            return Type::Void;
        }

        let is_array = blob.read_expected(ELEMENT_TYPE_SZARRAY as usize); // Used by WinRT to indicate an array

        let mut pointers = 0;

        while blob.read_expected(ELEMENT_TYPE_PTR as usize) {
            pointers += 1;
        }

        let kind = self.type_from_blob_impl(blob, enclosing, generics);

        if pointers > 0 {
            Type::MutPtr(Box::new(kind), pointers)
        } else if is_const {
            Type::ConstRef(Box::new(kind))
        } else if is_array {
            if is_ref {
                Type::WinrtArrayRef(Box::new(kind))
            } else {
                Type::WinrtArray(Box::new(kind))
            }
        } else {
            kind
        }
    }

    fn type_from_blob_impl(&self, blob: &mut Blob, enclosing: Option<TypeDef>, generics: &[Type]) -> Type {
        let code = blob.read_usize();

        if let Some(code) = Type::from_code(code) {
            return code;
        }

        match code as u8 {
            ELEMENT_TYPE_VALUETYPE | ELEMENT_TYPE_CLASS => self.type_from_ref(TypeDefOrRef::decode(blob.file, blob.read_usize()), enclosing, generics),
            ELEMENT_TYPE_VAR => generics.get(blob.read_usize()).unwrap_or(&Type::Void).clone(),
            ELEMENT_TYPE_ARRAY => {
                let kind = self.type_from_blob(blob, enclosing, generics);
                let _rank = blob.read_usize();
                let _count = blob.read_usize();
                let bounds = blob.read_usize();
                Type::Win32Array(Box::new(kind), bounds)
            }
            ELEMENT_TYPE_GENERICINST => {
                blob.read_usize(); // ELEMENT_TYPE_VALUETYPE or ELEMENT_TYPE_CLASS

                let type_name = self.type_def_or_ref(TypeDefOrRef::decode(blob.file, blob.read_usize()));
                let def = self.get_type_def(type_name).next().unwrap_or_else(|| panic!("Type not found: {}", type_name));
                let mut args = Vec::with_capacity(blob.read_usize());

                for _ in 0..args.capacity() {
                    args.push(self.type_from_blob_impl(blob, enclosing, generics));
                }

                Type::TypeDef(def, args)
            }
            rest => unimplemented!("{rest:?}"),
        }
    }
}

impl<'a> RowReader<'a> for Reader<'a> {
    fn row_file<R: AsRow>(&self, row: R) -> &'a File {
        &self.files[row.to_row().file]
    }
}

fn trim_tick(name: &str) -> &str {
    if name.as_bytes().iter().rev().nth(1) == Some(&b'`') {
        &name[..name.len() - 2]
    } else {
        name
    }
}

// TODO: this should be in riddle's Rust generator if at all - perhaps as convertible types rather than remapped types since there's already some precedent for that.
pub const REMAP_TYPES: [(TypeName, TypeName); 2] = [(TypeName::D2D_MATRIX_3X2_F, TypeName::Matrix3x2), (TypeName::D3DMATRIX, TypeName::Matrix4x4)];

// TODO: get rid of at least the second tuple if not the whole thing.
pub const CORE_TYPES: [(TypeName, Type); 11] = [(TypeName::GUID, Type::GUID), (TypeName::IUnknown, Type::IUnknown), (TypeName::HResult, Type::HRESULT), (TypeName::HRESULT, Type::HRESULT), (TypeName::HSTRING, Type::String), (TypeName::BSTR, Type::BSTR), (TypeName::IInspectable, Type::IInspectable), (TypeName::PSTR, Type::PSTR), (TypeName::PWSTR, Type::PWSTR), (TypeName::Type, Type::TypeName), (TypeName::CHAR, Type::U8)];