1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
//! Generate random data in such a way as to make rare edge-cases very likely.
//!
//! > Disclaimer: the random number generators used in this crate are NOT
//! CRYPTOGRAPHICALLY SECURE. Only use these generators for generating testing
//! inputs, do not rely on them for cryptographic purposes in production code!
//! For instance, you may test a cryptographic tool with these generators, but
//! you may not deploy code that relies on these generators for security in
//! production.
//!
//! For instance, if generating a random `f32` by uniformly sampling 32 bits of
//! data, certain values will rarely appear, such as `NAN` and `INFINITY`. When
//! doing randomized testing, like fuzzing, it isn't very useful to repeatedly
//! generate well-behaved data. It is much more useful if we can artificially
//! increase the likelihood of these special values, so that we test with them
//! more often.
//!
//! Additionally, some random number crates will never generate certain
//! problematic bit-patterns, such as `NAN`.
//!
//! This crate is based on the [fastrand]() crate.
//!
//! This crate can work with `no_std`, if you disable the `std` feature. You
//! cannot use the global functions when in a `no_std` environment. In that
//! case, you can explicitly instantiate [Wdg] and call the methods on it.
//! They are equivalent.
//!
//! If using `std`, it's more ergonomic to use the global functions in the
//! [global_functions] module.
#![cfg_attr(not(feature = "std"), no_std)]
use fastrand as fr;
#[cfg(feature = "std")]
mod global_functions;
#[cfg(feature = "std")]
pub use global_functions::*;
#[cfg(test)]
mod float_utils;
/// A weird data generator
#[derive(Clone)]
pub struct Wdg(fr::Rng);
impl Wdg {
#[must_use]
pub fn with_seed(seed: u64) -> Self {
Self(fr::Rng::with_seed(seed))
}
#[must_use]
pub fn fork(&mut self) -> Self {
Self(self.0.fork())
}
pub fn seed(&mut self, seed: u64) {
self.0.seed(seed);
}
pub fn get_seed(&mut self) -> u64 {
self.0.get_seed()
}
/// Generates a random f32 `NAN` value.
///
/// There are multiple bit patterns that are equivalent to a `NAN`.
/// This generator covers all possible `NAN` values as specified in
/// IEEE-754, even ones that Rust would normally not generate.
pub fn nan_f32(&mut self) -> f32 {
let sign: u32 = self.0.u32(0..=1) << 31;
let exponent: u32 = 0b1111_1111 << 23;
// mantissa 00...00 is INFINITY not NAN!
let mantissa: u32 = self.0.u32(1..(1 << 23));
let bits = sign | exponent | mantissa;
f32::from_bits(bits)
}
/// Generates a random f64 `NAN` value.
///
/// There are multiple bit patterns that are equivalent to a `NAN`.
/// This generator covers all possible `NAN` values as specified in
/// IEEE-754, even ones that Rust would normally not generate.
pub fn nan_f64(&mut self) -> f64 {
let sign: u64 = self.0.u64(0..=1) << 63;
let exponent: u64 = 0b0111_1111_1111 << 52;
// mantissa 00...00 is INFINITY not NAN!
let mantissa: u64 = self.0.u64(1..(1 << 52));
let bits = sign | exponent | mantissa;
f64::from_bits(bits)
}
/// Generates a random f32 denormal value.
///
/// This generator covers all possible denormal values as specified in
/// IEEE-754.
pub fn subnormal_f32(&mut self) -> f32 {
let sign: u32 = self.0.u32(0..=1) << 31;
// mantissa 00...00 is zero not denormal!
let mantissa: u32 = self.0.u32(1..(1 << 23));
let bits = sign | mantissa;
f32::from_bits(bits)
}
/// Generates a random f64 denormal value.
///
/// This generator covers all possible denormal values as specified in
/// IEEE-754.
pub fn subnormal_f64(&mut self) -> f64 {
let sign: u64 = self.0.u64(0..=1) << 63;
// mantissa 00...00 is zero not denormal!
let mantissa: u64 = self.0.u64(1..(1 << 52));
let bits = sign | mantissa;
f64::from_bits(bits)
}
/// Generate a random f32 normal value
pub fn normal_f32(&mut self) -> f32 {
let sign: u32 = self.0.u32(0..=1) << 31;
// careful with this range, all zeros and all ones are not normal
let exponent: u32 = self.0.u32(0b0000_0001..=0b1111_1110) << 23;
let mantissa: u32 = self.0.u32(0..=(1 << 23));
let bits = sign | exponent | mantissa;
f32::from_bits(bits)
}
/// Generate a random f64 normal value
pub fn normal_f64(&mut self) -> f64 {
let sign: u64 = self.0.u64(0..=1) << 63;
// careful with this range, all zeros and all ones are not normal
let exponent: u64 = self.0.u64(0b000_0000_0001..=0b111_1111_1110) << 52;
let mantissa: u64 = self.0.u64(0..=(1 << 52));
let bits = sign | exponent | mantissa;
f64::from_bits(bits)
}
/// Generate a random f32 "special" value
///
/// A special value is what I call specific float values that are unique and
/// are pretty much impossible to generate by chance, and have some unusual
/// properties.
pub fn special_f32(&mut self) -> f32 {
match self.0.u8(0..=11) {
0 => 0.0,
1 => -0.0,
2 => f32::INFINITY,
3 => -f32::INFINITY,
4 => 1.0,
5 => -1.0,
6 => f32::MIN,
7 => f32::MAX,
8 => f32::MIN_POSITIVE,
9 => -f32::MIN_POSITIVE,
10 => f32::EPSILON,
11 => -f32::EPSILON,
_ => unreachable!(),
}
}
/// Generate a random f64 "special" value
///
/// A special value is what I call specific float values that are unique and
/// are pretty much impossible to generate by chance, and have some unusual
/// properties.
pub fn special_f64(&mut self) -> f64 {
match self.0.u8(0..=11) {
0 => 0.0,
1 => -0.0,
2 => f64::INFINITY,
3 => -f64::INFINITY,
4 => 1.0,
5 => -1.0,
6 => f64::MIN,
7 => f64::MAX,
8 => f64::MIN_POSITIVE,
9 => -f64::MIN_POSITIVE,
10 => f64::EPSILON,
11 => -f64::EPSILON,
_ => unreachable!(),
}
}
/// Generate a random f32, such that special or problematic values are much
/// more common than normal.
///
/// The distribution is not statistically useful, but it ensures that all edge-case
/// values get a fair chance of being generated. This is better than using a regular
/// random number generator, because in the vast majority of cases, a random number
/// generator will generate perfectly regular and well-behaved values, and certain
/// values, like `INFINITY` and `NAN` may be impossible to generate.
///
/// The distribution is as follows:
/// - 25% normal values
/// - 25% subnormal values
/// - 25% `NAN` values, including all possible payloads, quiet and signaling `NAN`.
/// - 25% "special" values, i.e. unique values with special properties such as `INFINITY` and `-0.0`
pub fn f32(&mut self) -> f32 {
match self.0.u8(0..4) {
0 => self.normal_f32(),
1 => self.subnormal_f32(),
2 => self.nan_f32(),
3 => self.special_f32(),
_ => unreachable!(),
}
}
/// Generate a random f64, such that special or problematic values are much
/// more common than normal.
///
/// The distribution is not statistically useful, but it ensures that all edge-case
/// values get a fair chance of being generated. This is better than using a regular
/// random number generator, because in the vast majority of cases, a random number
/// generator will generate perfectly regular and well-behaved values, and certain
/// values, like `INFINITY` and `NAN` may be impossible to generate.
///
/// The distribution is as follows:
/// - 25% normal values
/// - 25% subnormal values
/// - 25% `NAN` values, including all possible payloads, quiet and signaling `NAN`.
/// - 25% "special" values, i.e. unique values with special properties such as `INFINITY` and `-0.0`
pub fn f64(&mut self) -> f64 {
match self.0.u8(0..4) {
0 => self.normal_f64(),
1 => self.subnormal_f64(),
2 => self.nan_f64(),
3 => self.special_f64(),
_ => unreachable!(),
}
}
}
#[cfg(test)]
mod test_unit {
extern crate std;
use super::*;
#[test]
fn nan_f32() {
let mut gen = Wdg::with_seed(0);
assert!(gen.nan_f32().is_nan());
}
#[test]
fn nan_f64() {
let mut gen = Wdg::with_seed(0);
assert!(gen.nan_f64().is_nan());
}
#[test]
fn subnormal_f32() {
let mut gen = Wdg::with_seed(0);
assert!(gen.subnormal_f32().is_subnormal());
}
#[test]
fn subnormal_f64() {
let mut gen = Wdg::with_seed(0);
assert!(gen.subnormal_f64().is_subnormal());
}
#[test]
fn normal_f32() {
let mut gen = Wdg::with_seed(0);
assert!(!gen.normal_f32().is_subnormal());
}
#[test]
fn normal_f64() {
let mut gen = Wdg::with_seed(0);
assert!(!gen.normal_f64().is_subnormal());
}
}
#[cfg(test)]
mod test_fuzz {
// fuzzing tests, they may take a while to run. Shouldn't last more than
// a minute per test (or I'll get impatient/cargo will complain)
extern crate std;
use crate::float_utils::{f32_exact_eq, f64_exact_eq};
use super::*;
// TODO: all seeds here should be picked at random from RANDOM.org
#[test]
#[ignore]
fn nan_f32_is_nan() {
let mut gen = Wdg::with_seed(0x0b_65_58_2b_4e_d8_20_fe);
for i in 0..(1 << 30) {
let num = gen.nan_f32();
assert!(num.is_nan(), "{}: {:032b}", i, num.to_bits());
}
}
#[test]
#[ignore]
fn nan_f64_is_nan() {
let mut gen = Wdg::with_seed(0x36_44_3e_f8_40_af_6e_49);
// TODO: this test has poor coverage, there are 1 << 52 possible mantissas
// way too many to guess the bad ones at random. Maybe do something
// meta where you use this crate to fuzz itself?
for i in 0..1 << 30 {
let num = gen.nan_f64();
assert!(num.is_nan(), "{}: {:064b}", i, num.to_bits());
}
}
#[test]
fn nan_f32_range() {
let mut gen = Wdg::with_seed(0x29_21_f1_bd_8b_a9_c6_b6);
let mut coverage: u32 = 0b0;
for _ in 0..10000 {
let num = gen.nan_f32();
coverage |= num.to_bits();
}
// every bit should be generated at least once, given enough attempts
assert_eq!(coverage, u32::MAX, "{:032b}", coverage);
}
#[test]
fn nan_f64_range() {
let mut gen = Wdg::with_seed(0x6f_35_67_53_e6_37_13_c3);
let mut coverage: u64 = 0b0;
for _ in 0..10000 {
let num = gen.nan_f64();
coverage |= num.to_bits();
}
// every bit should be generated at least once, given enough attempts
assert_eq!(coverage, u64::MAX, "{:064b}", coverage);
}
#[test]
#[ignore]
fn subnoraml_f32_is_subnormal() {
let mut gen = Wdg::with_seed(0x52_58_4a_d1_55_e1_72_10);
for i in 0..(1 << 30) {
let num = gen.subnormal_f32();
assert!(num.is_subnormal(), "{}: {:032b}", i, num.to_bits());
}
}
#[test]
#[ignore]
fn subnormal_f64_is_subnormal() {
let mut gen = Wdg::with_seed(0x2d_46_cc_c0_45_c5_ec_03);
// TODO: this test has poor coverage, there are 1 << 52 possible mantissas
// way too many to guess the bad ones at random. Maybe do something
// meta where you use this crate to fuzz itself?
for i in 0..1 << 30 {
let num = gen.subnormal_f64();
assert!(num.is_subnormal(), "{}: {:064b}", i, num.to_bits());
}
}
#[test]
fn subnormal_f32_range() {
let mut gen = Wdg::with_seed(0x98_fb_6b_ef_ac_5d_81_f3);
let mut coverage: u32 = 0b1111_1111 << 23;
for _ in 0..10000 {
let num = gen.subnormal_f32();
coverage |= num.to_bits();
}
// every bit should be generated at least once, given enough attempts
assert_eq!(coverage, u32::MAX, "{:032b}", coverage);
}
#[test]
fn subnormal_f64_range() {
let mut gen = Wdg::with_seed(0x7a_07_58_14_f4_b8_2f_49);
let mut coverage: u64 = 0b111_1111_1111 << 52;
for _ in 0..10000 {
let num = gen.subnormal_f64();
coverage |= num.to_bits();
}
// every bit should be generated at least once, given enough attempts
assert_eq!(coverage, u64::MAX, "{:064b}", coverage);
}
#[test]
#[ignore]
fn noraml_f32_is_not_subnormal() {
let mut gen = Wdg::with_seed(0x2c_fe_59_bb_7a_56_28_20);
for i in 0..(1 << 30) {
let num = gen.normal_f32();
assert!(!num.is_subnormal(), "{}: {:032b}", i, num.to_bits());
}
}
#[test]
#[ignore]
fn normal_f64_is_not_subnormal() {
let mut gen = Wdg::with_seed(0xa9_26_d1_d9_7b_d7_94_15);
// TODO: this test has poor coverage, there are 1 << 52 possible mantissas
// way too many to guess the bad ones at random. Maybe do something
// meta where you use this crate to fuzz itself?
for i in 0..1 << 30 {
let num = gen.normal_f64();
assert!(!num.is_subnormal(), "{}: {:064b}", i, num.to_bits());
}
}
#[test]
fn normal_f32_range() {
let mut gen = Wdg::with_seed(0x15_63_e3_11_09_cb_11_b5);
let mut coverage: u32 = 0;
for _ in 0..10000 {
let num = gen.normal_f32();
coverage |= num.to_bits();
}
// every bit should be generated at least once, given enough attempts
assert_eq!(coverage, u32::MAX, "{:032b}", coverage);
}
#[test]
fn normal_f64_range() {
let mut gen = Wdg::with_seed(0x56_e5_19_b1_47_f2_5e_0d);
let mut coverage: u64 = 0;
for _ in 0..10000 {
let num = gen.normal_f64();
coverage |= num.to_bits();
}
// every bit should be generated at least once, given enough attempts
assert_eq!(coverage, u64::MAX, "{:064b}", coverage);
}
#[test]
fn special_f32() {
let mut gen = Wdg::with_seed(0x69_1b_e9_82_15_ed_a0_7d);
for _ in 0..10000 {
gen.special_f32();
}
}
#[test]
fn special_f64() {
let mut gen = Wdg::with_seed(0xf5_31_9e_51_c4_1f_9e_35);
for _ in 0..10000 {
gen.special_f64();
}
}
#[test]
fn special_f32_range() {
let mut gen = Wdg::with_seed(0x90_ae_72_03_34_a0_d7_4b);
let mut had_infinite = false;
let mut had_neg_infinite = false;
let mut had_zero = false;
let mut had_neg_zero = false;
let mut had_one = false;
let mut had_neg_one = false;
let mut had_min_positive = false;
let mut had_max_negative = false;
let mut had_epsilon = false;
let mut had_neg_epsilon = false;
for _ in 0..10000 {
let num = gen.special_f32();
had_infinite |= f32_exact_eq(num, f32::INFINITY);
had_neg_infinite |= f32_exact_eq(num, f32::NEG_INFINITY);
had_zero |= f32_exact_eq(num, 0.0);
had_neg_zero |= f32_exact_eq(num, -0.0);
had_one |= f32_exact_eq(num, 1.0);
had_neg_one |= f32_exact_eq(num, -1.0);
had_min_positive |= f32_exact_eq(num, f32::MIN_POSITIVE);
had_max_negative |= f32_exact_eq(num, -f32::MIN_POSITIVE);
had_epsilon |= f32_exact_eq(num, f32::EPSILON);
had_neg_epsilon |= f32_exact_eq(num, -f32::EPSILON);
}
assert!(
had_infinite
&& had_neg_infinite
&& had_zero
&& had_neg_zero
&& had_one
&& had_neg_one
&& had_min_positive
&& had_max_negative
&& had_epsilon
&& had_neg_epsilon
);
}
#[test]
fn special_f64_range() {
let mut gen = Wdg::with_seed(0x10_6c_a1_34_a5_6d_03_97);
let mut had_infinite = false;
let mut had_neg_infinite = false;
let mut had_zero = false;
let mut had_neg_zero = false;
let mut had_one = false;
let mut had_neg_one = false;
let mut had_min_positive = false;
let mut had_max_negative = false;
let mut had_epsilon = false;
let mut had_neg_epsilon = false;
for _ in 0..10000 {
let num = gen.special_f64();
had_infinite |= f64_exact_eq(num, f64::INFINITY);
had_neg_infinite |= f64_exact_eq(num, f64::NEG_INFINITY);
had_zero |= f64_exact_eq(num, 0.0);
had_neg_zero |= f64_exact_eq(num, -0.0);
had_one |= f64_exact_eq(num, 1.0);
had_neg_one |= f64_exact_eq(num, -1.0);
had_min_positive |= f64_exact_eq(num, f64::MIN_POSITIVE);
had_max_negative |= f64_exact_eq(num, -f64::MIN_POSITIVE);
had_epsilon |= f64_exact_eq(num, f64::EPSILON);
had_neg_epsilon |= f64_exact_eq(num, -f64::EPSILON);
}
assert!(
had_infinite
&& had_neg_infinite
&& had_zero
&& had_neg_zero
&& had_one
&& had_neg_one
&& had_min_positive
&& had_max_negative
&& had_epsilon
&& had_neg_epsilon
);
}
#[test]
fn f32_range() {
let mut gen = Wdg::with_seed(0x7c_65_54_c7_d6_a9_d4_b7);
// these should all be true by the end, given enough attempts
let mut had_normal = false;
let mut had_subnormal = false;
let mut had_nan = false;
let mut had_special = false;
for _ in 0..10000 {
let num = gen.f32();
had_normal |= num.is_normal();
had_subnormal |= num.is_subnormal();
had_nan |= num.is_nan();
had_special |= num.is_infinite()
| f32_exact_eq(num, 0.0)
| f32_exact_eq(num, -0.0)
| f32_exact_eq(num, 1.0)
| f32_exact_eq(num, -1.0)
| f32_exact_eq(num, f32::MIN)
| f32_exact_eq(num, f32::MAX)
| f32_exact_eq(num, f32::MIN_POSITIVE)
| f32_exact_eq(num, -f32::MIN_POSITIVE)
| f32_exact_eq(num, f32::EPSILON)
| f32_exact_eq(num, -f32::EPSILON);
}
assert!(had_normal && had_subnormal && had_nan && had_special);
}
#[test]
fn f64_range() {
let mut gen = Wdg::with_seed(0x9a_a4_ee_0f_08_ba_d9_de);
// these should all be true by the end, given enough attempts
let mut had_normal = false;
let mut had_subnormal = false;
let mut had_nan = false;
let mut had_special = false;
for _ in 0..10000 {
let num = gen.f64();
had_normal |= num.is_normal();
had_subnormal |= num.is_subnormal();
had_nan |= num.is_nan();
had_special |= num.is_infinite()
| f64_exact_eq(num, 0.0)
| f64_exact_eq(num, -0.0)
| f64_exact_eq(num, 1.0)
| f64_exact_eq(num, -1.0)
| f64_exact_eq(num, f64::MIN)
| f64_exact_eq(num, f64::MAX)
| f64_exact_eq(num, f64::MIN_POSITIVE)
| f64_exact_eq(num, -f64::MIN_POSITIVE)
| f64_exact_eq(num, f64::EPSILON)
| f64_exact_eq(num, -f64::EPSILON);
}
assert!(had_normal && had_subnormal && had_nan && had_special);
}
}