weighted_trie 0.2.0

Weighted prefix trie for autosuggestions
Documentation
# weighted_trie

🦀 Rust crate that allows creating weighted prefix trees that can be used in autocomplete

[Released API Docs](https://docs.rs/crate/weighted_trie/latest)

[![License: Apache 2.0](https://img.shields.io/badge/license-Apache_2.0-blue.svg)](https://github.com/subpath/weighted_trie/blob/main/LICENSE)

### Features

- **Speed-optimized**: Single insert in 272ns, lookup in 244ns, bulk build (100K) in 33.7ms
- **Memory-efficient**: Only 243 bytes per word at 1M scale
- **In-memory**: Pure memory-based data structure, no disk I/O
- **Dynamic**: Supports incremental inserts on-the-fly
- **Prefix-based**: Returns all matches for a given prefix, sorted by weight
- **Weight-sorted**: Results pre-sorted by descending weight
- **Configurable limits**:
  - Max suggestions per query (default: 10)
  - Max word length (default: 100 characters)

### Quickstart
To use weigthed-trie, add the following to your Cargo.toml file:

```toml
[dependencies]
weighted_trie = "0.1.0"  # NOTE: Replace to latest minor version.
```

### Usage overview

```rust
use weighted_trie::WeightedTrie;

let mut trie = WeightedTrie::new();
// build trie with words and associated weights
trie.insert("pie", 5);
trie.insert("pita", 2);
trie.insert("pi", 1);
trie.insert("pizza", 10);

// get prefix based suggestions sorted by weight
let suggestions = trie.search("pi");
assert_eq!(suggestions, vec!["pizza", "pie", "pita", "pi"]);

let suggestions = trie.search("piz");
assert_eq!(suggestions, vec!["pizza"]);

// out of vocabulary
let suggestions = trie.search("apple");
assert_eq!(suggestions.len(), 0);
```
Alternatively you can use `.build`  method

```rust
use weighted_trie::{WeightedString, WeightedTrie};

let weighted_strings = vec![
    WeightedString::new("pie", 5),
    WeightedString::new("pita", 2),
    WeightedString::new("pi", 1),
    WeightedString::new("pizza", 10),
];

let trie = WeightedTrie::build(weighted_strings);
```

#### Custom Configuration

```rust
use weighted_trie::WeightedTrie;

// Create trie with custom max word length of 50 characters
let mut trie = WeightedTrie::with_max_word_length(50);

// This succeeds
assert!(trie.insert("short", 10));

// This fails - word too long
let very_long_word = "a".repeat(51);
assert!(!trie.insert(very_long_word, 5));

// Create trie with custom max suggestions limit
let mut trie = WeightedTrie::with_max_suggestions(5);
for i in 0..20 {
    trie.insert(format!("word{}", i), 20 - i as u32);
}
assert_eq!(trie.search("word").len(), 5); // Only top 5 returned

// Configure both word length and suggestions limit
let mut trie = WeightedTrie::with_config(100, 5);
```

### Benchmarks

#### Performance
```
Single insert:           272 ns
Lookup (per query):      244 ns
Build (100K words):      33.7 ms
Insert 100K (incremental): 32.6 ms
```

#### Memory Footprint
```
Dataset      Memory      Bytes/Word
------------------------------------
10K          2.4 MB      254
50K          13.0 MB     273
100K         29.5 MB     309
500K         130.8 MB    274
1M           231.4 MB    243
```

Run detailed memory analysis:
```bash
cargo bench --bench memory_bench
```

### Guidelines
`README.md` is generated from `cargo readme` command.
Do not manually update `README.md` instead edit `src/lib.rs`
and then run `cargo readme > README.md`.

### Optimizations
- **String interning**: Each word stored once, nodes use indices
- **Packed suggestions**: Weight+index packed into u64 (bit manipulation)
- **compact_str**: 12-byte strings vs 24-byte std String
- **SmallVec**: Stack allocation for small collections (≤2 suggestions, ≤4 children)
- **Arena allocation**: All nodes in Vec, use indices instead of Box pointers
- **hashbrown HashMap**: Faster than std HashMap
- **Pre-allocation**: Vec capacity = words × 2 (avoids reallocations)
- **shrink_to_fit**: Removes over-allocation after build
- **Top-K limiting**: 10 suggestions per node max
- **Deduplication**: Automatic on insert


### License

License: Apache-2.0