1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
// Copyright 2022 - 2023 Wenmeng See the COPYRIGHT
// file at the top-level directory of this distribution.
// 
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
// 
// Author: tickbh
// -----
// Created Date: 2023/08/22 10:50:59

use super::{HeaderIndex, huffman::HuffmanEncoder};
use crate::{BinaryMut, Buf, BufMut, HeaderName, HeaderValue};
use std::{
    io,
    num::Wrapping,
    sync::{Arc, RwLock},
};

pub struct Encoder {
    pub index: Arc<RwLock<HeaderIndex>>,
    pub max_frame_size: usize,
}

impl Encoder {
    pub fn new() -> Encoder {
        Encoder {
            index: Arc::new(RwLock::new(HeaderIndex::new())),
            max_frame_size: 16_384,
        }
    }

    pub fn new_index(index: Arc<RwLock<HeaderIndex>>, max_frame_size: usize) -> Encoder {
        Encoder {
            index,
            max_frame_size,
        }
    }

    pub fn encode<'b, I>(&mut self, headers: I) -> BinaryMut
    where
        I: Iterator<Item = (&'b HeaderName, &'b HeaderValue)>,
    {
        let mut encoded = BinaryMut::new();
        self.encode_into(headers, &mut encoded).unwrap();
        encoded
    }

    pub fn encode_into<'b, I, B: BufMut + Buf>(
        &mut self,
        headers: I,
        writer: &mut B,
    ) -> io::Result<()>
    where
        I: Iterator<Item = (&'b HeaderName, &'b HeaderValue)>,
    {
        for header in headers {
            self.encode_header_into(header, writer)?;
        }
        Ok(())
    }

    pub fn encode_header_into<B: BufMut + Buf>(
        &mut self,
        header: (&HeaderName, &HeaderValue),
        writer: &mut B,
    ) -> io::Result<()> {
        let value = { self.index.read().unwrap().find_header(header) };
        
        match value {
            None => {
                self.encode_literal(header, true, writer)?;
                self.index
                    .write()
                    .unwrap()
                    .add_header(header.0.clone(), header.1.clone());
            }
            Some((index, false)) => {
                self.encode_indexed_name((index, &header.1), true, writer)?;
                self.index
                    .write()
                    .unwrap()
                    .add_header(header.0.clone(), header.1.clone());
            }
            Some((index, true)) => {
                self.encode_indexed(index, writer)?;
            }
        };
        Ok(())
    }

    fn encode_literal<B: BufMut + Buf>(
        &mut self,
        header: (&HeaderName, &HeaderValue),
        should_index: bool,
        buf: &mut B,
    ) -> io::Result<()> {
        let mask = if should_index { 0x40 } else { 0x0 };

        buf.put_slice(&[mask]);
        self.encode_string_literal(&header.0.as_bytes(), buf)?;
        self.encode_string_literal(&header.1.as_bytes(), buf)?;
        Ok(())
    }

    fn encode_string_literal<B: BufMut + Buf>(
        &mut self,
        octet_str: &[u8],
        buf: &mut B,
    ) -> io::Result<()> {
        let value = HuffmanEncoder::encode(octet_str);
        Self::encode_integer_into(value.len(), 7, 0x80, buf)?;
        buf.put_slice(&value);
        Ok(())
    }

    fn encode_indexed_name<B: BufMut + Buf>(
        &mut self,
        header: (usize, &HeaderValue),
        should_index: bool,
        buf: &mut B,
    ) -> io::Result<()> {
        let (mask, prefix) = if should_index { (0x40, 6) } else { (0x0, 4) };

        Self::encode_integer_into(header.0, prefix, mask, buf)?;
        // So far, we rely on just one strategy for encoding string literals.
        self.encode_string_literal(&header.1.as_bytes(), buf)?;
        Ok(())
    }

    fn encode_indexed<B: BufMut + Buf>(
        &self,
        index: usize,
        buf: &mut B,
    ) -> io::Result<()> {
        Self::encode_integer_into(index, 7, 0x80, buf)?;
        Ok(())
    }

    pub fn encode_integer_into<B: BufMut + Buf>(
        mut value: usize,
        prefix_size: u8,
        leading_bits: u8,
        writer: &mut B,
    ) -> io::Result<()> {
        let Wrapping(mask) = if prefix_size >= 8 {
            Wrapping(0xFF)
        } else {
            Wrapping(1u8 << prefix_size) - Wrapping(1)
        };
        let leading_bits = leading_bits & (!mask);
        let mask = mask as usize;
        if value < mask {
            writer.put_slice(&[leading_bits | value as u8]);
            return Ok(());
        }

        writer.put_slice(&[leading_bits | mask as u8]);
        value -= mask;
        while value >= 128 {
            writer.put_slice(&[((value % 128) + 128) as u8]);
            value = value / 128;
        }
        writer.put_slice(&[value as u8]);
        Ok(())
    }
}