1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
use std::borrow::Cow;

use std::num::Wrapping;

use std::sync::{Arc, RwLock};

use crate::{
    Buf, HeaderName, HeaderValue, Http2Error, WebResult,
};

use super::huffman::{HuffmanDecoder, HuffmanDecoderError};
use super::HeaderIndex;

enum FieldRepresentation {
    Indexed,
    LiteralWithIncrementalIndexing,
    SizeUpdate,
    LiteralNeverIndexed,
    LiteralWithoutIndexing,
}

impl FieldRepresentation {
    fn new(octet: u8) -> FieldRepresentation {
        if octet & 128 == 128 {
            // High-order bit set
            FieldRepresentation::Indexed
        } else if octet & 64 == 64 {
            // Bit pattern `01`
            FieldRepresentation::LiteralWithIncrementalIndexing
        } else if octet & 32 == 32 {
            // Bit pattern `001`
            FieldRepresentation::SizeUpdate
        } else if octet & 16 == 16 {
            // Bit pattern `0001`
            FieldRepresentation::LiteralNeverIndexed
        } else {
            // None of the top 4 bits is set => bit pattern `0000xxxx`
            FieldRepresentation::LiteralWithoutIndexing
        }
    }
}

/// Represents all errors that can be encountered while decoding an
/// integer.
#[derive(PartialEq, Copy, Clone, Debug)]
pub enum IntegerDecodingError {
    /// 5.1. specifies that "excessively large integer decodings" MUST be
    /// considered an error (whether the size is the number of octets or
    /// value). This variant corresponds to the encoding containing too many
    /// octets.
    TooManyOctets,
    /// The variant corresponds to the case where the value of the integer
    /// being decoded exceeds a certain threshold.
    ValueTooLarge,
    /// When a buffer from which an integer was supposed to be encoded does
    /// not contain enough octets to complete the decoding.
    NotEnoughOctets,
    /// Only valid prefixes are [1, 8]
    InvalidPrefix,
}

/// Represents all errors that can be encountered while decoding an octet
/// string.
#[derive(PartialEq, Copy, Clone, Debug)]
pub enum StringDecodingError {
    NotEnoughOctets,
    HuffmanDecoderError(HuffmanDecoderError),
}

/// Represents all errors that can be encountered while performing the decoding
/// of an HPACK header set.
#[derive(PartialEq, Copy, Clone, Debug)]
pub enum DecoderError {
    HeaderIndexOutOfBounds,
    IntegerDecodingError(IntegerDecodingError),
    StringDecodingError(StringDecodingError),
    InvalidMaxDynamicSize,
}

#[derive(Debug)]
pub struct Decoder {
    pub index: Arc<RwLock<HeaderIndex>>,
}

impl Decoder {
    pub fn new() -> Decoder {
        Decoder {
            index: Arc::new(RwLock::new(HeaderIndex::new())),
        }
    }

    pub fn new_index(index: Arc<RwLock<HeaderIndex>>) -> Decoder {
        Decoder { index }
    }

    pub fn decode<B: Buf>(
        &mut self,
        buf: &mut B,
    ) -> WebResult<Vec<(HeaderName, HeaderValue)>> {
        let mut header_list = Vec::new();
        self.decode_with_cb(buf, |n, v| {
            header_list.push((n.into_owned(), v.into_owned()))
        })?;
        Ok(header_list)
    }

    pub fn decode_with_cb<F, B: Buf>(&mut self, buf: &mut B, mut cb: F) -> WebResult<()>
    where
        F: FnMut(Cow<HeaderName>, Cow<HeaderValue>),
    {
        while buf.has_remaining() {
            let initial_octet = buf.peek().unwrap();
            let buffer_leftover = buf.chunk();
            let consumed = match FieldRepresentation::new(initial_octet) {
                FieldRepresentation::Indexed => {
                    let consumed = (self.decode_indexed(initial_octet, |name, value| {
                        cb(Cow::Borrowed(name), Cow::Borrowed(value));
                    }))?;
                    consumed
                }
                FieldRepresentation::LiteralWithIncrementalIndexing => {
                    let ((name, value), consumed) = {
                        let ((name, value), consumed) =
                            self.decode_literal(buffer_leftover, true)?;
                        cb(Cow::Borrowed(&name), Cow::Borrowed(&value));

                        // Since we are to add the decoded header to the header table, we need to
                        // convert them into owned buffers that the decoder can keep internally.
                        let name = name.clone();
                        let value = value.clone();
                        ((name, value), consumed)
                    };
                    // // This cannot be done in the same scope as the `decode_literal` call, since
                    // // Rust cannot figure out that the `into_owned` calls effectively drop the
                    // // borrow on `self` that the `decode_literal` return value had. Since adding
                    // // a header to the table requires a `&mut self`, it fails to compile.
                    // // Manually separating it out here works around it...
                    self.index.write().unwrap().add_header(name, value);
                    consumed
                }
                FieldRepresentation::LiteralWithoutIndexing => {
                    let ((name, value), consumed) = (self.decode_literal(buffer_leftover, false))?;
                    cb(Cow::Owned(name), Cow::Owned(value));

                    consumed
                }
                FieldRepresentation::LiteralNeverIndexed => {
                    // // Same as the previous one, except if we were also a proxy
                    // // we would need to make sure not to change the
                    // // representation received here. We don't care about this
                    // // for now.
                    let ((name, value), consumed) = (self.decode_literal(buffer_leftover, false))?;
                    cb(Cow::Owned(name), Cow::Owned(value));

                    consumed
                }
                FieldRepresentation::SizeUpdate => {
                    // Handle the dynamic table size update...
                    // self.update_max_dynamic_size(buffer_leftover)
                    0
                }
            };

            buf.advance(consumed);
        }
        Ok(())
    }

    /// Decodes an integer encoded with a given prefix size (in bits).
    /// Assumes that the buffer `buf` contains the integer to be decoded,
    /// with the first byte representing the octet that contains the
    /// prefix.
    ///
    /// Returns a tuple representing the decoded integer and the number
    /// of bytes from the buffer that were used.
    fn decode_integer(buf: &[u8], prefix_size: u8) -> WebResult<(usize, usize)> {
        if prefix_size < 1 || prefix_size > 8 {
            return Err(Http2Error::into(DecoderError::IntegerDecodingError(
                IntegerDecodingError::InvalidPrefix,
            )));
        }
        if buf.len() < 1 {
            return Err(Http2Error::into(DecoderError::IntegerDecodingError(
                IntegerDecodingError::NotEnoughOctets,
            )));
        }

        // Make sure there's no overflow in the shift operation
        let Wrapping(mask) = if prefix_size == 8 {
            Wrapping(0xFF)
        } else {
            Wrapping(1u8 << prefix_size) - Wrapping(1)
        };
        let mut value = (buf[0] & mask) as usize;
        if value < (mask as usize) {
            // Value fits in the prefix bits.
            return Ok((value, 1));
        }

        let mut total = 1;
        let mut m = 0;
        let octet_limit = 5;

        for &b in buf[1..].iter() {
            total += 1;
            value += ((b & 127) as usize) * (1 << m);
            m += 7;

            if b & 128 != 128 {
                // Most significant bit is not set => no more continuation bytes
                return Ok((value, total));
            }

            if total == octet_limit {
                // The spec tells us that we MUST treat situations where the
                // encoded representation is too long (in octets) as an error.
                return Err(Http2Error::into(DecoderError::IntegerDecodingError(
                    IntegerDecodingError::TooManyOctets,
                )));
            }
        }

        // If we have reached here, it means the buffer has been exhausted without
        // hitting the termination condition.
        Err(Http2Error::into(DecoderError::IntegerDecodingError(
            IntegerDecodingError::NotEnoughOctets,
        )))
    }

    fn decode_string<'a>(buf: &'a [u8]) -> WebResult<(Cow<'a, [u8]>, usize)> {
        let (len, consumed) = Self::decode_integer(buf, 7)?;
        // debug!("decode_string: Consumed = {}, len = {}", consumed, len);
        if consumed + len > buf.len() {
            return Err(Http2Error::into(DecoderError::StringDecodingError(
                StringDecodingError::NotEnoughOctets,
            )));
        }
        let raw_string = &buf[consumed..consumed + len];
        if buf[0] & 128 == 128 {
            // debug!("decode_string: Using the Huffman code");
            // Huffman coding used: pass the raw octets to the Huffman decoder
            // and return its result.
            let mut decoder = HuffmanDecoder::new();
            let decoded = match decoder.decode(raw_string) {
                Err(e) => {
                    return Err(e);
                }
                Ok(res) => res,
            };
            Ok((Cow::Owned(decoded), consumed + len))
        } else {
            // The octets were transmitted raw
            // debug!("decode_string: Raw octet string received");
            Ok((Cow::Borrowed(raw_string), consumed + len))
        }
    }

    fn decode_literal(
        &self,
        buf: &[u8],
        index: bool,
    ) -> WebResult<((HeaderName, HeaderValue), usize)> {
        let prefix = if index { 6 } else { 4 };
        let (table_index, mut consumed) = Self::decode_integer(buf, prefix)?;

        // First read the name appropriately
        let name = if table_index == 0 {
            // Read name string as literal
            let (name, name_len) = Self::decode_string(&buf[consumed..])?;
            consumed += name_len;
            HeaderName::from_bytes(&name).unwrap()
        } else {
            // Read name indexed from the table
            // let mut name;
            let mut name = HeaderName::Stand("");
            self.get_from_table(table_index, |n, _| {
                name = n.clone();
            })?;
            name
            // let (name, _) = self.get_from_table(table_index)?;
            // name.into_owned()
        };

        // Now read the value as a literal...
        let (value, value_len) = Self::decode_string(&buf[consumed..])?;
        consumed += value_len;

        Ok(((name, HeaderValue::from_bytes(&value)), consumed))
    }

    fn decode_indexed<F>(&self, index: u8, call: F) -> WebResult<usize>
    where
        F: FnOnce(&HeaderName, &HeaderValue),
    {
        let index = index & 0x7f;
        let header = self.index.read().unwrap();
        let (name, value) = header
            .get_from_index(index as usize)
            .ok_or(Http2Error::into(DecoderError::HeaderIndexOutOfBounds))?;
        call(name, value);
        Ok(1)
    }

    fn get_from_table<F>(&self, index: usize, call: F) -> WebResult<()>
    where
        F: FnOnce(&HeaderName, &HeaderValue),
    {
        let header = self.index.read().unwrap();
        let (name, value) = header
            .get_from_index(index as usize)
            .ok_or(Http2Error::into(DecoderError::HeaderIndexOutOfBounds))?;
        call(name, value);
        Ok(())
    }
}