1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
use std::borrow::Cow;
use std::num::Wrapping;
use std::sync::{Arc, RwLock};
use crate::{
Buf, HeaderName, HeaderValue, Http2Error, WebResult,
};
use super::huffman::{HuffmanDecoder, HuffmanDecoderError};
use super::HeaderIndex;
enum FieldRepresentation {
Indexed,
LiteralWithIncrementalIndexing,
SizeUpdate,
LiteralNeverIndexed,
LiteralWithoutIndexing,
}
impl FieldRepresentation {
fn new(octet: u8) -> FieldRepresentation {
if octet & 128 == 128 {
// High-order bit set
FieldRepresentation::Indexed
} else if octet & 64 == 64 {
// Bit pattern `01`
FieldRepresentation::LiteralWithIncrementalIndexing
} else if octet & 32 == 32 {
// Bit pattern `001`
FieldRepresentation::SizeUpdate
} else if octet & 16 == 16 {
// Bit pattern `0001`
FieldRepresentation::LiteralNeverIndexed
} else {
// None of the top 4 bits is set => bit pattern `0000xxxx`
FieldRepresentation::LiteralWithoutIndexing
}
}
}
/// Represents all errors that can be encountered while decoding an
/// integer.
#[derive(PartialEq, Copy, Clone, Debug)]
pub enum IntegerDecodingError {
/// 5.1. specifies that "excessively large integer decodings" MUST be
/// considered an error (whether the size is the number of octets or
/// value). This variant corresponds to the encoding containing too many
/// octets.
TooManyOctets,
/// The variant corresponds to the case where the value of the integer
/// being decoded exceeds a certain threshold.
ValueTooLarge,
/// When a buffer from which an integer was supposed to be encoded does
/// not contain enough octets to complete the decoding.
NotEnoughOctets,
/// Only valid prefixes are [1, 8]
InvalidPrefix,
}
/// Represents all errors that can be encountered while decoding an octet
/// string.
#[derive(PartialEq, Copy, Clone, Debug)]
pub enum StringDecodingError {
NotEnoughOctets,
HuffmanDecoderError(HuffmanDecoderError),
}
/// Represents all errors that can be encountered while performing the decoding
/// of an HPACK header set.
#[derive(PartialEq, Copy, Clone, Debug)]
pub enum DecoderError {
HeaderIndexOutOfBounds,
IntegerDecodingError(IntegerDecodingError),
StringDecodingError(StringDecodingError),
InvalidMaxDynamicSize,
}
#[derive(Debug)]
pub struct Decoder {
pub index: Arc<RwLock<HeaderIndex>>,
}
impl Decoder {
pub fn new() -> Decoder {
Decoder {
index: Arc::new(RwLock::new(HeaderIndex::new())),
}
}
pub fn new_index(index: Arc<RwLock<HeaderIndex>>) -> Decoder {
Decoder { index }
}
pub fn decode<B: Buf>(
&mut self,
buf: &mut B,
) -> WebResult<Vec<(HeaderName, HeaderValue)>> {
let mut header_list = Vec::new();
self.decode_with_cb(buf, |n, v| {
header_list.push((n.into_owned(), v.into_owned()))
})?;
Ok(header_list)
}
pub fn decode_with_cb<F, B: Buf>(&mut self, buf: &mut B, mut cb: F) -> WebResult<()>
where
F: FnMut(Cow<HeaderName>, Cow<HeaderValue>),
{
while buf.has_remaining() {
let initial_octet = buf.peek().unwrap();
let buffer_leftover = buf.chunk();
let consumed = match FieldRepresentation::new(initial_octet) {
FieldRepresentation::Indexed => {
let consumed = (self.decode_indexed(initial_octet, |name, value| {
cb(Cow::Borrowed(name), Cow::Borrowed(value));
}))?;
consumed
}
FieldRepresentation::LiteralWithIncrementalIndexing => {
let ((name, value), consumed) = {
let ((name, value), consumed) =
self.decode_literal(buffer_leftover, true)?;
cb(Cow::Borrowed(&name), Cow::Borrowed(&value));
// Since we are to add the decoded header to the header table, we need to
// convert them into owned buffers that the decoder can keep internally.
let name = name.clone();
let value = value.clone();
((name, value), consumed)
};
// // This cannot be done in the same scope as the `decode_literal` call, since
// // Rust cannot figure out that the `into_owned` calls effectively drop the
// // borrow on `self` that the `decode_literal` return value had. Since adding
// // a header to the table requires a `&mut self`, it fails to compile.
// // Manually separating it out here works around it...
self.index.write().unwrap().add_header(name, value);
consumed
}
FieldRepresentation::LiteralWithoutIndexing => {
let ((name, value), consumed) = (self.decode_literal(buffer_leftover, false))?;
cb(Cow::Owned(name), Cow::Owned(value));
consumed
}
FieldRepresentation::LiteralNeverIndexed => {
// // Same as the previous one, except if we were also a proxy
// // we would need to make sure not to change the
// // representation received here. We don't care about this
// // for now.
let ((name, value), consumed) = (self.decode_literal(buffer_leftover, false))?;
cb(Cow::Owned(name), Cow::Owned(value));
consumed
}
FieldRepresentation::SizeUpdate => {
// Handle the dynamic table size update...
// self.update_max_dynamic_size(buffer_leftover)
0
}
};
buf.advance(consumed);
}
Ok(())
}
/// Decodes an integer encoded with a given prefix size (in bits).
/// Assumes that the buffer `buf` contains the integer to be decoded,
/// with the first byte representing the octet that contains the
/// prefix.
///
/// Returns a tuple representing the decoded integer and the number
/// of bytes from the buffer that were used.
fn decode_integer(buf: &[u8], prefix_size: u8) -> WebResult<(usize, usize)> {
if prefix_size < 1 || prefix_size > 8 {
return Err(Http2Error::into(DecoderError::IntegerDecodingError(
IntegerDecodingError::InvalidPrefix,
)));
}
if buf.len() < 1 {
return Err(Http2Error::into(DecoderError::IntegerDecodingError(
IntegerDecodingError::NotEnoughOctets,
)));
}
// Make sure there's no overflow in the shift operation
let Wrapping(mask) = if prefix_size == 8 {
Wrapping(0xFF)
} else {
Wrapping(1u8 << prefix_size) - Wrapping(1)
};
let mut value = (buf[0] & mask) as usize;
if value < (mask as usize) {
// Value fits in the prefix bits.
return Ok((value, 1));
}
let mut total = 1;
let mut m = 0;
let octet_limit = 5;
for &b in buf[1..].iter() {
total += 1;
value += ((b & 127) as usize) * (1 << m);
m += 7;
if b & 128 != 128 {
// Most significant bit is not set => no more continuation bytes
return Ok((value, total));
}
if total == octet_limit {
// The spec tells us that we MUST treat situations where the
// encoded representation is too long (in octets) as an error.
return Err(Http2Error::into(DecoderError::IntegerDecodingError(
IntegerDecodingError::TooManyOctets,
)));
}
}
// If we have reached here, it means the buffer has been exhausted without
// hitting the termination condition.
Err(Http2Error::into(DecoderError::IntegerDecodingError(
IntegerDecodingError::NotEnoughOctets,
)))
}
fn decode_string<'a>(buf: &'a [u8]) -> WebResult<(Cow<'a, [u8]>, usize)> {
let (len, consumed) = Self::decode_integer(buf, 7)?;
// debug!("decode_string: Consumed = {}, len = {}", consumed, len);
if consumed + len > buf.len() {
return Err(Http2Error::into(DecoderError::StringDecodingError(
StringDecodingError::NotEnoughOctets,
)));
}
let raw_string = &buf[consumed..consumed + len];
if buf[0] & 128 == 128 {
// debug!("decode_string: Using the Huffman code");
// Huffman coding used: pass the raw octets to the Huffman decoder
// and return its result.
let mut decoder = HuffmanDecoder::new();
let decoded = match decoder.decode(raw_string) {
Err(e) => {
return Err(e);
}
Ok(res) => res,
};
Ok((Cow::Owned(decoded), consumed + len))
} else {
// The octets were transmitted raw
// debug!("decode_string: Raw octet string received");
Ok((Cow::Borrowed(raw_string), consumed + len))
}
}
fn decode_literal(
&self,
buf: &[u8],
index: bool,
) -> WebResult<((HeaderName, HeaderValue), usize)> {
let prefix = if index { 6 } else { 4 };
let (table_index, mut consumed) = Self::decode_integer(buf, prefix)?;
// First read the name appropriately
let name = if table_index == 0 {
// Read name string as literal
let (name, name_len) = Self::decode_string(&buf[consumed..])?;
consumed += name_len;
HeaderName::from_bytes(&name).unwrap()
} else {
// Read name indexed from the table
// let mut name;
let mut name = HeaderName::Stand("");
self.get_from_table(table_index, |n, _| {
name = n.clone();
})?;
name
// let (name, _) = self.get_from_table(table_index)?;
// name.into_owned()
};
// Now read the value as a literal...
let (value, value_len) = Self::decode_string(&buf[consumed..])?;
consumed += value_len;
Ok(((name, HeaderValue::from_bytes(&value)), consumed))
}
fn decode_indexed<F>(&self, index: u8, call: F) -> WebResult<usize>
where
F: FnOnce(&HeaderName, &HeaderValue),
{
let index = index & 0x7f;
let header = self.index.read().unwrap();
let (name, value) = header
.get_from_index(index as usize)
.ok_or(Http2Error::into(DecoderError::HeaderIndexOutOfBounds))?;
call(name, value);
Ok(1)
}
fn get_from_table<F>(&self, index: usize, call: F) -> WebResult<()>
where
F: FnOnce(&HeaderName, &HeaderValue),
{
let header = self.index.read().unwrap();
let (name, value) = header
.get_from_index(index as usize)
.ok_or(Http2Error::into(DecoderError::HeaderIndexOutOfBounds))?;
call(name, value);
Ok(())
}
}