1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
//! Use an [async closure][async] to produce items for a stream.
//!
//! Example:
//!
//! ```rust text
//! #![feature(async_await)]
//! use futures::StreamExt;
//! use futures::executor::block_on;
//! # use webdav_handler::async_stream;
//! use async_stream::AsyncStream;
//!
//! let mut strm = AsyncStream::<u8, std::io::Error>::new(async move |mut tx| {
//!     for i in 0u8..10 {
//!         tx.send(i).await;
//!     }
//!     Ok(())
//! });
//!
//! let fut = async {
//!     let mut count = 0;
//!     while let Some(item) = strm.next().await {
//!         println!("{:?}", item);
//!         count += 1;
//!     }
//!     assert!(count == 10);
//! };
//! block_on(fut);
//!
//! ```
//!
//! The stream will produce an `Item/Error` (for [0.1 streams][Stream01])
//! or a `Result<Item, Error>` (for [0.3 streams][Stream03]) where the `Item`
//! is an item sent with [tx.send(item)][send]. Any errors returned by
//! the async closure will be returned as an error value on
//! the stream.
//!
//! On success the async closure should return `Ok(())`.
//!
//! [async]: https://rust-lang.github.io/async-book/getting_started/async_await_primer.html
//! [Stream01]: https://docs.rs/futures/0.1/futures/stream/trait.Stream.html
//! [Stream03]: https://rust-lang-nursery.github.io/futures-api-docs/0.3.0-alpha.16/futures/stream/trait.Stream.html
//! [send]: async_stream/struct.Sender.html#method.send
//!
use std::cell::Cell;
use std::marker::PhantomData;
use std::pin::Pin;
use std::sync::Arc;

use futures01::Async as Async01;
use futures01::Future as Future01;
use futures01::Stream as Stream01;

use futures::compat::Compat as Compat03As01;
use futures::task::Poll as Poll03;
use futures::task::Context;
use futures::Future as Future03;
use futures::Stream as Stream03;

/// Future returned by the Sender.send() method.
///
/// Completes when the item is sent.
#[must_use]
pub struct SenderFuture<E = ()> {
    state:   bool,
    phantom: PhantomData<E>,
}

impl<E> SenderFuture<E> {
    fn new() -> SenderFuture<E> {
        SenderFuture {
            state:   false,
            phantom: PhantomData::<E>,
        }
    }
}

impl Future03 for SenderFuture {
    type Output = ();

    fn poll(mut self: Pin<&mut Self>, _cx: &mut Context<'_>) -> Poll03<Self::Output> {
        if self.state {
            Poll03::Ready(())
        } else {
            self.state = true;
            Poll03::Pending
        }
    }
}

// Only internally used by one AsyncStream and never shared
// in any other way, so we don't have to use Arc<Mutex<..>>.
/// Type of the sender passed as first argument into the async closure.
pub struct Sender<I, E>(Arc<Cell<Option<I>>>, PhantomData<E>);
unsafe impl<I, E> Sync for Sender<I, E> {}
unsafe impl<I, E> Send for Sender<I, E> {}

impl<I, E> Sender<I, E> {
    fn new(item_opt: Option<I>) -> Sender<I, E> {
        Sender(Arc::new(Cell::new(item_opt)), PhantomData::<E>)
    }

    // note that this is NOT impl Clone for Sender, it's private.
    fn clone(&self) -> Sender<I, E> {
        Sender(self.0.clone(), PhantomData::<E>)
    }

    /// Send one item to the stream.
    pub fn send<T>(&mut self, item: T) -> SenderFuture
    where T: Into<I> {
        self.0.set(Some(item.into()));
        SenderFuture::new()
    }
}

/// An abstraction around a future, where the
/// future can internally loop and yield items.
///
/// AsyncStream::new() takes a [futures 0.3 Future][Future03] ([async closure][async], usually)
/// and AsyncStream then implements both a [futures 0.1 Stream][Stream01] and a
/// [futures 0.3 Stream][Stream03].
///
/// [async]: https://rust-lang.github.io/async-book/getting_started/async_await_primer.html
/// [Future03]: https://doc.rust-lang.org/nightly/std/future/trait.Future.html
/// [Stream01]: https://docs.rs/futures/0.1/futures/stream/trait.Stream.html
/// [Stream03]: https://rust-lang-nursery.github.io/futures-api-docs/0.3.0-alpha.13/futures/stream/trait.Stream.html
#[must_use]
pub struct AsyncStream<Item, Error> {
    item: Sender<Item, Error>,
    fut:  Option<Pin<Box<Future03<Output = Result<(), Error>> + 'static + Send>>>,
}

impl<Item, Error: 'static + Send> AsyncStream<Item, Error> {
    /// Create a new stream from a closure returning a Future 0.3,
    /// or an "async closure" (which is the same).
    ///
    /// The closure is passed one argument, the sender, which has a
    /// method "send" that can be called to send a item to the stream.
    ///
    /// The AsyncStream instance that is returned impl's both
    /// a futures 0.1 Stream and a futures 0.3 Stream.
    pub fn new<F, R>(f: F) -> Self
    where
        F: FnOnce(Sender<Item, Error>) -> R,
        R: Future03<Output = Result<(), Error>> + Send + 'static,
        Item: 'static,
    {
        let sender = Sender::new(None);
        AsyncStream::<Item, Error> {
            item: sender.clone(),
            fut:  Some(Box::pin(f(sender))),
        }
    }
}

/// Stream implementation for Futures 0.1.
impl<I, E> Stream01 for AsyncStream<I, E> {
    type Item = I;
    type Error = E;

    fn poll(&mut self) -> Result<Async01<Option<Self::Item>>, Self::Error> {
        // We use a futures::compat::Compat wrapper to be able to call
        // the futures 0.3 Future in a futures 0.1 context. Because
        // the Compat wrapper wants to to take ownership, the future
        // is stored in an Option which we can temporarily move it out
        // of, and then move it back in.
        let mut fut = Compat03As01::new(self.fut.take().unwrap());
        let pollres = fut.poll();
        self.fut.replace(fut.into_inner());
        match pollres {
            Ok(Async01::Ready(_)) => Ok(Async01::Ready(None)),
            Ok(Async01::NotReady) => {
                let mut item = self.item.0.replace(None);
                if item.is_none() {
                    Ok(Async01::NotReady)
                } else {
                    Ok(Async01::Ready(item.take()))
                }
            },
            Err(e) => Err(e),
        }
    }
}

/// Stream implementation for Futures 0.3.
impl<I, E: Unpin> Stream03 for AsyncStream<I, E> {
    type Item = Result<I, E>;

    fn poll_next(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll03<Option<Result<I, E>>> {
        let pollres = {
            let fut = self.fut.as_mut().unwrap();
            fut.as_mut().poll(cx)
        };
        match pollres {
            // If the future returned Poll::Ready, that signals the end of the stream.
            Poll03::Ready(Ok(_)) => Poll03::Ready(None),
            Poll03::Ready(Err(e)) => Poll03::Ready(Some(Err(e))),
            Poll03::Pending => {
                // Pending means that some sub-future returned pending. That sub-future
                // _might_ have been the SenderFuture returned by Sender.send, so
                // check if there is an item available in self.item.
                let mut item = self.item.0.replace(None);
                if item.is_none() {
                    Poll03::Pending
                } else {
                    Poll03::Ready(Some(Ok(item.take().unwrap())))
                }
            },
        }
    }
}

#[cfg(feature = "hyper")]
mod hyper {
    use bytes;
    use futures01::Poll as Poll01;
    use hyper;

    /// hyper::body::Payload trait implementation.
    ///
    /// This implementation allows you to use anything that implements
    /// IntoBuf as a Payload item.
    impl<Item, Error> hyper::body::Payload for AsyncStream<Item, Error>
    where
        Item: bytes::buf::IntoBuf + Send + Sync + 'static,
        Item::Buf: Send,
        Error: std::error::Error + Send + Sync + 'static,
    {
        type Data = Item::Buf;
        type Error = Error;

        fn poll_data(&mut self) -> Poll01<Option<Self::Data>, Self::Error> {
            match self.poll() {
                Ok(Async01::Ready(Some(item))) => Ok(Async01::Ready(Some(item.into_buf()))),
                Ok(Async01::Ready(None)) => Ok(Async01::Ready(None)),
                Ok(Async01::NotReady) => Ok(Async01::NotReady),
                Err(e) => Err(e),
            }
        }
    }
}

#[cfg(feature = "hyper")]
use hyper::*;