1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
//! This module contains utility functions for interacting with ERC20 tokens and contracts
use crate::jsonrpc::error::Web3Error;
use crate::{client::Web3, types::SendTxOption};
use clarity::{abi::encode_call, PrivateKey as EthPrivateKey};
use clarity::{Address, Uint256};
use num::Bounded;
use std::time::Duration;
use tokio::time::timeout as future_timeout;
pub static ERC20_GAS_LIMIT: u128 = 100_000;
impl Web3 {
    /// Checks if any given contract is approved to spend money from any given erc20 contract
    /// using any given address. What exactly this does can be hard to grok, essentially when
    /// you want contract A to be able to spend your erc20 contract funds you need to call 'approve'
    /// on the ERC20 contract with your own address and A's address so that in the future when you call
    /// contract A it can manipulate your ERC20 balances. This function checks if that has already been done.
    pub async fn check_erc20_approved(
        &self,
        erc20: Address,
        own_address: Address,
        target_contract: Address,
    ) -> Result<bool, Web3Error> {
        let payload = encode_call(
            "allowance(address,address)",
            &[own_address.into(), target_contract.into()],
        )?;
        let allowance = self
            .simulate_transaction(erc20, 0u8.into(), payload, own_address, None)
            .await?;
        let allowance = Uint256::from_bytes_be(match allowance.get(0..32) {
            Some(val) => val,
            None => {
                return Err(Web3Error::ContractCallError(
                    "erc20 allowance(address, address) failed".to_string(),
                ))
            }
        });
        // Check if the allowance remaining is greater than half of a Uint256- it's as good
        // a test as any.
        Ok(allowance > (Uint256::max_value() / 2u32.into()))
    }
    /// Approves a given contract to spend erc20 funds from the given address from the erc20 contract provided.
    /// What exactly this does can be hard to grok, essentially when you want contract A to be able to spend
    /// your erc20 contract funds you need to call 'approve' on the ERC20 contract with your own address and A's
    /// address so that in the future when you call contract A it can manipulate your ERC20 balances.
    /// This function performs that action and waits for it to complete for up to Timeout duration
    /// `options` takes a vector of `SendTxOption` for configuration
    /// unlike the lower level eth_send_transaction() this call builds
    /// the transaction abstracting away details like chain id, gas,
    /// and network id.
    pub async fn approve_erc20_transfers(
        &self,
        erc20: Address,
        eth_private_key: EthPrivateKey,
        target_contract: Address,
        timeout: Option<Duration>,
        options: Vec<SendTxOption>,
    ) -> Result<Uint256, Web3Error> {
        let own_address = eth_private_key.to_address();
        let payload = encode_call(
            "approve(address,uint256)",
            &[target_contract.into(), Uint256::max_value().into()],
        )?;
        let txid = self
            .send_transaction(
                erc20,
                payload,
                0u32.into(),
                own_address,
                eth_private_key,
                options,
            )
            .await?;
        // wait for transaction to enter the chain if the user has requested it
        if let Some(timeout) = timeout {
            future_timeout(
                timeout,
                self.wait_for_transaction(txid.clone(), timeout, None),
            )
            .await??;
        }
        Ok(txid)
    }
    /// Send an erc20 token to the target address, optionally wait until it enters the blockchain
    /// `options` takes a vector of `SendTxOption` for configuration
    /// unlike the lower level eth_send_transaction() this call builds
    /// the transaction abstracting away details like chain id, gas,
    /// and network id.
    /// WARNING: you must specify networkID in situations where a single
    /// node is operating no more than one chain. Otherwise it is possible
    /// for the full node to trick the client into signing transactions
    /// on unintended chains potentially to their benefit
    pub async fn erc20_send(
        &self,
        amount: Uint256,
        recipient: Address,
        erc20: Address,
        sender_private_key: EthPrivateKey,
        wait_timeout: Option<Duration>,
        options: Vec<SendTxOption>,
    ) -> Result<Uint256, Web3Error> {
        let sender_address = sender_private_key.to_address();
        // if the user sets a gas limit we should honor it, if they don't we
        // should add the default
        let mut has_gas_limit = false;
        let mut options = options;
        for option in options.iter() {
            if let SendTxOption::GasLimit(_) = option {
                has_gas_limit = true;
                break;
            }
        }
        if !has_gas_limit {
            options.push(SendTxOption::GasLimit(ERC20_GAS_LIMIT.into()));
        }
        let tx_hash = self
            .send_transaction(
                erc20,
                encode_call(
                    "transfer(address,uint256)",
                    &[recipient.into(), amount.clone().into()],
                )?,
                0u32.into(),
                sender_address,
                sender_private_key,
                options,
            )
            .await?;
        if let Some(timeout) = wait_timeout {
            future_timeout(
                timeout,
                self.wait_for_transaction(tx_hash.clone(), timeout, None),
            )
            .await??;
        }
        Ok(tx_hash)
    }
    /// Queries the `target_address`'s current balance of `erc20`
    ///
    /// See get_erc20_balance_at_height and get_erc20_balance_as_address if you need more
    /// flexibility including historical balances and balances of targets which hold very little ETH
    pub async fn get_erc20_balance(
        &self,
        erc20: Address,
        target_address: Address,
    ) -> Result<Uint256, Web3Error> {
        self.get_erc20_balance_at_height(erc20, target_address, None)
            .await
    }
    /// Queries the `target_address`'s balance of `erc20` at an optional ethereum `height`
    ///
    /// The latest balance from the current block will be queried if `height` is None
    pub async fn get_erc20_balance_at_height(
        &self,
        erc20: Address,
        target_address: Address,
        height: Option<Uint256>,
    ) -> Result<Uint256, Web3Error> {
        self.get_erc20_balance_at_height_as_address(None, erc20, target_address, height)
            .await
    }
    /// Queries the `target_address`'s balance of `erc20` using `requester_address` as the
    /// transaction's `from` field
    ///
    /// The `target_address` will be used as `from` if `requester_address` is None
    ///
    /// This is particularly useful if the ERC20 holder has too little ETH for gas fees, e.g. Gravity.sol
    pub async fn get_erc20_balance_as_address(
        &self,
        requester_address: Option<Address>,
        erc20: Address,
        target_address: Address,
    ) -> Result<Uint256, Web3Error> {
        self.get_erc20_balance_at_height_as_address(requester_address, erc20, target_address, None)
            .await
    }
    /// Queries the `target_address`'s balance of `erc20` at an optional ethereum `height`, using
    /// `requester_address` as the transaction's `from` field
    ///
    /// The `target_address` will be used as `from` if `requester_address` is None
    /// The latest balance from the current block will be queried if `height` is None
    ///
    /// This is particularly useful if the ERC20 holder had too little ETH for gas fees, e.g. Gravity.sol
    pub async fn get_erc20_balance_at_height_as_address(
        &self,
        requester_address: Option<Address>,
        erc20: Address,
        target_address: Address,
        height: Option<Uint256>,
    ) -> Result<Uint256, Web3Error> {
        let requester_address = requester_address.unwrap_or(target_address);
        let payload = encode_call("balanceOf(address)", &[target_address.into()])?;
        let balance = self
            .simulate_transaction(erc20, 0u8.into(), payload, requester_address, height)
            .await?;
        Ok(Uint256::from_bytes_be(match balance.get(0..32) {
            Some(val) => val,
            None => {
                return Err(Web3Error::ContractCallError(
                    "Bad response from ERC20 balance".to_string(),
                ))
            }
        }))
    }
    pub async fn get_erc20_name(
        &self,
        erc20: Address,
        caller_address: Address,
    ) -> Result<String, Web3Error> {
        let payload = encode_call("name()", &[])?;
        let name = self
            .simulate_transaction(erc20, 0u8.into(), payload, caller_address, None)
            .await?;
        match String::from_utf8(name) {
            Ok(mut val) => {
                // the value returned is actually in Ethereum ABI encoded format
                // stripping control characters is an easy way to strip off the encoding
                val.retain(|v| !v.is_control());
                let val = val.trim().to_string();
                Ok(val)
            }
            Err(_e) => Err(Web3Error::ContractCallError(
                "name is not valid utf8".to_string(),
            )),
        }
    }
    pub async fn get_erc20_symbol(
        &self,
        erc20: Address,
        caller_address: Address,
    ) -> Result<String, Web3Error> {
        let payload = encode_call("symbol()", &[])?;
        let symbol = self
            .simulate_transaction(erc20, 0u8.into(), payload, caller_address, None)
            .await?;
        match String::from_utf8(symbol) {
            Ok(mut val) => {
                // the value returned is actually in Ethereum ABI encoded format
                // stripping control characters is an easy way to strip off the encoding
                val.retain(|v| !v.is_control());
                let val = val.trim().to_string();
                Ok(val)
            }
            Err(_e) => Err(Web3Error::ContractCallError(
                "name is not valid utf8".to_string(),
            )),
        }
    }
    pub async fn get_erc20_decimals(
        &self,
        erc20: Address,
        caller_address: Address,
    ) -> Result<Uint256, Web3Error> {
        let payload = encode_call("decimals()", &[])?;
        let decimals = self
            .simulate_transaction(erc20, 0u8.into(), payload, caller_address, None)
            .await?;
        Ok(Uint256::from_bytes_be(match decimals.get(0..32) {
            Some(val) => val,
            None => {
                return Err(Web3Error::ContractCallError(
                    "Bad response from ERC20 decimals".to_string(),
                ))
            }
        }))
    }
    pub async fn get_erc20_supply(
        &self,
        erc20: Address,
        caller_address: Address,
    ) -> Result<Uint256, Web3Error> {
        let payload = encode_call("totalSupply()", &[])?;
        let decimals = self
            .simulate_transaction(erc20, 0u8.into(), payload, caller_address, None)
            .await?;
        Ok(Uint256::from_bytes_be(match decimals.get(0..32) {
            Some(val) => val,
            None => {
                return Err(Web3Error::ContractCallError(
                    "Bad response from ERC20 Total Supply".to_string(),
                ))
            }
        }))
    }
}
#[test]
fn test_erc20_metadata() {
    use actix::System;
    let runner = System::new();
    let web3 = Web3::new("https://eth.althea.net", Duration::from_secs(30));
    let dai_address = "0x6b175474e89094c44da98b954eedeac495271d0f"
        .parse()
        .unwrap();
    // random coinbase address hoping it always has eth to 'pay' for this call
    let caller_address = "0x503828976D22510aad0201ac7EC88293211D23Da"
        .parse()
        .unwrap();
    runner.block_on(async move {
        assert_eq!(
            web3.get_erc20_decimals(dai_address, caller_address)
                .await
                .unwrap(),
            18u8.into()
        );
        let num: Uint256 = 1000u32.into();
        assert!(
            web3.get_erc20_supply(dai_address, caller_address)
                .await
                .unwrap()
                > num
        );
        assert_eq!(
            web3.get_erc20_symbol(dai_address, caller_address)
                .await
                .unwrap(),
            "DAI"
        );
        assert_eq!(
            web3.get_erc20_name(dai_address, caller_address)
                .await
                .unwrap(),
            "Dai Stablecoin"
        );
    })
}