web-rpc 0.0.3

Bi-directional RPC for the Web
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
//! The `web-rpc` create is a library for performing RPCs (remote proceedure calls) between
//! browsing contexts, web workers, and channels. It allows you to define an RPC using a trait
//! similar to Google's [tarpc](https://github.com/google/tarpc) and will transparently
//! handle the serialization and deserialization of the arguments. Moreover, it can post
//! anything that implements [`AsRef<JsValue>`](https://docs.rs/wasm-bindgen/latest/wasm_bindgen/struct.JsValue.html) and also supports transferring ownership.
//!
//! ## Quick start
//! To get started define a trait for your RPC service as follows. Annnotate this trait with the
//! `service` procedural macro that is exported by this crate:
//! ```rust
//! #[web_rpc::service]
//! pub trait Calculator {
//!     fn add(left: u32, right: u32) -> u32;
//! }
//! ```
//! This macro will generate the structs `CalculatorClient`, `CalculatorService`, and a new trait
//! `Calculator` that you can use to implement the service as follows:
//! ```rust
//! struct CalculatorServiceImpl;
//!
//! impl Calculator for CalculatorServiceImpl {
//!     fn add(&self, left: u32, right: u32) -> u32 {
//!         left + right
//!     }
//! }
//! ```
//! Note that the version of the trait emitted from the macro adds a `&self` receiver. Although not
//! used in this example, this is useful when we want the RPC to modify some state (via interior
//! mutability). Now that we have defined our RPC, let's create a client and server for it! In this
//! example, we will use [`MessageChannel`](https://docs.rs/web-sys/latest/web_sys/struct.MessageChannel.html)
//! since it is easy to construct and test, however, a more common case would be to construct the
//! channel from a [`Worker`](https://docs.rs/web-sys/latest/web_sys/struct.Worker.html) or a
//! [`DedicatedWorkerGlobalScope`](https://docs.rs/web-sys/latest/web_sys/struct.DedicatedWorkerGlobalScope.html).
//! Let's start by defining the server:
//! ```rust
//! // create a MessageChannel
//! let channel = web_sys::MessageChannel::new();
//! // Create two interfaces from the ports
//! let (server_interface, client_interface) = futures_util::future::join(
//!     web_rpc::Interface::new(channel.port1()),
//!     web_rpc::Interface::new(channel.port2()),
//! ).await;
//! // create a server with the first interface
//! let server = web_rpc::Builder::new(server_interface)
//!     .with_service::<CalculatorService<_>>(CalculatorServiceImpl)
//!     .build();
//! // spawn the server
//! wasm_bindgen_futures::spawn_local(server);
//! ```
//! [`Interface::new`] is async since there is no way to synchronously check whether a channel or
//! a worker is ready to receive messages. To workaround this, temporary listeners are attached to
//! determine when a channel is ready for communication. The server returned by the build method is
//! a future that can be added to the browser's event loop using
//! [`wasm_bindgen_futures::spawn_local`], however, this will run the server indefinitely. For more
//! control, consider wrapping the server with [`futures_util::FutureExt::remote_handle`] before
//! spawning it, which will shutdown the server once the handle has been dropped. Moving onto the
//! client:
//! ```rust
//! // create a client using the second interface
//! let client = web_rpc::Builder::new(client_interface)
//!     .with_client::<CalculatorClient>()
//!     .build();
//! /* call `add` */
//! assert_eq!(client.add(41, 1).await, 42);
//! ```
//! That is it! Underneath the hood, the client will serialize its arguments using bincode and
//! transfer the bytes to server. The server will deserialize those arguments and run
//! `<CalculatorServiceImpl as Calculator>::add` before returning the result to the client. Note
//! that we are only awaiting the response of the call to `add`, the request itself is sent
//! synchronously before we await anything.
//!
//! ## Advanced examples
//! Now that we have the basic idea of how define an RPC trait and set up a server and client, let's
//! dive into some of the more advanced features of this library!
//!
//! ### Synchronous and asynchronous RPC methods
//! Server methods can be asynchronous! That is, you can define the following RPC trait and service
//! implementation:
//! ```rust
//! #[web_rpc::service]
//! pub trait Sleep {
//!     async fn sleep(interval: Duration);
//! }
//!
//! struct SleepServiceImpl;
//! impl Sleep for SleepServiceImpl {
//!     async fn sleep(&self, interval: Duration) -> bool {
//!         gloo_timers::future::sleep(interval).await;
//!         // sleep completed (was not cancelled)
//!         true
//!     }
//! }
//! ```
//! Asynchronous RPC methods are run concurrently on the server and also support cancellation if the
//! future on the client side is dropped. However, such a future is only returned from a client
//! method if the RPC returns a value. Otherwise the RPC is considered a notification.
//!
//! ### Notifications
//! Notifications are RPCs that do not return anything. On the client side, the method is completely
//! synchronous and also returns nothing. This setup is useful if you need to communicate with
//! another part of your application but cannot yield to the event loop.
//!
//! The implication of this, however, is that even if the server method is asynchronous, we are
//! unable to cancel it from the client side since we do not have a future that can be dropped.
//!
//! ### Posting and transferring Javascript types
//! In the example above, we discussed how the client serializes its arguments before sending them
//! to the server. This approach is convenient, but how do send web types such as a
//! `WebAssembly.Module` or an `OffscreenCanvas` that have no serializable representation? Well, we
//! are in luck since this happens to be one of the key features of this crate. Consider the
//! following RPC trait:
//! ```rust
//! #[web_rpc::service]
//! pub trait Concat {
//!     #[post(left, right, return)]
//!     fn concat_with_space(
//!         left: js_sys::JsString,
//!         right: js_sys::JsString
//!     ) -> js_sys::JsString;
//! }
//! ```
//! All we have done is added the `post` attribute to the method and listed the arguments that we
//! would like to be posted to the other side. Under the hood, the implementation of the client will
//! then skip these arguments during serialization and just append them after the serialized message
//! to the array that will be posted. As shown above, this also works for the return type by just
//! specifying `return` in the post attribute. For web types that need to be transferred, we simply
//! wrap them in `transfer` as follows:
//! ```rust
//! #[web_rpc::service]
//! pub trait GameEngine {
//!     #[post(transfer(canvas))]
//!     fn send_canvas(
//!         canvas: js_sys::OffscreenCanvas,
//!     );
//! }
//! ```
//! ### Bi-directional RPC
//! In the original example, we created a server on the first port of the message channel and a
//! client on the second port. However, it is possible to define both a client and a server on each
//! side, enabling bi-directional RPC. This is particularly useful if we want to send and receive
//! messages from a worker without sending it a seperate channel for the bi-directional
//! communication. Our original example can be extended as follows:
//! ```rust
//! /* create channel */
//! let channel = web_sys::MessageChannel::new().unwrap();
//! let (interface1, interface2) = futures_util::future::join(
//!     web_rpc::Interface::new(channel.port1()),
//!     web_rpc::Interface::new(channel.port2()),
//! ).await;
//! /* create server1 and client1 */
//! let (client1, server1) = web_rpc::Builder::new(interface1)
//!     .with_service::<CalculatorService<_>>(CalculatorServiceImpl)
//!     .with_client::<CalculatorClient>()
//!     .build();
//! /* create server2 and client2 */
//! let (client2, server2) = web_rpc::Builder::new(interface2)
//!     .with_service::<CalculatorService<_>>(CalculatorServiceImpl)
//!     .with_client::<CalculatorClient>()
//!     .build();
//! ```

use std::{
    cell::RefCell,
    marker::PhantomData,
    pin::Pin,
    rc::Rc,
    task::{Context, Poll},
};

use futures_channel::mpsc;
use futures_core::{future::LocalBoxFuture, Future};
use futures_util::{FutureExt, StreamExt};
use gloo_events::EventListener;
use js_sys::{ArrayBuffer, Uint8Array};
use serde::{de::DeserializeOwned, Deserialize, Serialize};
use wasm_bindgen::JsCast;

#[doc(hidden)]
pub use bincode;
#[doc(hidden)]
pub use futures_channel;
#[doc(hidden)]
pub use futures_core;
#[doc(hidden)]
pub use futures_util;
#[doc(hidden)]
pub use gloo_events;
#[doc(hidden)]
pub use js_sys;
#[doc(hidden)]
pub use pin_utils;
#[doc(hidden)]
pub use serde;
#[doc(hidden)]
pub use wasm_bindgen;

pub use web_rpc_macro::service;

pub mod client;
pub mod interface;
pub mod port;
#[doc(hidden)]
pub mod service;

pub use interface::Interface;

#[doc(hidden)]
#[derive(Serialize, Deserialize)]
pub enum Message<Request, Response> {
    Request(usize, Request),
    Abort(usize),
    Response(usize, Response),
}

/// This struct allows one to configure the RPC interface prior to creating it.
/// To get an instance of this struct, call [`Builder<C, S>::new`] with
/// an [`Interface`].
pub struct Builder<C, S> {
    client: PhantomData<C>,
    service: S,
    interface: Interface,
}

impl Builder<(), ()> {
    /// Create a new builder from an [`Interface`]
    pub fn new(interface: Interface) -> Self {
        Self {
            interface,
            client: PhantomData::<()>,
            service: (),
        }
    }
}

impl<C> Builder<C, ()> {
    /// Configure the RPC interface with a service that implements methods
    /// that can be called from the other side of the channel. To use this method,
    /// you need to specify the type `S` which is the service type generated by the
    /// attribute macro [`macro@service`]. The implementation parameter is then an
    /// instance of something that implements the trait to which to applied the
    /// [`macro@service`] macro. For example, if you have a trait `Calculator` to
    /// which you have applied [`macro@service`], you would use this method as follows:
    /// ```
    /// struct CalculatorServiceImpl;
    /// impl Calculator for CalculatorServiceImpl { /* add Calculator's methods */}
    /// let server = Builder::new(some_interface)
    ///     .with_service<CalculatorService<_>>(CalculatorServiceImpl)
    ///     .build();
    /// ```
    pub fn with_service<S: service::Service>(self, implementation: impl Into<S>) -> Builder<C, S> {
        let service = implementation.into();
        let Builder {
            interface, client, ..
        } = self;
        Builder {
            interface,
            client,
            service,
        }
    }
}

impl<S> Builder<(), S> {
    /// Configure the RPC interface with a client that allows you to execute RPCs on the
    /// server. The builder will automatically instansiate the client for you, you just
    /// need to provide the type which is generated via the [`macro@service`] attribute
    /// macro. For example, if you had a trait `Calculator` to which you applied the
    /// [`macro@service`] attribute macro, the macro would have generated a `CalculatorClient`
    /// struct which you can use as the `C` in this function.
    pub fn with_client<C: client::Client>(self) -> Builder<C, S> {
        let Builder {
            interface, service, ..
        } = self;
        Builder {
            interface,
            client: PhantomData::<C>,
            service,
        }
    }
}

/// `Server` is the server that is returned from the [`Builder::build`] method given
/// you configured the RPC interface with a service. Note that `Server` implements future and needs
/// to be polled in order to execute and respond to inbound RPC requests.
#[must_use = "Server must be polled in order for RPC requests to be executed"]
pub struct Server {
    _listener: Rc<EventListener>,
    task: LocalBoxFuture<'static, ()>,
}

impl Future for Server {
    type Output = ();

    fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
        self.task.poll_unpin(cx)
    }
}

impl<C> Builder<C, ()>
where
    C: client::Client + From<client::Configuration<C::Request, C::Response>> + 'static,
    <C as client::Client>::Response: DeserializeOwned,
    <C as client::Client>::Request: Serialize,
{
    /// Build function for client-only RPC interfaces.
    pub fn build(self) -> C {
        let Builder {
            interface:
                Interface {
                    port,
                    listener,
                    mut messages_rx,
                },
            ..
        } = self;
        let client_callback_map: Rc<RefCell<client::CallbackMap<C::Response>>> = Default::default();
        let client_callback_map_cloned = client_callback_map.clone();
        let dispatcher = async move {
            while let Some(array) = messages_rx.next().await {
                let message =
                    Uint8Array::new(&array.shift().dyn_into::<ArrayBuffer>().unwrap()).to_vec();
                match bincode::deserialize::<Message<(), C::Response>>(&message).unwrap() {
                    Message::Response(seq_id, response) => {
                        if let Some(callback_tx) =
                            client_callback_map_cloned.borrow_mut().remove(&seq_id)
                        {
                            let _ = callback_tx.send((response, array));
                        }
                    }
                    _ => panic!("client received a server message"),
                }
            }
        }
        .boxed_local()
        .shared();
        let port_cloned = port.clone();
        let abort_sender = move |seq_id: usize| {
            let abort = Message::<C::Request, ()>::Abort(seq_id);
            let abort = bincode::serialize(&abort).unwrap();
            let buffer = js_sys::Uint8Array::from(&abort[..]).buffer();
            let post_args = js_sys::Array::of1(&buffer);
            let transfer_args = js_sys::Array::of1(&buffer);
            port_cloned
                .post_message(&post_args, &transfer_args)
                .unwrap();
        };
        let request_serializer = |seq_id: usize, request: C::Request| {
            let request = Message::<C::Request, ()>::Request(seq_id, request);
            bincode::serialize(&request).unwrap()
        };
        C::from((
            client_callback_map,
            port,
            Rc::new(listener),
            dispatcher,
            Rc::new(request_serializer),
            Rc::new(abort_sender),
        ))
    }
}

impl<S> Builder<(), S>
where
    S: service::Service + 'static,
    <S as service::Service>::Request: DeserializeOwned,
    <S as service::Service>::Response: Serialize,
{
    /// Build function for server-only RPC interfaces.
    pub fn build(self) -> Server {
        let Builder {
            service,
            interface:
                Interface {
                    port,
                    listener,
                    mut messages_rx,
                },
            ..
        } = self;
        let (server_requests_tx, server_requests_rx) = mpsc::unbounded();
        let (abort_requests_tx, abort_requests_rx) = mpsc::unbounded();
        let dispatcher = async move {
            while let Some(array) = messages_rx.next().await {
                let message =
                    Uint8Array::new(&array.shift().dyn_into::<ArrayBuffer>().unwrap()).to_vec();
                match bincode::deserialize::<Message<S::Request, ()>>(&message).unwrap() {
                    Message::Request(seq_id, request) => server_requests_tx
                        .unbounded_send((seq_id, request, array))
                        .unwrap(),
                    Message::Abort(seq_id) => abort_requests_tx.unbounded_send(seq_id).unwrap(),
                    _ => panic!("server received a client message"),
                }
            }
        }
        .boxed_local()
        .shared();
        Server {
            _listener: Rc::new(listener),
            task: service::task::<S, ()>(
                service,
                port,
                dispatcher,
                server_requests_rx,
                abort_requests_rx,
            )
            .boxed_local(),
        }
    }
}

impl<C, S> Builder<C, S>
where
    C: client::Client + From<client::Configuration<C::Request, C::Response>> + 'static,
    S: service::Service + 'static,
    <S as service::Service>::Request: DeserializeOwned,
    <S as service::Service>::Response: Serialize,
    <C as client::Client>::Request: Serialize,
    <C as client::Client>::Response: DeserializeOwned,
{
    /// Build function for client-server RPC interfaces.
    pub fn build(self) -> (C, Server) {
        let Builder {
            service: server,
            interface:
                Interface {
                    port,
                    listener,
                    mut messages_rx,
                },
            ..
        } = self;
        let client_callback_map: Rc<RefCell<client::CallbackMap<C::Response>>> = Default::default();
        let (server_requests_tx, server_requests_rx) = mpsc::unbounded();
        let (abort_requests_tx, abort_requests_rx) = mpsc::unbounded();
        let client_callback_map_cloned = client_callback_map.clone();
        let dispatcher = async move {
            while let Some(array) = messages_rx.next().await {
                let message = array.shift().dyn_into::<ArrayBuffer>().unwrap();
                let message = Uint8Array::new(&message).to_vec();
                match bincode::deserialize::<Message<S::Request, C::Response>>(&message).unwrap() {
                    Message::Response(seq_id, response) => {
                        if let Some(callback_tx) =
                            client_callback_map_cloned.borrow_mut().remove(&seq_id)
                        {
                            let _ = callback_tx.send((response, array));
                        }
                    }
                    Message::Request(seq_id, request) => server_requests_tx
                        .unbounded_send((seq_id, request, array))
                        .unwrap(),
                    Message::Abort(seq_id) => abort_requests_tx.unbounded_send(seq_id).unwrap(),
                }
            }
        }
        .boxed_local()
        .shared();
        let port_cloned = port.clone();
        let abort_sender = move |seq_id: usize| {
            let abort = Message::<C::Request, S::Response>::Abort(seq_id);
            let abort = bincode::serialize(&abort).unwrap();
            let buffer = js_sys::Uint8Array::from(&abort[..]).buffer();
            let post_args = js_sys::Array::of1(&buffer);
            let transfer_args = js_sys::Array::of1(&buffer);
            port_cloned
                .post_message(&post_args, &transfer_args)
                .unwrap();
        };
        let request_serializer = |seq_id: usize, request: C::Request| {
            let request = Message::<C::Request, S::Response>::Request(seq_id, request);
            bincode::serialize(&request).unwrap()
        };
        let listener = Rc::new(listener);
        let client = C::from((
            client_callback_map,
            port.clone(),
            listener.clone(),
            dispatcher.clone(),
            Rc::new(request_serializer),
            Rc::new(abort_sender),
        ));
        let server = Server {
            _listener: listener,
            task: service::task::<S, C::Request>(
                server,
                port,
                dispatcher,
                server_requests_rx,
                abort_requests_rx,
            )
            .boxed_local(),
        };
        (client, server)
    }
}