Struct wasmtime_runtime::Mmap

source ·
pub struct Mmap { /* private fields */ }
Expand description

A simple struct consisting of a page-aligned pointer to page-aligned and initially-zeroed memory and a length.

Implementations§

Construct a new empty instance of Mmap.

Examples found in repository?
src/mmap.rs (line 169)
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
    pub fn accessible_reserved(accessible_size: usize, mapping_size: usize) -> Result<Self> {
        let page_size = crate::page_size();
        assert!(accessible_size <= mapping_size);
        assert_eq!(mapping_size & (page_size - 1), 0);
        assert_eq!(accessible_size & (page_size - 1), 0);

        // Mmap may return EINVAL if the size is zero, so just
        // special-case that.
        if mapping_size == 0 {
            return Ok(Self::new());
        }

        Ok(if accessible_size == mapping_size {
            // Allocate a single read-write region at once.
            let ptr = unsafe {
                rustix::mm::mmap_anonymous(
                    ptr::null_mut(),
                    mapping_size,
                    rustix::mm::ProtFlags::READ | rustix::mm::ProtFlags::WRITE,
                    rustix::mm::MapFlags::PRIVATE,
                )
                .context(format!("mmap failed to allocate {:#x} bytes", mapping_size))?
            };

            Self {
                ptr: ptr as usize,
                len: mapping_size,
                file: None,
            }
        } else {
            // Reserve the mapping size.
            let ptr = unsafe {
                rustix::mm::mmap_anonymous(
                    ptr::null_mut(),
                    mapping_size,
                    rustix::mm::ProtFlags::empty(),
                    rustix::mm::MapFlags::PRIVATE,
                )
                .context(format!("mmap failed to allocate {:#x} bytes", mapping_size))?
            };

            let mut result = Self {
                ptr: ptr as usize,
                len: mapping_size,
                file: None,
            };

            if accessible_size != 0 {
                // Commit the accessible size.
                result.make_accessible(0, accessible_size)?;
            }

            result
        })
    }

Create a new Mmap pointing to at least size bytes of page-aligned accessible memory.

Examples found in repository?
src/mmap_vec.rs (line 43)
42
43
44
    pub fn with_capacity(size: usize) -> Result<MmapVec> {
        Ok(MmapVec::new(Mmap::with_at_least(size)?, size))
    }

Creates a new Mmap by opening the file located at path and mapping it into memory.

The memory is mapped in read-only mode for the entire file. If portions of the file need to be modified then the region crate can be use to alter permissions of each page.

The memory mapping and the length of the file within the mapping are returned.

Examples found in repository?
src/mmap_vec.rs (line 65)
64
65
66
67
68
69
    pub fn from_file(path: &Path) -> Result<MmapVec> {
        let mmap = Mmap::from_file(path)
            .with_context(|| format!("failed to create mmap for file: {}", path.display()))?;
        let len = mmap.len();
        Ok(MmapVec::new(mmap, len))
    }

Create a new Mmap pointing to accessible_size bytes of page-aligned accessible memory, within a reserved mapping of mapping_size bytes. accessible_size and mapping_size must be native page-size multiples.

Examples found in repository?
src/mmap.rs (line 45)
42
43
44
45
46
    pub fn with_at_least(size: usize) -> Result<Self> {
        let page_size = crate::page_size();
        let rounded_size = (size + (page_size - 1)) & !(page_size - 1);
        Self::accessible_reserved(rounded_size, rounded_size)
    }
More examples
Hide additional examples
src/memory.rs (line 228)
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
    pub fn new(
        plan: &MemoryPlan,
        minimum: usize,
        mut maximum: Option<usize>,
        memory_image: Option<&Arc<MemoryImage>>,
    ) -> Result<Self> {
        // It's a programmer error for these two configuration values to exceed
        // the host available address space, so panic if such a configuration is
        // found (mostly an issue for hypothetical 32-bit hosts).
        let offset_guard_bytes = usize::try_from(plan.offset_guard_size).unwrap();
        let pre_guard_bytes = usize::try_from(plan.pre_guard_size).unwrap();

        let (alloc_bytes, extra_to_reserve_on_growth) = match plan.style {
            // Dynamic memories start with the minimum size plus the `reserve`
            // amount specified to grow into.
            MemoryStyle::Dynamic { reserve } => (minimum, usize::try_from(reserve).unwrap()),

            // Static memories will never move in memory and consequently get
            // their entire allocation up-front with no extra room to grow into.
            // Note that the `maximum` is adjusted here to whatever the smaller
            // of the two is, the `maximum` given or the `bound` specified for
            // this memory.
            MemoryStyle::Static { bound } => {
                assert!(bound >= plan.memory.minimum);
                let bound_bytes =
                    usize::try_from(bound.checked_mul(WASM_PAGE_SIZE_U64).unwrap()).unwrap();
                maximum = Some(bound_bytes.min(maximum.unwrap_or(usize::MAX)));
                (bound_bytes, 0)
            }
        };

        let request_bytes = pre_guard_bytes
            .checked_add(alloc_bytes)
            .and_then(|i| i.checked_add(extra_to_reserve_on_growth))
            .and_then(|i| i.checked_add(offset_guard_bytes))
            .ok_or_else(|| format_err!("cannot allocate {} with guard regions", minimum))?;
        let mut mmap = Mmap::accessible_reserved(0, request_bytes)?;

        if minimum > 0 {
            mmap.make_accessible(pre_guard_bytes, minimum)?;
        }

        // If a memory image was specified, try to create the MemoryImageSlot on
        // top of our mmap.
        let memory_image = match memory_image {
            Some(image) => {
                let base = unsafe { mmap.as_mut_ptr().add(pre_guard_bytes) };
                let mut slot = MemoryImageSlot::create(
                    base.cast(),
                    minimum,
                    alloc_bytes + extra_to_reserve_on_growth,
                );
                slot.instantiate(minimum, Some(image), &plan.style)?;
                // On drop, we will unmap our mmap'd range that this slot was
                // mapped on top of, so there is no need for the slot to wipe
                // it with an anonymous mapping first.
                slot.no_clear_on_drop();
                Some(slot)
            }
            None => None,
        };

        Ok(Self {
            mmap,
            accessible: minimum,
            maximum,
            pre_guard_size: pre_guard_bytes,
            offset_guard_size: offset_guard_bytes,
            extra_to_reserve_on_growth,
            memory_image,
        })
    }
}

impl RuntimeLinearMemory for MmapMemory {
    fn byte_size(&self) -> usize {
        self.accessible
    }

    fn maximum_byte_size(&self) -> Option<usize> {
        self.maximum
    }

    fn grow_to(&mut self, new_size: usize) -> Result<()> {
        if new_size > self.mmap.len() - self.offset_guard_size - self.pre_guard_size {
            // If the new size of this heap exceeds the current size of the
            // allocation we have, then this must be a dynamic heap. Use
            // `new_size` to calculate a new size of an allocation, allocate it,
            // and then copy over the memory from before.
            let request_bytes = self
                .pre_guard_size
                .checked_add(new_size)
                .and_then(|s| s.checked_add(self.extra_to_reserve_on_growth))
                .and_then(|s| s.checked_add(self.offset_guard_size))
                .ok_or_else(|| format_err!("overflow calculating size of memory allocation"))?;

            let mut new_mmap = Mmap::accessible_reserved(0, request_bytes)?;
            new_mmap.make_accessible(self.pre_guard_size, new_size)?;

            new_mmap.as_mut_slice()[self.pre_guard_size..][..self.accessible]
                .copy_from_slice(&self.mmap.as_slice()[self.pre_guard_size..][..self.accessible]);

            // Now drop the MemoryImageSlot, if any. We've lost the CoW
            // advantages by explicitly copying all data, but we have
            // preserved all of its content; so we no longer need the
            // mapping. We need to do this before we (implicitly) drop the
            // `mmap` field by overwriting it below.
            drop(self.memory_image.take());

            self.mmap = new_mmap;
        } else if let Some(image) = self.memory_image.as_mut() {
            // MemoryImageSlot has its own growth mechanisms; defer to its
            // implementation.
            image.set_heap_limit(new_size)?;
        } else {
            // If the new size of this heap fits within the existing allocation
            // then all we need to do is to make the new pages accessible. This
            // can happen either for "static" heaps which always hit this case,
            // or "dynamic" heaps which have some space reserved after the
            // initial allocation to grow into before the heap is moved in
            // memory.
            assert!(new_size > self.accessible);
            self.mmap.make_accessible(
                self.pre_guard_size + self.accessible,
                new_size - self.accessible,
            )?;
        }

        self.accessible = new_size;

        Ok(())
    }

Make the memory starting at start and extending for len bytes accessible. start and len must be native page-size multiples and describe a range within self’s reserved memory.

Examples found in repository?
src/mmap.rs (line 209)
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
    pub fn accessible_reserved(accessible_size: usize, mapping_size: usize) -> Result<Self> {
        let page_size = crate::page_size();
        assert!(accessible_size <= mapping_size);
        assert_eq!(mapping_size & (page_size - 1), 0);
        assert_eq!(accessible_size & (page_size - 1), 0);

        // Mmap may return EINVAL if the size is zero, so just
        // special-case that.
        if mapping_size == 0 {
            return Ok(Self::new());
        }

        Ok(if accessible_size == mapping_size {
            // Allocate a single read-write region at once.
            let ptr = unsafe {
                rustix::mm::mmap_anonymous(
                    ptr::null_mut(),
                    mapping_size,
                    rustix::mm::ProtFlags::READ | rustix::mm::ProtFlags::WRITE,
                    rustix::mm::MapFlags::PRIVATE,
                )
                .context(format!("mmap failed to allocate {:#x} bytes", mapping_size))?
            };

            Self {
                ptr: ptr as usize,
                len: mapping_size,
                file: None,
            }
        } else {
            // Reserve the mapping size.
            let ptr = unsafe {
                rustix::mm::mmap_anonymous(
                    ptr::null_mut(),
                    mapping_size,
                    rustix::mm::ProtFlags::empty(),
                    rustix::mm::MapFlags::PRIVATE,
                )
                .context(format!("mmap failed to allocate {:#x} bytes", mapping_size))?
            };

            let mut result = Self {
                ptr: ptr as usize,
                len: mapping_size,
                file: None,
            };

            if accessible_size != 0 {
                // Commit the accessible size.
                result.make_accessible(0, accessible_size)?;
            }

            result
        })
    }
More examples
Hide additional examples
src/memory.rs (line 231)
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
    pub fn new(
        plan: &MemoryPlan,
        minimum: usize,
        mut maximum: Option<usize>,
        memory_image: Option<&Arc<MemoryImage>>,
    ) -> Result<Self> {
        // It's a programmer error for these two configuration values to exceed
        // the host available address space, so panic if such a configuration is
        // found (mostly an issue for hypothetical 32-bit hosts).
        let offset_guard_bytes = usize::try_from(plan.offset_guard_size).unwrap();
        let pre_guard_bytes = usize::try_from(plan.pre_guard_size).unwrap();

        let (alloc_bytes, extra_to_reserve_on_growth) = match plan.style {
            // Dynamic memories start with the minimum size plus the `reserve`
            // amount specified to grow into.
            MemoryStyle::Dynamic { reserve } => (minimum, usize::try_from(reserve).unwrap()),

            // Static memories will never move in memory and consequently get
            // their entire allocation up-front with no extra room to grow into.
            // Note that the `maximum` is adjusted here to whatever the smaller
            // of the two is, the `maximum` given or the `bound` specified for
            // this memory.
            MemoryStyle::Static { bound } => {
                assert!(bound >= plan.memory.minimum);
                let bound_bytes =
                    usize::try_from(bound.checked_mul(WASM_PAGE_SIZE_U64).unwrap()).unwrap();
                maximum = Some(bound_bytes.min(maximum.unwrap_or(usize::MAX)));
                (bound_bytes, 0)
            }
        };

        let request_bytes = pre_guard_bytes
            .checked_add(alloc_bytes)
            .and_then(|i| i.checked_add(extra_to_reserve_on_growth))
            .and_then(|i| i.checked_add(offset_guard_bytes))
            .ok_or_else(|| format_err!("cannot allocate {} with guard regions", minimum))?;
        let mut mmap = Mmap::accessible_reserved(0, request_bytes)?;

        if minimum > 0 {
            mmap.make_accessible(pre_guard_bytes, minimum)?;
        }

        // If a memory image was specified, try to create the MemoryImageSlot on
        // top of our mmap.
        let memory_image = match memory_image {
            Some(image) => {
                let base = unsafe { mmap.as_mut_ptr().add(pre_guard_bytes) };
                let mut slot = MemoryImageSlot::create(
                    base.cast(),
                    minimum,
                    alloc_bytes + extra_to_reserve_on_growth,
                );
                slot.instantiate(minimum, Some(image), &plan.style)?;
                // On drop, we will unmap our mmap'd range that this slot was
                // mapped on top of, so there is no need for the slot to wipe
                // it with an anonymous mapping first.
                slot.no_clear_on_drop();
                Some(slot)
            }
            None => None,
        };

        Ok(Self {
            mmap,
            accessible: minimum,
            maximum,
            pre_guard_size: pre_guard_bytes,
            offset_guard_size: offset_guard_bytes,
            extra_to_reserve_on_growth,
            memory_image,
        })
    }
}

impl RuntimeLinearMemory for MmapMemory {
    fn byte_size(&self) -> usize {
        self.accessible
    }

    fn maximum_byte_size(&self) -> Option<usize> {
        self.maximum
    }

    fn grow_to(&mut self, new_size: usize) -> Result<()> {
        if new_size > self.mmap.len() - self.offset_guard_size - self.pre_guard_size {
            // If the new size of this heap exceeds the current size of the
            // allocation we have, then this must be a dynamic heap. Use
            // `new_size` to calculate a new size of an allocation, allocate it,
            // and then copy over the memory from before.
            let request_bytes = self
                .pre_guard_size
                .checked_add(new_size)
                .and_then(|s| s.checked_add(self.extra_to_reserve_on_growth))
                .and_then(|s| s.checked_add(self.offset_guard_size))
                .ok_or_else(|| format_err!("overflow calculating size of memory allocation"))?;

            let mut new_mmap = Mmap::accessible_reserved(0, request_bytes)?;
            new_mmap.make_accessible(self.pre_guard_size, new_size)?;

            new_mmap.as_mut_slice()[self.pre_guard_size..][..self.accessible]
                .copy_from_slice(&self.mmap.as_slice()[self.pre_guard_size..][..self.accessible]);

            // Now drop the MemoryImageSlot, if any. We've lost the CoW
            // advantages by explicitly copying all data, but we have
            // preserved all of its content; so we no longer need the
            // mapping. We need to do this before we (implicitly) drop the
            // `mmap` field by overwriting it below.
            drop(self.memory_image.take());

            self.mmap = new_mmap;
        } else if let Some(image) = self.memory_image.as_mut() {
            // MemoryImageSlot has its own growth mechanisms; defer to its
            // implementation.
            image.set_heap_limit(new_size)?;
        } else {
            // If the new size of this heap fits within the existing allocation
            // then all we need to do is to make the new pages accessible. This
            // can happen either for "static" heaps which always hit this case,
            // or "dynamic" heaps which have some space reserved after the
            // initial allocation to grow into before the heap is moved in
            // memory.
            assert!(new_size > self.accessible);
            self.mmap.make_accessible(
                self.pre_guard_size + self.accessible,
                new_size - self.accessible,
            )?;
        }

        self.accessible = new_size;

        Ok(())
    }

Return the allocated memory as a slice of u8.

Examples found in repository?
src/mmap_vec.rs (line 132)
131
132
133
    fn deref(&self) -> &[u8] {
        &self.mmap.as_slice()[self.range.clone()]
    }
More examples
Hide additional examples
src/memory.rs (line 292)
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
    fn grow_to(&mut self, new_size: usize) -> Result<()> {
        if new_size > self.mmap.len() - self.offset_guard_size - self.pre_guard_size {
            // If the new size of this heap exceeds the current size of the
            // allocation we have, then this must be a dynamic heap. Use
            // `new_size` to calculate a new size of an allocation, allocate it,
            // and then copy over the memory from before.
            let request_bytes = self
                .pre_guard_size
                .checked_add(new_size)
                .and_then(|s| s.checked_add(self.extra_to_reserve_on_growth))
                .and_then(|s| s.checked_add(self.offset_guard_size))
                .ok_or_else(|| format_err!("overflow calculating size of memory allocation"))?;

            let mut new_mmap = Mmap::accessible_reserved(0, request_bytes)?;
            new_mmap.make_accessible(self.pre_guard_size, new_size)?;

            new_mmap.as_mut_slice()[self.pre_guard_size..][..self.accessible]
                .copy_from_slice(&self.mmap.as_slice()[self.pre_guard_size..][..self.accessible]);

            // Now drop the MemoryImageSlot, if any. We've lost the CoW
            // advantages by explicitly copying all data, but we have
            // preserved all of its content; so we no longer need the
            // mapping. We need to do this before we (implicitly) drop the
            // `mmap` field by overwriting it below.
            drop(self.memory_image.take());

            self.mmap = new_mmap;
        } else if let Some(image) = self.memory_image.as_mut() {
            // MemoryImageSlot has its own growth mechanisms; defer to its
            // implementation.
            image.set_heap_limit(new_size)?;
        } else {
            // If the new size of this heap fits within the existing allocation
            // then all we need to do is to make the new pages accessible. This
            // can happen either for "static" heaps which always hit this case,
            // or "dynamic" heaps which have some space reserved after the
            // initial allocation to grow into before the heap is moved in
            // memory.
            assert!(new_size > self.accessible);
            self.mmap.make_accessible(
                self.pre_guard_size + self.accessible,
                new_size - self.accessible,
            )?;
        }

        self.accessible = new_size;

        Ok(())
    }

Return the allocated memory as a mutable slice of u8.

Examples found in repository?
src/memory.rs (line 291)
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
    fn grow_to(&mut self, new_size: usize) -> Result<()> {
        if new_size > self.mmap.len() - self.offset_guard_size - self.pre_guard_size {
            // If the new size of this heap exceeds the current size of the
            // allocation we have, then this must be a dynamic heap. Use
            // `new_size` to calculate a new size of an allocation, allocate it,
            // and then copy over the memory from before.
            let request_bytes = self
                .pre_guard_size
                .checked_add(new_size)
                .and_then(|s| s.checked_add(self.extra_to_reserve_on_growth))
                .and_then(|s| s.checked_add(self.offset_guard_size))
                .ok_or_else(|| format_err!("overflow calculating size of memory allocation"))?;

            let mut new_mmap = Mmap::accessible_reserved(0, request_bytes)?;
            new_mmap.make_accessible(self.pre_guard_size, new_size)?;

            new_mmap.as_mut_slice()[self.pre_guard_size..][..self.accessible]
                .copy_from_slice(&self.mmap.as_slice()[self.pre_guard_size..][..self.accessible]);

            // Now drop the MemoryImageSlot, if any. We've lost the CoW
            // advantages by explicitly copying all data, but we have
            // preserved all of its content; so we no longer need the
            // mapping. We need to do this before we (implicitly) drop the
            // `mmap` field by overwriting it below.
            drop(self.memory_image.take());

            self.mmap = new_mmap;
        } else if let Some(image) = self.memory_image.as_mut() {
            // MemoryImageSlot has its own growth mechanisms; defer to its
            // implementation.
            image.set_heap_limit(new_size)?;
        } else {
            // If the new size of this heap fits within the existing allocation
            // then all we need to do is to make the new pages accessible. This
            // can happen either for "static" heaps which always hit this case,
            // or "dynamic" heaps which have some space reserved after the
            // initial allocation to grow into before the heap is moved in
            // memory.
            assert!(new_size > self.accessible);
            self.mmap.make_accessible(
                self.pre_guard_size + self.accessible,
                new_size - self.accessible,
            )?;
        }

        self.accessible = new_size;

        Ok(())
    }

Return the allocated memory as a pointer to u8.

Examples found in repository?
src/mmap.rs (line 383)
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
    pub unsafe fn make_writable(&self, range: Range<usize>) -> Result<()> {
        assert!(range.start <= self.len());
        assert!(range.end <= self.len());
        assert!(range.start <= range.end);
        assert!(
            range.start % crate::page_size() == 0,
            "changing of protections isn't page-aligned",
        );

        let base = self.as_ptr().add(range.start) as *mut _;
        let len = range.end - range.start;

        // On Windows when we have a file mapping we need to specifically use
        // `PAGE_WRITECOPY` to ensure that pages are COW'd into place because
        // we don't want our modifications to go back to the original file.
        #[cfg(windows)]
        {
            use std::io;
            use windows_sys::Win32::System::Memory::*;

            let mut old = 0;
            let result = if self.file.is_some() {
                VirtualProtect(base, len, PAGE_WRITECOPY, &mut old)
            } else {
                VirtualProtect(base, len, PAGE_READWRITE, &mut old)
            };
            if result == 0 {
                return Err(io::Error::last_os_error().into());
            }
        }

        #[cfg(not(windows))]
        {
            use rustix::mm::{mprotect, MprotectFlags};
            mprotect(base, len, MprotectFlags::READ | MprotectFlags::WRITE)?;
        }

        Ok(())
    }

    /// Makes the specified `range` within this `Mmap` to be read/execute.
    pub unsafe fn make_executable(
        &self,
        range: Range<usize>,
        enable_branch_protection: bool,
    ) -> Result<()> {
        assert!(range.start <= self.len());
        assert!(range.end <= self.len());
        assert!(range.start <= range.end);
        assert!(
            range.start % crate::page_size() == 0,
            "changing of protections isn't page-aligned",
        );
        let base = self.as_ptr().add(range.start) as *mut _;
        let len = range.end - range.start;

        #[cfg(windows)]
        {
            use std::io;
            use windows_sys::Win32::System::Memory::*;

            let flags = if enable_branch_protection {
                // TODO: We use this check to avoid an unused variable warning,
                // but some of the CFG-related flags might be applicable
                PAGE_EXECUTE_READ
            } else {
                PAGE_EXECUTE_READ
            };
            let mut old = 0;
            let result = VirtualProtect(base, len, flags, &mut old);
            if result == 0 {
                return Err(io::Error::last_os_error().into());
            }
        }

        #[cfg(not(windows))]
        {
            use rustix::mm::{mprotect, MprotectFlags};

            let flags = MprotectFlags::READ | MprotectFlags::EXEC;
            let flags = if enable_branch_protection {
                #[cfg(all(target_arch = "aarch64", target_os = "linux"))]
                if std::arch::is_aarch64_feature_detected!("bti") {
                    MprotectFlags::from_bits_unchecked(flags.bits() | /* PROT_BTI */ 0x10)
                } else {
                    flags
                }

                #[cfg(not(all(target_arch = "aarch64", target_os = "linux")))]
                flags
            } else {
                flags
            };

            mprotect(base, len, flags)?;
        }

        Ok(())
    }

Return the allocated memory as a mutable pointer to u8.

Examples found in repository?
src/mmap_vec.rs (line 147)
137
138
139
140
141
142
143
144
145
146
147
148
149
150
    fn deref_mut(&mut self) -> &mut [u8] {
        debug_assert!(!self.is_readonly());
        // SAFETY: The underlying mmap is protected behind an `Arc` which means
        // there there can be many references to it. We are guaranteed, though,
        // that each reference to the underlying `mmap` has a disjoint `range`
        // listed that it can access. This means that despite having shared
        // access to the mmap itself we have exclusive ownership of the bytes
        // specified in `self.range`. This should allow us to safely hand out
        // mutable access to these bytes if so desired.
        unsafe {
            let slice = std::slice::from_raw_parts_mut(self.mmap.as_mut_ptr(), self.mmap.len());
            &mut slice[self.range.clone()]
        }
    }
More examples
Hide additional examples
src/memory.rs (line 238)
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
    pub fn new(
        plan: &MemoryPlan,
        minimum: usize,
        mut maximum: Option<usize>,
        memory_image: Option<&Arc<MemoryImage>>,
    ) -> Result<Self> {
        // It's a programmer error for these two configuration values to exceed
        // the host available address space, so panic if such a configuration is
        // found (mostly an issue for hypothetical 32-bit hosts).
        let offset_guard_bytes = usize::try_from(plan.offset_guard_size).unwrap();
        let pre_guard_bytes = usize::try_from(plan.pre_guard_size).unwrap();

        let (alloc_bytes, extra_to_reserve_on_growth) = match plan.style {
            // Dynamic memories start with the minimum size plus the `reserve`
            // amount specified to grow into.
            MemoryStyle::Dynamic { reserve } => (minimum, usize::try_from(reserve).unwrap()),

            // Static memories will never move in memory and consequently get
            // their entire allocation up-front with no extra room to grow into.
            // Note that the `maximum` is adjusted here to whatever the smaller
            // of the two is, the `maximum` given or the `bound` specified for
            // this memory.
            MemoryStyle::Static { bound } => {
                assert!(bound >= plan.memory.minimum);
                let bound_bytes =
                    usize::try_from(bound.checked_mul(WASM_PAGE_SIZE_U64).unwrap()).unwrap();
                maximum = Some(bound_bytes.min(maximum.unwrap_or(usize::MAX)));
                (bound_bytes, 0)
            }
        };

        let request_bytes = pre_guard_bytes
            .checked_add(alloc_bytes)
            .and_then(|i| i.checked_add(extra_to_reserve_on_growth))
            .and_then(|i| i.checked_add(offset_guard_bytes))
            .ok_or_else(|| format_err!("cannot allocate {} with guard regions", minimum))?;
        let mut mmap = Mmap::accessible_reserved(0, request_bytes)?;

        if minimum > 0 {
            mmap.make_accessible(pre_guard_bytes, minimum)?;
        }

        // If a memory image was specified, try to create the MemoryImageSlot on
        // top of our mmap.
        let memory_image = match memory_image {
            Some(image) => {
                let base = unsafe { mmap.as_mut_ptr().add(pre_guard_bytes) };
                let mut slot = MemoryImageSlot::create(
                    base.cast(),
                    minimum,
                    alloc_bytes + extra_to_reserve_on_growth,
                );
                slot.instantiate(minimum, Some(image), &plan.style)?;
                // On drop, we will unmap our mmap'd range that this slot was
                // mapped on top of, so there is no need for the slot to wipe
                // it with an anonymous mapping first.
                slot.no_clear_on_drop();
                Some(slot)
            }
            None => None,
        };

        Ok(Self {
            mmap,
            accessible: minimum,
            maximum,
            pre_guard_size: pre_guard_bytes,
            offset_guard_size: offset_guard_bytes,
            extra_to_reserve_on_growth,
            memory_image,
        })
    }
}

impl RuntimeLinearMemory for MmapMemory {
    fn byte_size(&self) -> usize {
        self.accessible
    }

    fn maximum_byte_size(&self) -> Option<usize> {
        self.maximum
    }

    fn grow_to(&mut self, new_size: usize) -> Result<()> {
        if new_size > self.mmap.len() - self.offset_guard_size - self.pre_guard_size {
            // If the new size of this heap exceeds the current size of the
            // allocation we have, then this must be a dynamic heap. Use
            // `new_size` to calculate a new size of an allocation, allocate it,
            // and then copy over the memory from before.
            let request_bytes = self
                .pre_guard_size
                .checked_add(new_size)
                .and_then(|s| s.checked_add(self.extra_to_reserve_on_growth))
                .and_then(|s| s.checked_add(self.offset_guard_size))
                .ok_or_else(|| format_err!("overflow calculating size of memory allocation"))?;

            let mut new_mmap = Mmap::accessible_reserved(0, request_bytes)?;
            new_mmap.make_accessible(self.pre_guard_size, new_size)?;

            new_mmap.as_mut_slice()[self.pre_guard_size..][..self.accessible]
                .copy_from_slice(&self.mmap.as_slice()[self.pre_guard_size..][..self.accessible]);

            // Now drop the MemoryImageSlot, if any. We've lost the CoW
            // advantages by explicitly copying all data, but we have
            // preserved all of its content; so we no longer need the
            // mapping. We need to do this before we (implicitly) drop the
            // `mmap` field by overwriting it below.
            drop(self.memory_image.take());

            self.mmap = new_mmap;
        } else if let Some(image) = self.memory_image.as_mut() {
            // MemoryImageSlot has its own growth mechanisms; defer to its
            // implementation.
            image.set_heap_limit(new_size)?;
        } else {
            // If the new size of this heap fits within the existing allocation
            // then all we need to do is to make the new pages accessible. This
            // can happen either for "static" heaps which always hit this case,
            // or "dynamic" heaps which have some space reserved after the
            // initial allocation to grow into before the heap is moved in
            // memory.
            assert!(new_size > self.accessible);
            self.mmap.make_accessible(
                self.pre_guard_size + self.accessible,
                new_size - self.accessible,
            )?;
        }

        self.accessible = new_size;

        Ok(())
    }

    fn vmmemory(&mut self) -> VMMemoryDefinition {
        VMMemoryDefinition {
            base: unsafe { self.mmap.as_mut_ptr().add(self.pre_guard_size) },
            current_length: self.accessible.into(),
        }
    }

Return the length of the allocated memory.

Examples found in repository?
src/mmap.rs (line 364)
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
    pub fn is_empty(&self) -> bool {
        self.len() == 0
    }

    /// Returns whether the underlying mapping is readonly, meaning that
    /// attempts to write will fault.
    pub fn is_readonly(&self) -> bool {
        self.file.is_some()
    }

    /// Makes the specified `range` within this `Mmap` to be read/write.
    pub unsafe fn make_writable(&self, range: Range<usize>) -> Result<()> {
        assert!(range.start <= self.len());
        assert!(range.end <= self.len());
        assert!(range.start <= range.end);
        assert!(
            range.start % crate::page_size() == 0,
            "changing of protections isn't page-aligned",
        );

        let base = self.as_ptr().add(range.start) as *mut _;
        let len = range.end - range.start;

        // On Windows when we have a file mapping we need to specifically use
        // `PAGE_WRITECOPY` to ensure that pages are COW'd into place because
        // we don't want our modifications to go back to the original file.
        #[cfg(windows)]
        {
            use std::io;
            use windows_sys::Win32::System::Memory::*;

            let mut old = 0;
            let result = if self.file.is_some() {
                VirtualProtect(base, len, PAGE_WRITECOPY, &mut old)
            } else {
                VirtualProtect(base, len, PAGE_READWRITE, &mut old)
            };
            if result == 0 {
                return Err(io::Error::last_os_error().into());
            }
        }

        #[cfg(not(windows))]
        {
            use rustix::mm::{mprotect, MprotectFlags};
            mprotect(base, len, MprotectFlags::READ | MprotectFlags::WRITE)?;
        }

        Ok(())
    }

    /// Makes the specified `range` within this `Mmap` to be read/execute.
    pub unsafe fn make_executable(
        &self,
        range: Range<usize>,
        enable_branch_protection: bool,
    ) -> Result<()> {
        assert!(range.start <= self.len());
        assert!(range.end <= self.len());
        assert!(range.start <= range.end);
        assert!(
            range.start % crate::page_size() == 0,
            "changing of protections isn't page-aligned",
        );
        let base = self.as_ptr().add(range.start) as *mut _;
        let len = range.end - range.start;

        #[cfg(windows)]
        {
            use std::io;
            use windows_sys::Win32::System::Memory::*;

            let flags = if enable_branch_protection {
                // TODO: We use this check to avoid an unused variable warning,
                // but some of the CFG-related flags might be applicable
                PAGE_EXECUTE_READ
            } else {
                PAGE_EXECUTE_READ
            };
            let mut old = 0;
            let result = VirtualProtect(base, len, flags, &mut old);
            if result == 0 {
                return Err(io::Error::last_os_error().into());
            }
        }

        #[cfg(not(windows))]
        {
            use rustix::mm::{mprotect, MprotectFlags};

            let flags = MprotectFlags::READ | MprotectFlags::EXEC;
            let flags = if enable_branch_protection {
                #[cfg(all(target_arch = "aarch64", target_os = "linux"))]
                if std::arch::is_aarch64_feature_detected!("bti") {
                    MprotectFlags::from_bits_unchecked(flags.bits() | /* PROT_BTI */ 0x10)
                } else {
                    flags
                }

                #[cfg(not(all(target_arch = "aarch64", target_os = "linux")))]
                flags
            } else {
                flags
            };

            mprotect(base, len, flags)?;
        }

        Ok(())
    }
More examples
Hide additional examples
src/mmap_vec.rs (line 30)
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
    pub fn new(mmap: Mmap, size: usize) -> MmapVec {
        assert!(size <= mmap.len());
        MmapVec {
            mmap: Arc::new(mmap),
            range: 0..size,
        }
    }

    /// Creates a new zero-initialized `MmapVec` with the given `size`.
    ///
    /// This commit will return a new `MmapVec` suitably sized to hold `size`
    /// bytes. All bytes will be initialized to zero since this is a fresh OS
    /// page allocation.
    pub fn with_capacity(size: usize) -> Result<MmapVec> {
        Ok(MmapVec::new(Mmap::with_at_least(size)?, size))
    }

    /// Creates a new `MmapVec` from the contents of an existing `slice`.
    ///
    /// A new `MmapVec` is allocated to hold the contents of `slice` and then
    /// `slice` is copied into the new mmap. It's recommended to avoid this
    /// method if possible to avoid the need to copy data around.
    pub fn from_slice(slice: &[u8]) -> Result<MmapVec> {
        let mut result = MmapVec::with_capacity(slice.len())?;
        result.copy_from_slice(slice);
        Ok(result)
    }

    /// Creates a new `MmapVec` which is the `path` specified mmap'd into
    /// memory.
    ///
    /// This function will attempt to open the file located at `path` and will
    /// then use that file to learn about its size and map the full contents
    /// into memory. This will return an error if the file doesn't exist or if
    /// it's too large to be fully mapped into memory.
    pub fn from_file(path: &Path) -> Result<MmapVec> {
        let mmap = Mmap::from_file(path)
            .with_context(|| format!("failed to create mmap for file: {}", path.display()))?;
        let len = mmap.len();
        Ok(MmapVec::new(mmap, len))
    }

    /// Returns whether the original mmap was created from a readonly mapping.
    pub fn is_readonly(&self) -> bool {
        self.mmap.is_readonly()
    }

    /// Splits the collection into two at the given index.
    ///
    /// Returns a separate `MmapVec` which shares the underlying mapping, but
    /// only has access to elements in the range `[at, len)`. After the call,
    /// the original `MmapVec` will be left with access to the elements in the
    /// range `[0, at)`.
    ///
    /// This is an `O(1)` operation which does not involve copies.
    pub fn split_off(&mut self, at: usize) -> MmapVec {
        assert!(at <= self.range.len());

        // Create a new `MmapVec` which refers to the same underlying mmap, but
        // has a disjoint range from ours. Our own range is adjusted to be
        // disjoint just after `ret` is created.
        let ret = MmapVec {
            mmap: self.mmap.clone(),
            range: at..self.range.end,
        };
        self.range.end = self.range.start + at;
        return ret;
    }

    /// Makes the specified `range` within this `mmap` to be read/write.
    pub unsafe fn make_writable(&self, range: Range<usize>) -> Result<()> {
        self.mmap
            .make_writable(range.start + self.range.start..range.end + self.range.start)
    }

    /// Makes the specified `range` within this `mmap` to be read/execute.
    pub unsafe fn make_executable(
        &self,
        range: Range<usize>,
        enable_branch_protection: bool,
    ) -> Result<()> {
        self.mmap.make_executable(
            range.start + self.range.start..range.end + self.range.start,
            enable_branch_protection,
        )
    }

    /// Returns the underlying file that this mmap is mapping, if present.
    pub fn original_file(&self) -> Option<&Arc<File>> {
        self.mmap.original_file()
    }

    /// Returns the offset within the original mmap that this `MmapVec` is
    /// created from.
    pub fn original_offset(&self) -> usize {
        self.range.start
    }
}

impl Deref for MmapVec {
    type Target = [u8];

    fn deref(&self) -> &[u8] {
        &self.mmap.as_slice()[self.range.clone()]
    }
}

impl DerefMut for MmapVec {
    fn deref_mut(&mut self) -> &mut [u8] {
        debug_assert!(!self.is_readonly());
        // SAFETY: The underlying mmap is protected behind an `Arc` which means
        // there there can be many references to it. We are guaranteed, though,
        // that each reference to the underlying `mmap` has a disjoint `range`
        // listed that it can access. This means that despite having shared
        // access to the mmap itself we have exclusive ownership of the bytes
        // specified in `self.range`. This should allow us to safely hand out
        // mutable access to these bytes if so desired.
        unsafe {
            let slice = std::slice::from_raw_parts_mut(self.mmap.as_mut_ptr(), self.mmap.len());
            &mut slice[self.range.clone()]
        }
    }
src/memory.rs (line 276)
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
    fn grow_to(&mut self, new_size: usize) -> Result<()> {
        if new_size > self.mmap.len() - self.offset_guard_size - self.pre_guard_size {
            // If the new size of this heap exceeds the current size of the
            // allocation we have, then this must be a dynamic heap. Use
            // `new_size` to calculate a new size of an allocation, allocate it,
            // and then copy over the memory from before.
            let request_bytes = self
                .pre_guard_size
                .checked_add(new_size)
                .and_then(|s| s.checked_add(self.extra_to_reserve_on_growth))
                .and_then(|s| s.checked_add(self.offset_guard_size))
                .ok_or_else(|| format_err!("overflow calculating size of memory allocation"))?;

            let mut new_mmap = Mmap::accessible_reserved(0, request_bytes)?;
            new_mmap.make_accessible(self.pre_guard_size, new_size)?;

            new_mmap.as_mut_slice()[self.pre_guard_size..][..self.accessible]
                .copy_from_slice(&self.mmap.as_slice()[self.pre_guard_size..][..self.accessible]);

            // Now drop the MemoryImageSlot, if any. We've lost the CoW
            // advantages by explicitly copying all data, but we have
            // preserved all of its content; so we no longer need the
            // mapping. We need to do this before we (implicitly) drop the
            // `mmap` field by overwriting it below.
            drop(self.memory_image.take());

            self.mmap = new_mmap;
        } else if let Some(image) = self.memory_image.as_mut() {
            // MemoryImageSlot has its own growth mechanisms; defer to its
            // implementation.
            image.set_heap_limit(new_size)?;
        } else {
            // If the new size of this heap fits within the existing allocation
            // then all we need to do is to make the new pages accessible. This
            // can happen either for "static" heaps which always hit this case,
            // or "dynamic" heaps which have some space reserved after the
            // initial allocation to grow into before the heap is moved in
            // memory.
            assert!(new_size > self.accessible);
            self.mmap.make_accessible(
                self.pre_guard_size + self.accessible,
                new_size - self.accessible,
            )?;
        }

        self.accessible = new_size;

        Ok(())
    }

Return whether any memory has been allocated.

Returns whether the underlying mapping is readonly, meaning that attempts to write will fault.

Examples found in repository?
src/mmap_vec.rs (line 73)
72
73
74
    pub fn is_readonly(&self) -> bool {
        self.mmap.is_readonly()
    }
More examples
Hide additional examples
src/mmap.rs (line 343)
342
343
344
345
    pub fn as_mut_slice(&mut self) -> &mut [u8] {
        debug_assert!(!self.is_readonly());
        unsafe { slice::from_raw_parts_mut(self.ptr as *mut u8, self.len) }
    }

Makes the specified range within this Mmap to be read/write.

Examples found in repository?
src/mmap_vec.rs (line 101)
99
100
101
102
    pub unsafe fn make_writable(&self, range: Range<usize>) -> Result<()> {
        self.mmap
            .make_writable(range.start + self.range.start..range.end + self.range.start)
    }

Makes the specified range within this Mmap to be read/execute.

Examples found in repository?
src/mmap_vec.rs (lines 110-113)
105
106
107
108
109
110
111
112
113
114
    pub unsafe fn make_executable(
        &self,
        range: Range<usize>,
        enable_branch_protection: bool,
    ) -> Result<()> {
        self.mmap.make_executable(
            range.start + self.range.start..range.end + self.range.start,
            enable_branch_protection,
        )
    }

Returns the underlying file that this mmap is mapping, if present.

Examples found in repository?
src/mmap_vec.rs (line 118)
117
118
119
    pub fn original_file(&self) -> Option<&Arc<File>> {
        self.mmap.original_file()
    }

Trait Implementations§

Formats the value using the given formatter. Read more
Executes the destructor for this type. Read more

Auto Trait Implementations§

Blanket Implementations§

Gets the TypeId of self. Read more
Immutably borrows from an owned value. Read more
Mutably borrows from an owned value. Read more

Returns the argument unchanged.

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

The type returned in the event of a conversion error.
Performs the conversion.
The type returned in the event of a conversion error.
Performs the conversion.