wasmtime_cranelift_shared/obj.rs
1//! Object file builder.
2//!
3//! Creates ELF image based on `Compilation` information. The ELF contains
4//! functions and trampolines in the ".text" section. It also contains all
5//! relocation records for the linking stage. If DWARF sections exist, their
6//! content will be written as well.
7//!
8//! The object file has symbols for each function and trampoline, as well as
9//! symbols that refer to libcalls.
10//!
11//! The function symbol names have format "_wasm_function_N", where N is
12//! `FuncIndex`. The defined wasm function symbols refer to a JIT compiled
13//! function body, the imported wasm function do not. The trampolines symbol
14//! names have format "_trampoline_N", where N is `SignatureIndex`.
15
16use crate::{CompiledFuncEnv, CompiledFunction, RelocationTarget};
17use anyhow::Result;
18use cranelift_codegen::binemit::Reloc;
19use cranelift_codegen::ir::LibCall;
20use cranelift_codegen::isa::unwind::{systemv, UnwindInfo};
21use cranelift_codegen::TextSectionBuilder;
22use cranelift_control::ControlPlane;
23use gimli::write::{Address, EhFrame, EndianVec, FrameTable, Writer};
24use gimli::RunTimeEndian;
25use object::write::{Object, SectionId, StandardSegment, Symbol, SymbolId, SymbolSection};
26use object::{Architecture, SectionKind, SymbolFlags, SymbolKind, SymbolScope};
27use std::collections::HashMap;
28use std::ops::Range;
29use wasmtime_environ::{Compiler, FuncIndex};
30
31const TEXT_SECTION_NAME: &[u8] = b".text";
32
33/// A helper structure used to assemble the final text section of an exectuable,
34/// plus unwinding information and other related details.
35///
36/// This builder relies on Cranelift-specific internals but assembles into a
37/// generic `Object` which will get further appended to in a compiler-agnostic
38/// fashion later.
39pub struct ModuleTextBuilder<'a> {
40 /// The target that we're compiling for, used to query target-specific
41 /// information as necessary.
42 compiler: &'a dyn Compiler,
43
44 /// The object file that we're generating code into.
45 obj: &'a mut Object<'static>,
46
47 /// The WebAssembly module we're generating code for.
48 text_section: SectionId,
49
50 unwind_info: UnwindInfoBuilder<'a>,
51
52 /// In-progress text section that we're using cranelift's `MachBuffer` to
53 /// build to resolve relocations (calls) between functions.
54 text: Box<dyn TextSectionBuilder>,
55
56 /// Symbols defined in the object for libcalls that relocations are applied
57 /// against.
58 ///
59 /// Note that this isn't typically used. It's only used for SSE-disabled
60 /// builds without SIMD on x86_64 right now.
61 libcall_symbols: HashMap<LibCall, SymbolId>,
62
63 ctrl_plane: ControlPlane,
64}
65
66impl<'a> ModuleTextBuilder<'a> {
67 /// Creates a new builder for the text section of an executable.
68 ///
69 /// The `.text` section will be appended to the specified `obj` along with
70 /// any unwinding or such information as necessary. The `num_funcs`
71 /// parameter indicates the number of times the `append_func` function will
72 /// be called. The `finish` function will panic if this contract is not met.
73 pub fn new(
74 obj: &'a mut Object<'static>,
75 compiler: &'a dyn Compiler,
76 text: Box<dyn TextSectionBuilder>,
77 ) -> Self {
78 // Entire code (functions and trampolines) will be placed
79 // in the ".text" section.
80 let text_section = obj.add_section(
81 obj.segment_name(StandardSegment::Text).to_vec(),
82 TEXT_SECTION_NAME.to_vec(),
83 SectionKind::Text,
84 );
85
86 Self {
87 compiler,
88 obj,
89 text_section,
90 unwind_info: Default::default(),
91 text,
92 libcall_symbols: HashMap::default(),
93 ctrl_plane: ControlPlane::default(),
94 }
95 }
96
97 /// Appends the `func` specified named `name` to this object.
98 ///
99 /// The `resolve_reloc_target` closure is used to resolve a relocation
100 /// target to an adjacent function which has already been added or will be
101 /// added to this object. The argument is the relocation target specified
102 /// within `CompiledFunction` and the return value must be an index where
103 /// the target will be defined by the `n`th call to `append_func`.
104 ///
105 /// Returns the symbol associated with the function as well as the range
106 /// that the function resides within the text section.
107 pub fn append_func(
108 &mut self,
109 name: &str,
110 compiled_func: &'a CompiledFunction<impl CompiledFuncEnv>,
111 resolve_reloc_target: impl Fn(FuncIndex) -> usize,
112 ) -> (SymbolId, Range<u64>) {
113 let body = compiled_func.buffer.data();
114 let alignment = compiled_func.alignment;
115 let body_len = body.len() as u64;
116 let off = self
117 .text
118 .append(true, &body, alignment, &mut self.ctrl_plane);
119
120 let symbol_id = self.obj.add_symbol(Symbol {
121 name: name.as_bytes().to_vec(),
122 value: off,
123 size: body_len,
124 kind: SymbolKind::Text,
125 scope: SymbolScope::Compilation,
126 weak: false,
127 section: SymbolSection::Section(self.text_section),
128 flags: SymbolFlags::None,
129 });
130
131 if let Some(info) = compiled_func.unwind_info() {
132 self.unwind_info.push(off, body_len, info);
133 }
134
135 for r in compiled_func.relocations() {
136 match r.reloc_target {
137 // Relocations against user-defined functions means that this is
138 // a relocation against a module-local function, typically a
139 // call between functions. The `text` field is given priority to
140 // resolve this relocation before we actually emit an object
141 // file, but if it can't handle it then we pass through the
142 // relocation.
143 RelocationTarget::UserFunc(index) => {
144 let target = resolve_reloc_target(index);
145 if self
146 .text
147 .resolve_reloc(off + u64::from(r.offset), r.reloc, r.addend, target)
148 {
149 continue;
150 }
151
152 // At this time it's expected that all relocations are
153 // handled by `text.resolve_reloc`, and anything that isn't
154 // handled is a bug in `text.resolve_reloc` or something
155 // transitively there. If truly necessary, though, then this
156 // loop could also be updated to forward the relocation to
157 // the final object file as well.
158 panic!(
159 "unresolved relocation could not be processed against \
160 {index:?}: {r:?}"
161 );
162 }
163
164 // Relocations against libcalls are not common at this time and
165 // are only used in non-default configurations that disable wasm
166 // SIMD, disable SSE features, and for wasm modules that still
167 // use floating point operations.
168 //
169 // Currently these relocations are all expected to be absolute
170 // 8-byte relocations so that's asserted here and then encoded
171 // directly into the object as a normal object relocation. This
172 // is processed at module load time to resolve the relocations.
173 RelocationTarget::LibCall(call) => {
174 let symbol = *self.libcall_symbols.entry(call).or_insert_with(|| {
175 self.obj.add_symbol(Symbol {
176 name: libcall_name(call).as_bytes().to_vec(),
177 value: 0,
178 size: 0,
179 kind: SymbolKind::Text,
180 scope: SymbolScope::Linkage,
181 weak: false,
182 section: SymbolSection::Undefined,
183 flags: SymbolFlags::None,
184 })
185 });
186 let (encoding, kind, size) = match r.reloc {
187 Reloc::Abs8 => (
188 object::RelocationEncoding::Generic,
189 object::RelocationKind::Absolute,
190 8,
191 ),
192 other => unimplemented!("unimplemented relocation kind {other:?}"),
193 };
194 self.obj
195 .add_relocation(
196 self.text_section,
197 object::write::Relocation {
198 symbol,
199 size,
200 kind,
201 encoding,
202 offset: off + u64::from(r.offset),
203 addend: r.addend,
204 },
205 )
206 .unwrap();
207 }
208 };
209 }
210 (symbol_id, off..off + body_len)
211 }
212
213 /// Forces "veneers" to be used for inter-function calls in the text
214 /// section which means that in-bounds optimized addresses are never used.
215 ///
216 /// This is only useful for debugging cranelift itself and typically this
217 /// option is disabled.
218 pub fn force_veneers(&mut self) {
219 self.text.force_veneers();
220 }
221
222 /// Appends the specified amount of bytes of padding into the text section.
223 ///
224 /// This is only useful when fuzzing and/or debugging cranelift itself and
225 /// for production scenarios `padding` is 0 and this function does nothing.
226 pub fn append_padding(&mut self, padding: usize) {
227 if padding == 0 {
228 return;
229 }
230 self.text
231 .append(false, &vec![0; padding], 1, &mut self.ctrl_plane);
232 }
233
234 /// Indicates that the text section has been written completely and this
235 /// will finish appending it to the original object.
236 ///
237 /// Note that this will also write out the unwind information sections if
238 /// necessary.
239 pub fn finish(mut self) {
240 // Finish up the text section now that we're done adding functions.
241 let text = self.text.finish(&mut self.ctrl_plane);
242 self.obj
243 .section_mut(self.text_section)
244 .set_data(text, self.compiler.page_size_align());
245
246 // Append the unwind information for all our functions, if necessary.
247 self.unwind_info
248 .append_section(self.compiler, self.obj, self.text_section);
249 }
250}
251
252/// Builder used to create unwind information for a set of functions added to a
253/// text section.
254#[derive(Default)]
255struct UnwindInfoBuilder<'a> {
256 windows_xdata: Vec<u8>,
257 windows_pdata: Vec<RUNTIME_FUNCTION>,
258 systemv_unwind_info: Vec<(u64, &'a systemv::UnwindInfo)>,
259}
260
261// This is a mirror of `RUNTIME_FUNCTION` in the Windows API, but defined here
262// to ensure everything is always `u32` and to have it available on all
263// platforms. Note that all of these specifiers here are relative to a "base
264// address" which we define as the base of where the text section is eventually
265// loaded.
266#[allow(non_camel_case_types)]
267struct RUNTIME_FUNCTION {
268 begin: u32,
269 end: u32,
270 unwind_address: u32,
271}
272
273impl<'a> UnwindInfoBuilder<'a> {
274 /// Pushes the unwind information for a function into this builder.
275 ///
276 /// The function being described must be located at `function_offset` within
277 /// the text section itself, and the function's size is specified by
278 /// `function_len`.
279 ///
280 /// The `info` should come from Cranelift. and is handled here depending on
281 /// its flavor.
282 fn push(&mut self, function_offset: u64, function_len: u64, info: &'a UnwindInfo) {
283 match info {
284 // Windows unwind information is stored in two locations:
285 //
286 // * First is the actual unwinding information which is stored
287 // in the `.xdata` section. This is where `info`'s emitted
288 // information will go into.
289 // * Second are pointers to connect all this unwind information,
290 // stored in the `.pdata` section. The `.pdata` section is an
291 // array of `RUNTIME_FUNCTION` structures.
292 //
293 // Due to how these will be loaded at runtime the `.pdata` isn't
294 // actually assembled byte-wise here. Instead that's deferred to
295 // happen later during `write_windows_unwind_info` which will apply
296 // a further offset to `unwind_address`.
297 UnwindInfo::WindowsX64(info) => {
298 let unwind_size = info.emit_size();
299 let mut unwind_info = vec![0; unwind_size];
300 info.emit(&mut unwind_info);
301
302 // `.xdata` entries are always 4-byte aligned
303 //
304 // FIXME: in theory we could "intern" the `unwind_info` value
305 // here within the `.xdata` section. Most of our unwind
306 // information for functions is probably pretty similar in which
307 // case the `.xdata` could be quite small and `.pdata` could
308 // have multiple functions point to the same unwinding
309 // information.
310 while self.windows_xdata.len() % 4 != 0 {
311 self.windows_xdata.push(0x00);
312 }
313 let unwind_address = self.windows_xdata.len();
314 self.windows_xdata.extend_from_slice(&unwind_info);
315
316 // Record a `RUNTIME_FUNCTION` which this will point to.
317 self.windows_pdata.push(RUNTIME_FUNCTION {
318 begin: u32::try_from(function_offset).unwrap(),
319 end: u32::try_from(function_offset + function_len).unwrap(),
320 unwind_address: u32::try_from(unwind_address).unwrap(),
321 });
322 }
323
324 // System-V is different enough that we just record the unwinding
325 // information to get processed at a later time.
326 UnwindInfo::SystemV(info) => {
327 self.systemv_unwind_info.push((function_offset, info));
328 }
329
330 _ => panic!("some unwind info isn't handled here"),
331 }
332 }
333
334 /// Appends the unwind information section, if any, to the `obj` specified.
335 ///
336 /// This function must be called immediately after the text section was
337 /// added to a builder. The unwind information section must trail the text
338 /// section immediately.
339 ///
340 /// The `text_section`'s section identifier is passed into this function.
341 fn append_section(
342 &self,
343 compiler: &dyn Compiler,
344 obj: &mut Object<'_>,
345 text_section: SectionId,
346 ) {
347 // This write will align the text section to a page boundary and then
348 // return the offset at that point. This gives us the full size of the
349 // text section at that point, after alignment.
350 let text_section_size =
351 obj.append_section_data(text_section, &[], compiler.page_size_align());
352
353 if self.windows_xdata.len() > 0 {
354 assert!(self.systemv_unwind_info.len() == 0);
355 // The `.xdata` section must come first to be just-after the `.text`
356 // section for the reasons documented in `write_windows_unwind_info`
357 // below.
358 let segment = obj.segment_name(StandardSegment::Data).to_vec();
359 let xdata_id = obj.add_section(segment, b".xdata".to_vec(), SectionKind::ReadOnlyData);
360 let segment = obj.segment_name(StandardSegment::Data).to_vec();
361 let pdata_id = obj.add_section(segment, b".pdata".to_vec(), SectionKind::ReadOnlyData);
362 self.write_windows_unwind_info(obj, xdata_id, pdata_id, text_section_size);
363 }
364
365 if self.systemv_unwind_info.len() > 0 {
366 let segment = obj.segment_name(StandardSegment::Data).to_vec();
367 let section_id =
368 obj.add_section(segment, b".eh_frame".to_vec(), SectionKind::ReadOnlyData);
369 self.write_systemv_unwind_info(compiler, obj, section_id, text_section_size)
370 }
371 }
372
373 /// This function appends a nonstandard section to the object which is only
374 /// used during `CodeMemory::publish`.
375 ///
376 /// This custom section effectively stores a `[RUNTIME_FUNCTION; N]` into
377 /// the object file itself. This way registration of unwind info can simply
378 /// pass this slice to the OS itself and there's no need to recalculate
379 /// anything on the other end of loading a module from a precompiled object.
380 ///
381 /// Support for reading this is in `crates/jit/src/unwind/winx64.rs`.
382 fn write_windows_unwind_info(
383 &self,
384 obj: &mut Object<'_>,
385 xdata_id: SectionId,
386 pdata_id: SectionId,
387 text_section_size: u64,
388 ) {
389 // Currently the binary format supported here only supports
390 // little-endian for x86_64, or at least that's all where it's tested.
391 // This may need updates for other platforms.
392 assert_eq!(obj.architecture(), Architecture::X86_64);
393
394 // Append the `.xdata` section, or the actual unwinding information
395 // codes and such which were built as we found unwind information for
396 // functions.
397 obj.append_section_data(xdata_id, &self.windows_xdata, 4);
398
399 // Next append the `.pdata` section, or the array of `RUNTIME_FUNCTION`
400 // structures stored in the binary.
401 //
402 // This memory will be passed at runtime to `RtlAddFunctionTable` which
403 // takes a "base address" and the entries within `RUNTIME_FUNCTION` are
404 // all relative to this base address. The base address we pass is the
405 // address of the text section itself so all the pointers here must be
406 // text-section-relative. The `begin` and `end` fields for the function
407 // it describes are already text-section-relative, but the
408 // `unwind_address` field needs to be updated here since the value
409 // stored right now is `xdata`-section-relative. We know that the
410 // `xdata` section follows the `.text` section so the
411 // `text_section_size` is added in to calculate the final
412 // `.text`-section-relative address of the unwind information.
413 let mut pdata = Vec::with_capacity(self.windows_pdata.len() * 3 * 4);
414 for info in self.windows_pdata.iter() {
415 pdata.extend_from_slice(&info.begin.to_le_bytes());
416 pdata.extend_from_slice(&info.end.to_le_bytes());
417 let address = text_section_size + u64::from(info.unwind_address);
418 let address = u32::try_from(address).unwrap();
419 pdata.extend_from_slice(&address.to_le_bytes());
420 }
421 obj.append_section_data(pdata_id, &pdata, 4);
422 }
423
424 /// This function appends a nonstandard section to the object which is only
425 /// used during `CodeMemory::publish`.
426 ///
427 /// This will generate a `.eh_frame` section, but not one that can be
428 /// naively loaded. The goal of this section is that we can create the
429 /// section once here and never again does it need to change. To describe
430 /// dynamically loaded functions though each individual FDE needs to talk
431 /// about the function's absolute address that it's referencing. Naturally
432 /// we don't actually know the function's absolute address when we're
433 /// creating an object here.
434 ///
435 /// To solve this problem the FDE address encoding mode is set to
436 /// `DW_EH_PE_pcrel`. This means that the actual effective address that the
437 /// FDE describes is a relative to the address of the FDE itself. By
438 /// leveraging this relative-ness we can assume that the relative distance
439 /// between the FDE and the function it describes is constant, which should
440 /// allow us to generate an FDE ahead-of-time here.
441 ///
442 /// For now this assumes that all the code of functions will start at a
443 /// page-aligned address when loaded into memory. The eh_frame encoded here
444 /// then assumes that the text section is itself page aligned to its size
445 /// and the eh_frame will follow just after the text section. This means
446 /// that the relative offsets we're using here is the FDE going backwards
447 /// into the text section itself.
448 ///
449 /// Note that the library we're using to create the FDEs, `gimli`, doesn't
450 /// actually encode addresses relative to the FDE itself. Instead the
451 /// addresses are encoded relative to the start of the `.eh_frame` section.
452 /// This makes it much easier for us where we provide the relative offset
453 /// from the start of `.eh_frame` to the function in the text section, which
454 /// given our layout basically means the offset of the function in the text
455 /// section from the end of the text section.
456 ///
457 /// A final note is that the reason we page-align the text section's size is
458 /// so the .eh_frame lives on a separate page from the text section itself.
459 /// This allows `.eh_frame` to have different virtual memory permissions,
460 /// such as being purely read-only instead of read/execute like the code
461 /// bits.
462 fn write_systemv_unwind_info(
463 &self,
464 compiler: &dyn Compiler,
465 obj: &mut Object<'_>,
466 section_id: SectionId,
467 text_section_size: u64,
468 ) {
469 let mut cie = compiler
470 .create_systemv_cie()
471 .expect("must be able to create a CIE for system-v unwind info");
472 let mut table = FrameTable::default();
473 cie.fde_address_encoding = gimli::constants::DW_EH_PE_pcrel;
474 let cie_id = table.add_cie(cie);
475
476 for (text_section_off, unwind_info) in self.systemv_unwind_info.iter() {
477 let backwards_off = text_section_size - text_section_off;
478 let actual_offset = -i64::try_from(backwards_off).unwrap();
479 // Note that gimli wants an unsigned 64-bit integer here, but
480 // unwinders just use this constant for a relative addition with the
481 // address of the FDE, which means that the sign doesn't actually
482 // matter.
483 let fde = unwind_info.to_fde(Address::Constant(actual_offset as u64));
484 table.add_fde(cie_id, fde);
485 }
486 let endian = match compiler.triple().endianness().unwrap() {
487 target_lexicon::Endianness::Little => RunTimeEndian::Little,
488 target_lexicon::Endianness::Big => RunTimeEndian::Big,
489 };
490 let mut eh_frame = EhFrame(MyVec(EndianVec::new(endian)));
491 table.write_eh_frame(&mut eh_frame).unwrap();
492
493 // Some unwinding implementations expect a terminating "empty" length so
494 // a 0 is written at the end of the table for those implementations.
495 let mut endian_vec = (eh_frame.0).0;
496 endian_vec.write_u32(0).unwrap();
497 obj.append_section_data(section_id, endian_vec.slice(), 1);
498
499 use gimli::constants;
500 use gimli::write::Error;
501
502 struct MyVec(EndianVec<RunTimeEndian>);
503
504 impl Writer for MyVec {
505 type Endian = RunTimeEndian;
506
507 fn endian(&self) -> RunTimeEndian {
508 self.0.endian()
509 }
510
511 fn len(&self) -> usize {
512 self.0.len()
513 }
514
515 fn write(&mut self, buf: &[u8]) -> Result<(), Error> {
516 self.0.write(buf)
517 }
518
519 fn write_at(&mut self, pos: usize, buf: &[u8]) -> Result<(), Error> {
520 self.0.write_at(pos, buf)
521 }
522
523 // FIXME(gimli-rs/gimli#576) this is the definition we want for
524 // `write_eh_pointer` but the default implementation, at the time
525 // of this writing, uses `offset - val` instead of `val - offset`.
526 // A PR has been merged to fix this but until that's published we
527 // can't use it.
528 fn write_eh_pointer(
529 &mut self,
530 address: Address,
531 eh_pe: constants::DwEhPe,
532 size: u8,
533 ) -> Result<(), Error> {
534 let val = match address {
535 Address::Constant(val) => val,
536 Address::Symbol { .. } => unreachable!(),
537 };
538 assert_eq!(eh_pe.application(), constants::DW_EH_PE_pcrel);
539 let offset = self.len() as u64;
540 let val = val.wrapping_sub(offset);
541 self.write_eh_pointer_data(val, eh_pe.format(), size)
542 }
543 }
544 }
545}
546
547fn libcall_name(call: LibCall) -> &'static str {
548 use wasmtime_environ::obj::LibCall as LC;
549 let other = match call {
550 LibCall::FloorF32 => LC::FloorF32,
551 LibCall::FloorF64 => LC::FloorF64,
552 LibCall::NearestF32 => LC::NearestF32,
553 LibCall::NearestF64 => LC::NearestF64,
554 LibCall::CeilF32 => LC::CeilF32,
555 LibCall::CeilF64 => LC::CeilF64,
556 LibCall::TruncF32 => LC::TruncF32,
557 LibCall::TruncF64 => LC::TruncF64,
558 LibCall::FmaF32 => LC::FmaF32,
559 LibCall::FmaF64 => LC::FmaF64,
560 LibCall::X86Pshufb => LC::X86Pshufb,
561 _ => panic!("unknown libcall to give a name to: {call:?}"),
562 };
563 other.symbol()
564}