vulkano 0.35.1

Safe wrapper for the Vulkan graphics API
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
// Most of the code in this module comes from the rangemap crate, which is licensed under either of
// - Apache License, Version 2.0 (https://github.com/jeffparsons/rangemap/blob/master/LICENSE-APACHE
//   or http://www.apache.org/licenses/LICENSE-2.0)
// - MIT (https://github.com/jeffparsons/rangemap/blob/master/LICENSE-MIT or http://opensource.org/licenses/MIT)
// at your option.
//
// The following changes were made:
// - The `RangeStartWrapper` used as key was changed into just the start that's used as the key,
//   and the end is stored in the value (in `Entry`) instead.
// - A `RangeMap::split_at` method was added.
// - Some parts we don't need were removed.

#![allow(dead_code)]

use std::{
    cmp,
    collections::{btree_map, BTreeMap},
    fmt::{Debug, Error as FmtError, Formatter},
    iter::{FromIterator, FusedIterator},
    ops::{Bound, Range},
};

/// A map whose keys are stored as (half-open) ranges bounded
/// inclusively below and exclusively above `(start..end)`.
///
/// Contiguous and overlapping ranges that map to the same value
/// are coalesced into a single range.
#[derive(Clone)]
pub struct RangeMap<K, V> {
    // Stores the range start in the key and the range end in the corresponding value.
    btm: BTreeMap<K, Entry<K, V>>,
}

#[derive(Clone)]
struct Entry<K, V> {
    end: K,
    value: V,
}

impl<K, V> Default for RangeMap<K, V>
where
    K: Ord + Clone,
    V: Eq + Clone,
{
    fn default() -> Self {
        Self::new()
    }
}

impl<K, V> RangeMap<K, V>
where
    K: Ord + Clone,
    V: Eq + Clone,
{
    /// Makes a new empty `RangeMap`.
    #[inline]
    pub fn new() -> Self {
        RangeMap {
            btm: BTreeMap::new(),
        }
    }

    /// Returns a reference to the value corresponding to the given key,
    /// if the key is covered by any range in the map.
    #[inline]
    pub fn get(&self, key: &K) -> Option<&V> {
        self.get_key_value(key).map(|(_range, value)| value)
    }

    /// Returns the range-value pair (as a pair of references) corresponding
    /// to the given key, if the key is covered by any range in the map.
    #[inline]
    pub fn get_key_value(&self, key: &K) -> Option<(Range<K>, &V)> {
        self.btm
            // The only stored range that could contain the given key is the
            // last stored range whose start is less than or equal to this key.
            .range((Bound::Unbounded, Bound::Included(key)))
            .next_back()
            .filter(|(_start, Entry { end, value: _ })| {
                // Does the only candidate range contain
                // the requested key?
                end > key
            })
            .map(|(start, Entry { end, value })| (start.clone()..end.clone(), value))
    }

    /// Returns `true` if any range in the map covers the specified key.
    #[inline]
    pub fn contains_key(&self, key: &K) -> bool {
        self.get(key).is_some()
    }

    /// Returns `true` if any part of the provided range overlaps with a range in the map.
    #[inline]
    pub fn contains_any(&self, range: &Range<K>) -> bool {
        self.range(range).next().is_some()
    }

    /// Gets an iterator over all pairs of key range and value,
    /// ordered by key range.
    ///
    /// The iterator element type is `(&'a Range<K>, &'a V)`.
    #[inline]
    pub fn iter(&self) -> Iter<'_, K, V> {
        Iter {
            inner: self.btm.iter(),
        }
    }

    /// Gets a mutable iterator over all pairs of key range and value,
    /// ordered by key range.
    ///
    /// The iterator element type is `(&'a Range<K>, &'a mut V)`.
    #[inline]
    pub fn iter_mut(&mut self) -> IterMut<'_, K, V> {
        IterMut {
            inner: self.btm.iter_mut(),
        }
    }

    /// Insert a pair of key range and value into the map.
    ///
    /// If the inserted range partially or completely overlaps any
    /// existing range in the map, then the existing range (or ranges) will be
    /// partially or completely replaced by the inserted range.
    ///
    /// If the inserted range either overlaps or is immediately adjacent
    /// any existing range _mapping to the same value_, then the ranges
    /// will be coalesced into a single contiguous range.
    ///
    /// # Panics
    ///
    /// Panics if range `start >= end`.
    pub fn insert(&mut self, mut range: Range<K>, value: V) {
        // We don't want to have to make empty ranges make sense;
        // they don't represent anything meaningful in this structure.
        assert!(range.start < range.end);

        // Wrap up the given range so that we can "borrow"
        // it as a wrapper reference to either its start or end.
        // See `range_wrapper.rs` for explanation of these hacks.
        let new_value = value;

        // Is there a stored range either overlapping the start of
        // the range to insert or immediately preceding it?
        //
        // If there is any such stored range, it will be the last
        // whose start is less than or equal to the start of the range to insert,
        // or the one before that if both of the above cases exist.
        let mut candidates = self
            .btm
            .range((Bound::Unbounded, Bound::Included(&range.start)))
            .rev()
            .take(2)
            .filter(|(start, Entry { end, value: _ })| {
                // Does the candidate range either overlap
                // or immediately precede the range to insert?
                // (Remember that it might actually cover the _whole_
                // range to insert and then some.)
                (*start..end).touches(&(&range.start..&range.end))
            });

        if let Some(mut candidate) = candidates.next() {
            // Or the one before it if both cases described above exist.
            if let Some(another_candidate) = candidates.next() {
                candidate = another_candidate;
            }

            let (stored_start, stored_entry) = (candidate.0.clone(), candidate.1.clone());

            self.adjust_touching_ranges_for_insert(
                stored_start,
                stored_entry,
                &mut range,
                &new_value,
            );
        }

        // Are there any stored ranges whose heads overlap or immediately
        // follow the range to insert?
        //
        // If there are any such stored ranges (that weren't already caught above),
        // their starts will fall somewhere after the start of the range to insert,
        // and on or before its end.
        //
        // This time around, if the latter holds, it also implies
        // the former so we don't need to check here if they touch.
        while let Some((start, entry)) = self
            .btm
            .range((Bound::Included(&range.start), Bound::Included(&range.end)))
            .next()
        {
            // One extra exception: if we have different values,
            // and the stored range starts at the end of the range to insert,
            // then we don't want to keep looping forever trying to find more!
            #[allow(clippy::suspicious_operation_groupings)]
            if start == &range.end && entry.value != new_value {
                // We're beyond the last stored range that could be relevant.
                // Avoid wasting time on irrelevant ranges, or even worse, looping forever.
                // (`adjust_touching_ranges_for_insert` below assumes that the given range
                // is relevant, and behaves very poorly if it is handed a range that it
                // shouldn't be touching.)
                break;
            }

            let stored_start = start.clone();
            let stored_entry = entry.clone();

            self.adjust_touching_ranges_for_insert(
                stored_start,
                stored_entry,
                &mut range,
                &new_value,
            );
        }

        // Insert the (possibly expanded) new range, and we're done!
        self.btm.insert(
            range.start,
            Entry {
                end: range.end,
                value: new_value,
            },
        );
    }

    /// Removes a range from the map, if all or any of it was present.
    ///
    /// If the range to be removed _partially_ overlaps any ranges
    /// in the map, then those ranges will be contracted to no
    /// longer cover the removed range.
    ///
    ///
    /// # Panics
    ///
    /// Panics if range `start >= end`.
    pub fn remove(&mut self, range: Range<K>) {
        // We don't want to have to make empty ranges make sense;
        // they don't represent anything meaningful in this structure.
        assert!(range.start < range.end);

        // Is there a stored range overlapping the start of
        // the range to remove?
        //
        // If there is any such stored range, it will be the last
        // whose start is less than or equal to the start of the range to remove.
        if let Some((stored_start, stored_entry)) = self
            .btm
            .range((Bound::Unbounded, Bound::Included(&range.start)))
            .next_back()
            .filter(|(start, Entry { end, value: _ })| {
                // Does the only candidate range overlap
                // the range to remove?
                (*start..end).overlaps(&(&range.start..&range.end))
            })
            .map(|(stored_start, stored_entry)| (stored_start.clone(), stored_entry.clone()))
        {
            self.adjust_overlapping_ranges_for_remove(stored_start, stored_entry, &range);
        }

        // Are there any stored ranges whose heads overlap the range to remove?
        //
        // If there are any such stored ranges (that weren't already caught above),
        // their starts will fall somewhere after the start of the range to remove,
        // and before its end.
        while let Some((stored_start, stored_entry)) = self
            .btm
            .range((Bound::Excluded(&range.start), Bound::Excluded(&range.end)))
            .next()
            .map(|(stored_start, stored_entry)| (stored_start.clone(), stored_entry.clone()))
        {
            self.adjust_overlapping_ranges_for_remove(stored_start, stored_entry, &range);
        }
    }

    fn adjust_touching_ranges_for_insert(
        &mut self,
        stored_start: K,
        stored_entry: Entry<K, V>,
        new_range: &mut Range<K>,
        new_value: &V,
    ) {
        if stored_entry.value == *new_value {
            // The ranges have the same value, so we can "adopt"
            // the stored range.
            //
            // This means that no matter how big or where the stored range is,
            // we will expand the new range's bounds to subsume it,
            // and then delete the stored range.
            new_range.start = cmp::min(&new_range.start, &stored_start).clone();
            new_range.end = cmp::max(&new_range.end, &stored_entry.end).clone();
            self.btm.remove(&stored_start);
        } else {
            // The ranges have different values.
            if new_range.overlaps(&(stored_start.clone()..stored_entry.end.clone())) {
                // The ranges overlap. This is a little bit more complicated.
                // Delete the stored range, and then add back between
                // 0 and 2 subranges at the ends of the range to insert.
                self.btm.remove(&stored_start);
                if stored_start < new_range.start {
                    // Insert the piece left of the range to insert.
                    self.btm.insert(
                        stored_start,
                        Entry {
                            end: new_range.start.clone(),
                            value: stored_entry.value.clone(),
                        },
                    );
                }
                if stored_entry.end > new_range.end {
                    // Insert the piece right of the range to insert.
                    self.btm.insert(new_range.end.clone(), stored_entry);
                }
            } else {
                // No-op; they're not overlapping,
                // so we can just keep both ranges as they are.
            }
        }
    }

    fn adjust_overlapping_ranges_for_remove(
        &mut self,
        stored_start: K,
        stored_entry: Entry<K, V>,
        range_to_remove: &Range<K>,
    ) {
        // Delete the stored range, and then add back between
        // 0 and 2 subranges at the ends of the range to remove.
        self.btm.remove(&stored_start);

        if stored_start < range_to_remove.start {
            // Insert the piece left of the range to remove.
            self.btm.insert(
                stored_start,
                Entry {
                    end: range_to_remove.start.clone(),
                    value: stored_entry.value.clone(),
                },
            );
        }

        if stored_entry.end > range_to_remove.end {
            // Insert the piece right of the range to remove.
            self.btm.insert(range_to_remove.end.clone(), stored_entry);
        }
    }

    /// Splits a range in two at the provided key.
    ///
    /// Does nothing if no range exists at the key, or if the key is at a range boundary.
    pub fn split_at(&mut self, key: &K) {
        // Find a range that contains the key, but doesn't start or end with the key.
        let bounds = (Bound::Unbounded, Bound::Excluded(key.clone()));

        if let Some((_start, entry)) = self
            .btm
            .range_mut(bounds)
            .next_back()
            .filter(|(_start, Entry { end, value: _ })| end > key)
        {
            let second_half_entry = entry.clone();
            // Adjust the end of the range.
            entry.end = key.clone();
            // Insert the second half of the range.
            self.btm.insert(key.clone(), second_half_entry);
        }
    }

    /// Gets an iterator over all pairs of key range and value, where the key range overlaps with
    /// the provided range.
    ///
    /// The iterator element type is `(&Range<K>, &V)`.
    pub fn range(&self, range: &Range<K>) -> RangeIter<'_, K, V> {
        let start = self
            .get_key_value(&range.start)
            .map_or(range.start.clone(), |(k, _v)| k.start);
        let end = range.end.clone();

        RangeIter {
            inner: self
                .btm
                .range((Bound::Included(start), Bound::Excluded(end))),
        }
    }

    /// Gets a mutable iterator over all pairs of key range and value, where the key range overlaps
    /// with the provided range.
    ///
    /// The iterator element type is `(&Range<K>, &mut V)`.
    pub fn range_mut(&mut self, range: &Range<K>) -> RangeMutIter<'_, K, V> {
        let start = self
            .get_key_value(&range.start)
            .map_or(range.start.clone(), |(k, _v)| k.start);
        let end = range.end.clone();

        RangeMutIter {
            inner: self
                .btm
                .range_mut((Bound::Included(start), Bound::Excluded(end))),
        }
    }
}

/// An iterator over the entries of a `RangeMap`, ordered by key range.
///
/// The iterator element type is `(&'a Range<K>, &'a V)`.
///
/// This `struct` is created by the [`iter`] method on [`RangeMap`]. See its
/// documentation for more.
///
/// [`iter`]: RangeMap::iter
pub struct Iter<'a, K, V> {
    inner: btree_map::Iter<'a, K, Entry<K, V>>,
}

impl<'a, K, V> Iterator for Iter<'a, K, V>
where
    K: 'a + Clone,
    V: 'a,
{
    type Item = (Range<K>, &'a V);

    fn next(&mut self) -> Option<Self::Item> {
        self.inner
            .next()
            .map(|(start, Entry { end, value })| (start.clone()..end.clone(), value))
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        self.inner.size_hint()
    }
}

impl<K, V> FusedIterator for Iter<'_, K, V> where K: Ord + Clone {}
impl<K, V> ExactSizeIterator for Iter<'_, K, V> where K: Ord + Clone {}

/// An iterator over the entries of a `RangeMap`, ordered by key range.
///
/// The iterator element type is `(&'a Range<K>, &'a V)`.
///
/// This `struct` is created by the [`iter`] method on [`RangeMap`]. See its
/// documentation for more.
///
/// [`iter`]: RangeMap::iter
pub struct IterMut<'a, K, V> {
    inner: btree_map::IterMut<'a, K, Entry<K, V>>,
}

impl<'a, K, V> Iterator for IterMut<'a, K, V>
where
    K: 'a + Clone,
    V: 'a,
{
    type Item = (Range<K>, &'a mut V);

    fn next(&mut self) -> Option<Self::Item> {
        self.inner
            .next()
            .map(|(start, Entry { end, value })| (start.clone()..end.clone(), value))
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        self.inner.size_hint()
    }
}

impl<K, V> FusedIterator for IterMut<'_, K, V> where K: Ord + Clone {}
impl<K, V> ExactSizeIterator for IterMut<'_, K, V> where K: Ord + Clone {}

/// An owning iterator over the entries of a `RangeMap`, ordered by key range.
///
/// The iterator element type is `(Range<K>, V)`.
///
/// This `struct` is created by the [`into_iter`] method on [`RangeMap`]
/// (provided by the `IntoIterator` trait). See its documentation for more.
///
/// [`into_iter`]: IntoIterator::into_iter
pub struct IntoIter<K, V> {
    inner: btree_map::IntoIter<K, Entry<K, V>>,
}

impl<K, V> IntoIterator for RangeMap<K, V> {
    type Item = (Range<K>, V);
    type IntoIter = IntoIter<K, V>;

    fn into_iter(self) -> Self::IntoIter {
        IntoIter {
            inner: self.btm.into_iter(),
        }
    }
}

impl<K, V> Iterator for IntoIter<K, V> {
    type Item = (Range<K>, V);

    fn next(&mut self) -> Option<Self::Item> {
        self.inner
            .next()
            .map(|(start, Entry { end, value })| (start..end, value))
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        self.inner.size_hint()
    }
}

impl<K, V> FusedIterator for IntoIter<K, V> where K: Ord + Clone {}
impl<K, V> ExactSizeIterator for IntoIter<K, V> where K: Ord + Clone {}

// We can't just derive this automatically, because that would
// expose irrelevant (and private) implementation details.
// Instead implement it in the same way that the underlying BTreeMap does.
impl<K: Debug, V: Debug> Debug for RangeMap<K, V>
where
    K: Ord + Clone,
    V: Eq + Clone,
{
    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), FmtError> {
        f.debug_map().entries(self.iter()).finish()
    }
}

impl<K, V> FromIterator<(Range<K>, V)> for RangeMap<K, V>
where
    K: Ord + Clone,
    V: Eq + Clone,
{
    fn from_iter<T: IntoIterator<Item = (Range<K>, V)>>(iter: T) -> Self {
        let mut range_map = RangeMap::new();
        range_map.extend(iter);
        range_map
    }
}

impl<K, V> Extend<(Range<K>, V)> for RangeMap<K, V>
where
    K: Ord + Clone,
    V: Eq + Clone,
{
    fn extend<T: IntoIterator<Item = (Range<K>, V)>>(&mut self, iter: T) {
        iter.into_iter().for_each(move |(k, v)| {
            self.insert(k, v);
        })
    }
}

/// An iterator over entries of a `RangeMap` whose range overlaps with a specified range.
///
/// The iterator element type is `(&'a Range<K>, &'a V)`.
///
/// This `struct` is created by the [`range`] method on [`RangeMap`]. See its
/// documentation for more.
///
/// [`range`]: RangeMap::range
pub struct RangeIter<'a, K, V> {
    inner: btree_map::Range<'a, K, Entry<K, V>>,
}

impl<K, V> FusedIterator for RangeIter<'_, K, V> where K: Ord + Clone {}

impl<'a, K, V> Iterator for RangeIter<'a, K, V>
where
    K: 'a + Clone,
    V: 'a,
{
    type Item = (Range<K>, &'a V);

    fn next(&mut self) -> Option<Self::Item> {
        self.inner
            .next()
            .map(|(start, Entry { end, value })| (start.clone()..end.clone(), value))
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        self.inner.size_hint()
    }
}

/// A mutable iterator over entries of a `RangeMap` whose range overlaps with a specified range.
///
/// The iterator element type is `(&'a Range<K>, &'a mut V)`.
///
/// This `struct` is created by the [`range_mut`] method on [`RangeMap`]. See its
/// documentation for more.
///
/// [`range_mut`]: RangeMap::range_mut
pub struct RangeMutIter<'a, K, V> {
    inner: btree_map::RangeMut<'a, K, Entry<K, V>>,
}

impl<K, V> FusedIterator for RangeMutIter<'_, K, V> where K: Ord + Clone {}

impl<'a, K, V> Iterator for RangeMutIter<'a, K, V>
where
    K: 'a + Clone,
    V: 'a,
{
    type Item = (Range<K>, &'a mut V);

    fn next(&mut self) -> Option<Self::Item> {
        self.inner
            .next()
            .map(|(start, Entry { end, value })| (start.clone()..end.clone(), value))
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        self.inner.size_hint()
    }
}

pub trait RangeExt<T> {
    fn overlaps(&self, other: &Self) -> bool;
    fn touches(&self, other: &Self) -> bool;
}

impl<T> RangeExt<T> for Range<T>
where
    T: Ord,
{
    fn overlaps(&self, other: &Self) -> bool {
        // Strictly less than, because ends are excluded.
        cmp::max(&self.start, &other.start) < cmp::min(&self.end, &other.end)
    }

    fn touches(&self, other: &Self) -> bool {
        // Less-than-or-equal-to because if one end is excluded, the other is included.
        // I.e. the two could be joined into a single range, because they're overlapping
        // or immediately adjacent.
        cmp::max(&self.start, &other.start) <= cmp::min(&self.end, &other.end)
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use std::{format, vec, vec::Vec};

    trait RangeMapExt<K, V> {
        fn to_vec(&self) -> Vec<(Range<K>, V)>;
    }

    impl<K, V> RangeMapExt<K, V> for RangeMap<K, V>
    where
        K: Ord + Clone,
        V: Eq + Clone,
    {
        fn to_vec(&self) -> Vec<(Range<K>, V)> {
            self.iter().map(|(kr, v)| (kr, v.clone())).collect()
        }
    }

    //
    // Insertion tests
    //

    #[test]
    fn empty_map_is_empty() {
        let range_map: RangeMap<u32, bool> = RangeMap::new();
        assert_eq!(range_map.to_vec(), vec![]);
    }

    #[test]
    fn insert_into_empty_map() {
        let mut range_map: RangeMap<u32, bool> = RangeMap::new();
        range_map.insert(0..50, false);
        assert_eq!(range_map.to_vec(), vec![(0..50, false)]);
    }

    #[test]
    fn new_same_value_immediately_following_stored() {
        let mut range_map: RangeMap<u32, bool> = RangeMap::new();
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ●---◌ ◌ ◌ ◌ ◌ ◌ ◌
        range_map.insert(1..3, false);
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ◌ ◌ ●---◌ ◌ ◌ ◌ ◌
        range_map.insert(3..5, false);
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ●-------◌ ◌ ◌ ◌ ◌
        assert_eq!(range_map.to_vec(), vec![(1..5, false)]);
    }

    #[test]
    fn new_different_value_immediately_following_stored() {
        let mut range_map: RangeMap<u32, bool> = RangeMap::new();
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ●---◌ ◌ ◌ ◌ ◌ ◌ ◌
        range_map.insert(1..3, false);
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ◌ ◌ ◆---◇ ◌ ◌ ◌ ◌
        range_map.insert(3..5, true);
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ●---◌ ◌ ◌ ◌ ◌ ◌ ◌
        // ◌ ◌ ◌ ◆---◇ ◌ ◌ ◌ ◌
        assert_eq!(range_map.to_vec(), vec![(1..3, false), (3..5, true)]);
    }

    #[test]
    fn new_same_value_overlapping_end_of_stored() {
        let mut range_map: RangeMap<u32, bool> = RangeMap::new();
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ●-----◌ ◌ ◌ ◌ ◌ ◌
        range_map.insert(1..4, false);
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ◌ ◌ ●---◌ ◌ ◌ ◌ ◌
        range_map.insert(3..5, false);
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ●-------◌ ◌ ◌ ◌ ◌
        assert_eq!(range_map.to_vec(), vec![(1..5, false)]);
    }

    #[test]
    fn new_different_value_overlapping_end_of_stored() {
        let mut range_map: RangeMap<u32, bool> = RangeMap::new();
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ●-----◌ ◌ ◌ ◌ ◌ ◌
        range_map.insert(1..4, false);
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ◌ ◌ ◆---◇ ◌ ◌ ◌ ◌
        range_map.insert(3..5, true);
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ●---◌ ◌ ◌ ◌ ◌ ◌ ◌
        // ◌ ◌ ◌ ◆---◇ ◌ ◌ ◌ ◌
        assert_eq!(range_map.to_vec(), vec![(1..3, false), (3..5, true)]);
    }

    #[test]
    fn new_same_value_immediately_preceding_stored() {
        let mut range_map: RangeMap<u32, bool> = RangeMap::new();
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ◌ ◌ ●---◌ ◌ ◌ ◌ ◌
        range_map.insert(3..5, false);
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ●---◌ ◌ ◌ ◌ ◌ ◌ ◌
        range_map.insert(1..3, false);
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ●-------◌ ◌ ◌ ◌ ◌
        assert_eq!(range_map.to_vec(), vec![(1..5, false)]);
    }

    #[test]
    fn new_different_value_immediately_preceding_stored() {
        let mut range_map: RangeMap<u32, bool> = RangeMap::new();
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ◌ ◌ ◆---◇ ◌ ◌ ◌ ◌
        range_map.insert(3..5, true);
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ●---◌ ◌ ◌ ◌ ◌ ◌ ◌
        range_map.insert(1..3, false);
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ●---◌ ◌ ◌ ◌ ◌ ◌ ◌
        // ◌ ◌ ◌ ◆---◇ ◌ ◌ ◌ ◌
        assert_eq!(range_map.to_vec(), vec![(1..3, false), (3..5, true)]);
    }

    #[test]
    fn new_same_value_wholly_inside_stored() {
        let mut range_map: RangeMap<u32, bool> = RangeMap::new();
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ●-------◌ ◌ ◌ ◌ ◌
        range_map.insert(1..5, false);
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ◌ ●---◌ ◌ ◌ ◌ ◌ ◌ ◌
        range_map.insert(2..4, false);
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ●-------◌ ◌ ◌ ◌ ◌
        assert_eq!(range_map.to_vec(), vec![(1..5, false)]);
    }

    #[test]
    fn new_different_value_wholly_inside_stored() {
        let mut range_map: RangeMap<u32, bool> = RangeMap::new();
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ◆-------◇ ◌ ◌ ◌ ◌
        range_map.insert(1..5, true);
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ◌ ●---◌ ◌ ◌ ◌ ◌ ◌ ◌
        range_map.insert(2..4, false);
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ●-◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌
        // ◌ ◌ ◆---◇ ◌ ◌ ◌ ◌ ◌
        // ◌ ◌ ◌ ◌ ●-◌ ◌ ◌ ◌ ◌
        assert_eq!(
            range_map.to_vec(),
            vec![(1..2, true), (2..4, false), (4..5, true)]
        );
    }

    #[test]
    fn replace_at_end_of_existing_range_should_coalesce() {
        let mut range_map: RangeMap<u32, bool> = RangeMap::new();
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ●---◌ ◌ ◌ ◌ ◌ ◌ ◌
        range_map.insert(1..3, false);
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ◌ ◌ ●---◌ ◌ ◌ ◌ ◌
        range_map.insert(3..5, true);
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ◌ ◌ ●---◌ ◌ ◌ ◌ ◌
        range_map.insert(3..5, false);
        // 0 1 2 3 4 5 6 7 8 9
        // ◌ ●-------◌ ◌ ◌ ◌ ◌
        assert_eq!(range_map.to_vec(), vec![(1..5, false)]);
    }

    //
    // Get* tests
    //

    #[test]
    fn get() {
        let mut range_map: RangeMap<u32, bool> = RangeMap::new();
        range_map.insert(0..50, false);
        assert_eq!(range_map.get(&49), Some(&false));
        assert_eq!(range_map.get(&50), None);
    }

    #[test]
    fn get_key_value() {
        let mut range_map: RangeMap<u32, bool> = RangeMap::new();
        range_map.insert(0..50, false);
        assert_eq!(range_map.get_key_value(&49), Some((0..50, &false)));
        assert_eq!(range_map.get_key_value(&50), None);
    }

    //
    // Removal tests
    //

    #[test]
    fn remove_from_empty_map() {
        let mut range_map: RangeMap<u32, bool> = RangeMap::new();
        range_map.remove(0..50);
        assert_eq!(range_map.to_vec(), vec![]);
    }

    #[test]
    fn remove_non_covered_range_before_stored() {
        let mut range_map: RangeMap<u32, bool> = RangeMap::new();
        range_map.insert(25..75, false);
        range_map.remove(0..25);
        assert_eq!(range_map.to_vec(), vec![(25..75, false)]);
    }

    #[test]
    fn remove_non_covered_range_after_stored() {
        let mut range_map: RangeMap<u32, bool> = RangeMap::new();
        range_map.insert(25..75, false);
        range_map.remove(75..100);
        assert_eq!(range_map.to_vec(), vec![(25..75, false)]);
    }

    #[test]
    fn remove_overlapping_start_of_stored() {
        let mut range_map: RangeMap<u32, bool> = RangeMap::new();
        range_map.insert(25..75, false);
        range_map.remove(0..30);
        assert_eq!(range_map.to_vec(), vec![(30..75, false)]);
    }

    #[test]
    fn remove_middle_of_stored() {
        let mut range_map: RangeMap<u32, bool> = RangeMap::new();
        range_map.insert(25..75, false);
        range_map.remove(30..70);
        assert_eq!(range_map.to_vec(), vec![(25..30, false), (70..75, false)]);
    }

    #[test]
    fn remove_overlapping_end_of_stored() {
        let mut range_map: RangeMap<u32, bool> = RangeMap::new();
        range_map.insert(25..75, false);
        range_map.remove(70..100);
        assert_eq!(range_map.to_vec(), vec![(25..70, false)]);
    }

    #[test]
    fn remove_exactly_stored() {
        let mut range_map: RangeMap<u32, bool> = RangeMap::new();
        range_map.insert(25..75, false);
        range_map.remove(25..75);
        assert_eq!(range_map.to_vec(), vec![]);
    }

    #[test]
    fn remove_superset_of_stored() {
        let mut range_map: RangeMap<u32, bool> = RangeMap::new();
        range_map.insert(25..75, false);
        range_map.remove(0..100);
        assert_eq!(range_map.to_vec(), vec![]);
    }

    // impl Debug

    #[test]
    fn map_debug_repr_looks_right() {
        let mut map: RangeMap<u32, ()> = RangeMap::new();

        // Empty
        assert_eq!(format!("{:?}", map), "{}");

        // One entry
        map.insert(2..5, ());
        assert_eq!(format!("{:?}", map), "{2..5: ()}");

        // Many entries
        map.insert(6..7, ());
        map.insert(8..9, ());
        assert_eq!(format!("{:?}", map), "{2..5: (), 6..7: (), 8..9: ()}");
    }

    // Iterator Tests

    #[test]
    fn into_iter_matches_iter() {
        // Just use vec since that's the same implementation we'd expect
        let mut range_map: RangeMap<u32, bool> = RangeMap::new();
        range_map.insert(1..3, false);
        range_map.insert(3..5, true);

        let cloned = range_map.to_vec();
        let consumed = range_map.into_iter().collect::<Vec<_>>();

        // Correct value
        assert_eq!(cloned, vec![(1..3, false), (3..5, true)]);

        // Equality
        assert_eq!(cloned, consumed);
    }
}