1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
//!
//! 
//! 
//! 
//!
//! VSDB is a 'Git' in the form of KV-database.
//!
//! Based on the powerful version control function of VSDB, you can easily give your data structure the ability to version management.
//!
//! **Make everything versioned !!**
//!
//! ## Highlights
//!
//! - Support Git-like verison operations, such as:
//! - Create countless branches and merge them to their parents
//! - Rolling back a 'branch' to a specified historical 'version'
//! - Querying the historical value of a key on the specified 'branch'
//! - Most APIs is similar as the coresponding data structures in the standard library
//! - Use `Vecx` just like `Vec`
//! - Use `Mapx` just like `HashMap`
//! - Use `MapxOrd` just like `BTreeMap`
//! - ...
//!
//! ## Examples
//!
//! Suppose you have a great algorithm like this:
//!
//! ```compile_fail
//! struct GreatAlgo {
//! a: Vec<...>,
//! b: BTreeMap<...>,
//! c: u128,
//! d: HashMap<...>,
//! e: ...
//! }
//! ```
//!
//! Simply replace the original structure with the corresponding VSDB data structure,
//! and your algorithm get the powerful version control ability at once!
//!
//! ```compile_fail
//! #[dervive(Vs, Default)]
//! struct GreatAlgo {
//! a: VecxVs<...>,
//! b: MapxOrdVs<...>,
//! c: OrphanVs<u128>,
//! d: MapxVs<...>,
//! e: ...
//! }
//!
//! let algo = GreatAlgo::default();
//!
//! algo.get_by_branch_version(...);
//! algo.branch_create(...);
//! algo.branch_create_by_base_branch(...);
//! algo.branch_create_by_base_branch_version(...);
//! algo.branch_remove(...);
//! algo.version_pop(...);
//! algo.prune();
//! ```
//!
//! **NOTE !!**
//!
//! the `#[derive(Vs)]` macro can be applied to structures
//! whose internal fields are all types defined in VSDB
//! (primitive types and their collections are also supported),
//! but can not be applied to nesting wrapper among VSDB-types,
//! we recommend you to use the [**multi-key APIs**](crate::versioned_multi_key)
//! if you indeed require these functions(better performance also),
//! or you will have to implement the `VsMgmt` trait manually.
//!
//! This data structure can be handled correctly by `#[derive(Vs)]`:
//!
//! ```no_run
//! use std::collections::{
//! HashMap, HashSet, BTreeSet, VecDeque, LinkedList
//! };
//! use std::sync::atomic::AtomicU64;
//! use std::marker::PhantomData;
//! use ruc::*;
//! use vsdb::{
//! BranchName, VersionName, ParentBranchName,
//! MapxVs, MapxOrdVs, OrphanVs, VsMgmt, Vs,
//! VecxVs, impl_vs_methods_nope
//! };
//!
//! #[derive(Vs)]
//! struct GoodCase<K, T> {
//! a: VecxVs<i64>,
//! b: SubItem0,
//! c: SubItem1,
//! d: SubItem2,
//! e: u8,
//! f: Vec<i16>,
//! g: VecDeque<i64>,
//! h: BTreeSet<u16>,
//! i: HashMap<K, AtomicU64>,
//! j: HashSet<i32>,
//! k: LinkedList<()>,
//! l: Box<dyn AsRef<bool>>,
//! m: Box<dyn AsRef<[Vec<u128>]>>,
//! n: PhantomData<T>,
//! }
//!
//! #[derive(Vs)]
//! struct SubItem0(MapxVs<u8, u8>, VecxVs<u8>);
//!
//! #[derive(Vs)]
//! struct SubItem1 {
//! a: OrphanVs<i16>,
//! b: MapxOrdVs<String, u8>
//! }
//!
//! #[derive(Vs)]
//! struct SubItem2 {
//! a: i8,
//! b: u128
//! }
//!
//! // // A nope implementation of `VsMgmt` for custom stateless types.
//! // // the `#[derive(Vs)]` on 'SubItem2' is same as this implementation.
//! // impl VsMgmt for SubItem2 {
//! // impl_vs_methods_nope!();
//! // }
//! ```
//!
//! **But** this one can NOT be handled correctly by `#[derive(Vs)]`:
//!
//! ```no_run
//! use vsdb::{Vs, VecxVs, MapxVs};
//! use ruc::*;
//!
//! // It can be compiled, but the result is wrong !
//! // The versioned methods of the inner 'MapxVs<u8, u8>' will missing,
//! // We recommend you to use the 'multi-key' APIs of VSDB, or
//! // you will have to implement the 'VsMgmt' trait manually.
//! #[derive(Vs)]
//! struct BadCase {
//! a: VecxVs<MapxVs<u8, u8>>,
//! }
//! ```
//!
//! Please check the [**multi-key functions**](crate::versioned_multi_key)
//! if you have requirements of the above or similar scenes.
//!
//! ## Compilation features
//!
//! - \[**default**] `sled_engine`, use sled as the backend database
//! - Faster compilation speed
//! - Support for compiling into a statically linked object
//! - `rocks_engine`, use rocksdb as the backend database
//! - Faster running speed
//! - Can not be compiled into a statically linked object
//! - \[**default**] `msgpack_codec`, use msgpack as the codec
//! - Faster running speed
//! - `bcs_codec`, use bcs as the codec
//! - Created by the 'Libre' project of Facebook
//! - Security reinforcement for blockchain scenarios
//! - \[**default**] `derive`, enable the `Vs` procedural macro
//! - `compress`, enable compression in the backend database
//! - `hash`, enable an optional hash function
//! - Based on the 'blake3' crate
//!
//! ## Low-level design
//!
//! Based on the underlying one-dimensional linear storage structure (native kv-database, such as sled/rocksdb, etc.), multiple different namespaces are divided, and then abstract each dimension in the multi-dimensional logical structure based on these divided namespaces.
//!
//! In the category of kv-database, namespaces can be expressed as different key ranges, or different key prefix.
//!
//! This is the same as expressing complex data structures in computer memory(the memory itself is just a one-dimensional linear structure).
//!
//! User data will be divided into two dimensions: 'branch' and 'version', the functions of the 'basic' category are stateless, and the functions of the 'versioned' category are stateful. In the internal implementation, each stateful function is implemented based on its corresponding stateless function,
//! all stateful data has two additional identification dimensions ('branch' and 'version'), somewhat like the logic in Git. Stateless functions do not have the feature of 'version' management, but they have higher performance.
//!
//! ## NOTE
//!
//! The serialized result of a VSDB instance can not be used as the basis for distributed consensus, because the serialized result only contains some meta-information(storage paths, etc.), and these meta-information are likely to be different in different environments, the correct way is to read what you need from it, and then process the real content.
pub use ;
pub use ;
pub use ;
pub use VsMgmt;
pub use Vs;
pub use ;
pub use ;