voirs-recognizer 0.1.0-alpha.3

Voice recognition and analysis capabilities for VoiRS
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
# VoiRS Recognizer

[![Crates.io](https://img.shields.io/crates/v/voirs-recognizer)](https://crates.io/crates/voirs-recognizer)
[![Documentation](https://docs.rs/voirs-recognizer/badge.svg)](https://docs.rs/voirs-recognizer)
[![License](https://img.shields.io/crates/l/voirs-recognizer)](LICENSE)

**Automatic Speech Recognition (ASR) and phoneme alignment for VoiRS**

VoiRS Recognizer provides comprehensive speech recognition capabilities for the VoiRS ecosystem, enabling accurate transcription, phoneme alignment, and audio analysis for speech synthesis evaluation and training.

## Features

### 🎤 Multi-Model ASR Support
- **OpenAI Whisper**: State-of-the-art multilingual speech recognition
- **Mozilla DeepSpeech**: Privacy-focused local speech recognition
- **Facebook Wav2Vec2**: Self-supervised speech representation learning
- **Custom Models**: Plugin architecture for additional ASR backends

### 🔤 Phoneme Recognition & Alignment
- **Forced Alignment**: Precise time-aligned phoneme segmentation
- **Montreal Forced Alignment (MFA)**: Professional-grade phoneme alignment
- **Custom Phoneme Sets**: Support for multiple languages and dialects
- **Confidence Scoring**: Reliability metrics for recognition results

### 📊 Audio Analysis
- **Quality Assessment**: SNR, THD, and spectral analysis
- **Prosody Analysis**: Pitch, rhythm, stress, and intonation
- **Speaker Characteristics**: Gender, age, emotion detection
- **Artifact Detection**: Clipping, distortion, and noise identification

## Quick Start

Add VoiRS Recognizer to your `Cargo.toml`:

```toml
[dependencies]
voirs-recognizer = "0.1.0"

# Enable specific ASR models
voirs-recognizer = { version = "0.1.0", features = ["whisper", "forced-align"] }
```

### Basic Speech Recognition

```rust
use voirs_recognizer::prelude::*;

#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
    // Initialize ASR system with Whisper
    let asr = WhisperASR::new().await?;
    
    // Load audio file
    let audio = AudioBuffer::from_file("speech.wav")?;
    
    // Recognize speech
    let transcript = asr.recognize(&audio, None).await?;
    println!("Transcript: {}", transcript.text);
    
    // Get word-level timestamps
    for word in &transcript.words {
        println!("{}: {:.2}s - {:.2}s", word.word, word.start, word.end);
    }
    
    Ok(())
}
```

### Phoneme Alignment

```rust
use voirs_recognizer::prelude::*;

#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
    // Initialize phoneme recognizer
    let recognizer = MFARecognizer::new().await?;
    
    // Align audio with text
    let audio = AudioBuffer::from_file("speech.wav")?;
    let text = "Hello world, this is a test.";
    
    let alignment = recognizer.align_phonemes(&audio, text, None).await?;
    
    // Print phoneme-level alignment
    for phoneme in &alignment.phonemes {
        println!("{}: {:.3}s - {:.3}s (confidence: {:.2})", 
                 phoneme.phoneme.symbol, 
                 phoneme.start_time, 
                 phoneme.end_time,
                 phoneme.confidence);
    }
    
    Ok(())
}
```

### Audio Quality Analysis

```rust
use voirs_recognizer::prelude::*;

#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
    // Initialize audio analyzer
    let analyzer = AudioAnalyzer::new().await?;
    
    // Analyze audio quality
    let audio = AudioBuffer::from_file("speech.wav")?;
    let analysis = analyzer.analyze_quality(&audio, None).await?;
    
    println!("SNR: {:.1} dB", analysis.snr);
    println!("THD: {:.2}%", analysis.thd);
    println!("Spectral centroid: {:.1} Hz", analysis.spectral_centroid);
    
    // Check for artifacts
    if analysis.clipping_detected {
        println!("⚠️  Audio clipping detected");
    }
    
    Ok(())
}
```

## Supported ASR Models

### Whisper
- **Languages**: 99+ languages supported
- **Model Sizes**: tiny, base, small, medium, large
- **Features**: Multilingual, robust to noise, timestamp accuracy
- **Use Case**: General-purpose, multilingual applications

### DeepSpeech
- **Languages**: English (primary), with community models for other languages  
- **Features**: Local processing, privacy-focused, customizable
- **Use Case**: Privacy-sensitive applications, offline deployment

### Wav2Vec2
- **Languages**: English, with multilingual variants available
- **Features**: Self-supervised learning, fine-tunable
- **Use Case**: Research applications, custom domain adaptation

## Feature Flags

Enable specific functionality through feature flags:

```toml
[dependencies]
voirs-recognizer = { 
    version = "0.1.0", 
    features = [
        "whisper",      # OpenAI Whisper support
        "deepspeech",   # Mozilla DeepSpeech support  
        "wav2vec2",     # Facebook Wav2Vec2 support
        "forced-align", # Basic forced alignment
        "mfa",          # Montreal Forced Alignment
        "all-models",   # Enable all ASR models
        "gpu",          # GPU acceleration support
    ]
}
```

## Performance Optimization

VoiRS Recognizer is designed to meet strict performance requirements:
- **Real-time factor (RTF) < 0.3** on modern CPUs
- **Memory usage < 2GB** for largest models
- **Startup time < 5 seconds**
- **Streaming latency < 200ms**

### Performance Validation

Use the built-in performance validator to ensure your configuration meets requirements:

```rust
use voirs_recognizer::prelude::*;
use std::time::Duration;

#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
    let validator = PerformanceValidator::new().with_verbose(true);
    
    // Set custom requirements if needed
    let requirements = PerformanceRequirements {
        max_rtf: 0.25,                    // Stricter than default 0.3
        max_memory_usage: 1_500_000_000,  // 1.5GB instead of 2GB
        max_startup_time_ms: 3000,        // 3 seconds instead of 5
        max_streaming_latency_ms: 150,    // 150ms instead of 200ms
    };
    
    let custom_validator = PerformanceValidator::with_requirements(requirements);
    
    // Validate your ASR system
    let audio = AudioBuffer::from_file("test_audio.wav")?;
    let startup_fn = || async {
        let _asr = WhisperASR::new().await?;
        Ok(())
    };
    
    let processing_time = Duration::from_millis(150); // Your actual processing time
    let streaming_latency = Some(Duration::from_millis(120));
    
    let validation = validator
        .validate_comprehensive(&audio, startup_fn, processing_time, streaming_latency)
        .await?;
    
    if validation.passed {
        println!("✅ All performance requirements met!");
        println!("RTF: {:.3}", validation.metrics.rtf);
        println!("Memory: {:.1} MB", validation.metrics.memory_usage as f64 / (1024.0 * 1024.0));
        println!("Throughput: {:.0} samples/sec", validation.metrics.throughput_samples_per_sec);
    } else {
        println!("❌ Performance requirements not met");
        for (test, passed) in &validation.test_results {
            println!("{}: {}", test, if *passed { "PASS" } else { "FAIL" });
        }
    }
    
    Ok(())
}
```

### Model Selection for Performance

Choose the appropriate model size based on your performance requirements:

```rust
use voirs_recognizer::prelude::*;

// Ultra-fast processing (RTF ~0.1, lower accuracy)
let fast_config = WhisperConfig {
    model_size: "tiny".to_string(),
    compute_type: ComputeType::Int8,     // Quantized for speed
    beam_size: 1,                        // Greedy decoding
    ..Default::default()
};

// Balanced performance and accuracy (RTF ~0.3)
let balanced_config = WhisperConfig {
    model_size: "base".to_string(),
    compute_type: ComputeType::Float16,
    beam_size: 3,
    ..Default::default()
};

// High accuracy (RTF ~0.8, higher latency)
let accurate_config = WhisperConfig {
    model_size: "small".to_string(),
    compute_type: ComputeType::Float32,
    beam_size: 5,
    temperature: 0.0,                    // Deterministic output
    ..Default::default()
};
```

### GPU Acceleration

Enable GPU acceleration for significant performance gains:

```rust
use voirs_recognizer::prelude::*;

// NVIDIA GPU acceleration
let cuda_config = WhisperConfig {
    model_size: "base".to_string(),
    device: Device::Cuda(0),             // Use first GPU
    compute_type: ComputeType::Float16,  // FP16 for memory efficiency
    memory_fraction: 0.8,                // Use 80% of GPU memory
    ..Default::default()
};

// Apple Silicon GPU acceleration  
let metal_config = WhisperConfig {
    model_size: "base".to_string(),
    device: Device::Metal,
    compute_type: ComputeType::Float16,
    ..Default::default()
};

// CPU with optimizations
let optimized_cpu_config = WhisperConfig {
    model_size: "tiny".to_string(),
    device: Device::Cpu,
    num_threads: num_cpus::get(),        // Use all CPU cores
    compute_type: ComputeType::Int8,     // Quantization for speed
    ..Default::default()
};
```

### Memory Optimization

Reduce memory usage with these techniques:

```rust
use voirs_recognizer::prelude::*;

// Memory-efficient configuration
let memory_config = WhisperConfig {
    model_size: "tiny".to_string(),      // Smallest model
    compute_type: ComputeType::Int8,     // 8-bit quantization
    enable_memory_pooling: true,         // Reuse memory allocations
    cache_size_mb: 100,                  // Limit cache size
    ..Default::default()
};

// Enable dynamic quantization for further memory savings
let quantized_config = WhisperConfig {
    model_size: "base".to_string(),
    compute_type: ComputeType::Dynamic,  // Dynamic quantization
    quantization_mode: QuantizationMode::Int8,
    ..Default::default()
};
```

### Real-time Processing Optimization

Configure for ultra-low latency streaming:

```rust
use voirs_recognizer::prelude::*;
use voirs_recognizer::integration::config::{StreamingConfig, LatencyMode};

// Ultra-low latency configuration
let streaming_config = StreamingConfig {
    latency_mode: LatencyMode::UltraLow,
    chunk_size: 1600,                    // 100ms chunks at 16kHz
    overlap: 400,                        // 25ms overlap
    buffer_duration: 2.0,                // 2 second buffer
    vad_enabled: true,                   // Voice activity detection
    noise_suppression: true,             // Real-time noise reduction
    echo_cancellation: false,            // Disable for lowest latency
};

// Balanced latency/accuracy configuration
let balanced_streaming = StreamingConfig {
    latency_mode: LatencyMode::Balanced,
    chunk_size: 4800,                    // 300ms chunks
    overlap: 800,                        // 50ms overlap
    buffer_duration: 5.0,                // 5 second buffer
    vad_enabled: true,
    noise_suppression: true,
    echo_cancellation: true,
};

// Create streaming ASR with optimized config
let streaming_asr = StreamingASR::with_config(streaming_config).await?;
```

### Batch Processing

Process multiple files efficiently:

```rust
use voirs_recognizer::prelude::*;

// Optimal batch processing
let batch_config = BatchProcessingConfig {
    batch_size: 8,                       // Process 8 files at once
    max_memory_usage: 1_500_000_000,     // 1.5GB memory limit
    parallel_workers: 4,                 // Use 4 worker threads
    enable_gpu_batching: true,           // Batch GPU operations
    ..Default::default()
};

let audio_files = vec![
    "file1.wav", "file2.wav", "file3.wav", "file4.wav",
    "file5.wav", "file6.wav", "file7.wav", "file8.wav",
];

// Load audio files
let audio_buffers: Vec<AudioBuffer> = audio_files
    .iter()
    .map(|path| AudioBuffer::from_file(path))
    .collect::<Result<Vec<_>, _>>()?;

// Process batch efficiently
let batch_processor = BatchProcessor::with_config(batch_config).await?;
let transcripts = batch_processor.process_batch(&audio_buffers).await?;

// Results are returned in the same order as input
for (i, transcript) in transcripts.iter().enumerate() {
    println!("File {}: {}", audio_files[i], transcript.text);
}
```

### Performance Monitoring

Monitor your application's performance in real-time:

```rust
use voirs_recognizer::prelude::*;
use std::time::Instant;

// Enable performance monitoring
let monitor = PerformanceMonitor::new()
    .with_metrics_collection(true)
    .with_real_time_reporting(true);

// Monitor ASR performance
let start = Instant::now();
let audio = AudioBuffer::from_file("speech.wav")?;

let transcript = asr.recognize(&audio, None).await?;
let processing_time = start.elapsed();

// Validate performance
let validator = PerformanceValidator::new().with_verbose(true);
let (rtf, rtf_passed) = validator.validate_rtf(&audio, processing_time);
let (memory_usage, memory_passed) = validator.estimate_memory_usage()?;

println!("Performance Metrics:");
println!("  RTF: {:.3} ({})", rtf, if rtf_passed { "✅" } else { "❌" });
println!("  Memory: {:.1} MB ({})", 
         memory_usage as f64 / (1024.0 * 1024.0),
         if memory_passed { "✅" } else { "❌" });
println!("  Processing time: {:?}", processing_time);
println!("  Audio duration: {:.2}s", audio.duration());

// Log performance metrics for analysis
monitor.log_performance_metrics(&PerformanceMetrics {
    rtf,
    memory_usage,
    startup_time_ms: 0, // Already started
    streaming_latency_ms: 0, // Not applicable for batch
    throughput_samples_per_sec: validator.calculate_throughput(audio.samples().len(), processing_time),
    cpu_utilization: (processing_time.as_secs_f32() / audio.duration() * 100.0).min(100.0),
});
```

### Platform-Specific Optimizations

#### SIMD Acceleration (Automatic)
VoiRS automatically detects and uses SIMD instructions:
- **Intel/AMD**: AVX2, AVX-512 when available
- **ARM**: NEON instructions on ARM64
- **Apple**: Apple Silicon optimizations

No manual configuration required - optimizations are applied automatically.

#### Multi-threading
Optimize thread usage for your hardware:

```rust
use voirs_recognizer::prelude::*;

// Automatic thread optimization
let thread_config = ThreadingConfig::auto_detect();

// Manual thread configuration
let manual_config = ThreadingConfig {
    num_inference_threads: num_cpus::get(),     // All cores for inference
    num_preprocessing_threads: 2,               // 2 cores for preprocessing
    enable_thread_affinity: true,               // Pin threads to cores
    prefer_performance_cores: true,             // Use P-cores on hybrid CPUs
};

let asr = WhisperASR::with_threading_config(manual_config).await?;
```

### Troubleshooting Performance Issues

Common performance problems and solutions:

#### High Memory Usage
```rust
// If memory usage exceeds limits, try:
let low_memory_config = WhisperConfig {
    model_size: "tiny".to_string(),      // Use smaller model
    compute_type: ComputeType::Int8,     // Enable quantization
    cache_size_mb: 50,                   // Reduce cache size
    enable_memory_pooling: true,         // Reuse allocations
    gradient_checkpointing: true,        // Trade compute for memory
    ..Default::default()
};
```

#### Poor RTF Performance
```rust
// If RTF is too high, try:
let fast_config = WhisperConfig {
    model_size: "tiny".to_string(),      // Smallest/fastest model
    beam_size: 1,                        // Greedy decoding
    compute_type: ComputeType::Int8,     // Quantization for speed
    enable_cuda: true,                   // GPU acceleration if available
    num_threads: num_cpus::get(),        // Use all CPU cores
    ..Default::default()
};
```

#### High Streaming Latency
```rust
// If streaming latency is too high, try:
let low_latency_config = StreamingConfig {
    latency_mode: LatencyMode::UltraLow,
    chunk_size: 800,                     // Smaller chunks (50ms at 16kHz)
    overlap: 160,                        // Minimal overlap (10ms)
    buffer_duration: 1.0,                // Smaller buffer
    preprocessing_enabled: false,        // Disable preprocessing
    ..Default::default()
};
```

## Language Support

VoiRS Recognizer supports multiple languages through its ASR backends:

| Language | Whisper | DeepSpeech | Wav2Vec2 | MFA |
|----------|---------|------------|----------|-----|
| English  |||||
| Spanish  |||||
| French   |||||
| German   |||||
| Japanese |||||
| Chinese  |||||
| Korean   |||||

## Configuration

### Custom ASR Configuration
```rust
use voirs_recognizer::prelude::*;

let config = ASRConfig {
    // Model selection
    preferred_models: vec![ASRBackend::Whisper, ASRBackend::DeepSpeech],
    
    // Language settings
    language: Some(LanguageCode::EnUs),
    auto_detect_language: true,
    
    // Quality settings
    enable_vad: true,           // Voice Activity Detection
    noise_suppression: true,    // Noise reduction
    
    // Performance settings
    chunk_duration_ms: 30000,  // 30 second chunks
    overlap_duration_ms: 1000, // 1 second overlap
    
    // Output settings
    include_word_timestamps: true,
    include_confidence_scores: true,
    normalize_text: true,
};

let asr = ASRSystem::with_config(config).await?;
```

### Phoneme Alignment Configuration
```rust
use voirs_recognizer::prelude::*;

let config = PhonemeConfig {
    // Alignment precision
    time_resolution_ms: 10,    // 10ms resolution
    confidence_threshold: 0.5, // Minimum confidence
    
    // Language model
    acoustic_model: "english_us".to_string(),
    pronunciation_dict: "cmudict".to_string(),
    
    // Processing options
    enable_speaker_adaptation: true,
    enable_pronunciation_variants: true,
};

let recognizer = PhonemeRecognizer::with_config(config).await?;
```

## Error Handling

VoiRS Recognizer provides comprehensive error handling:

```rust
use voirs_recognizer::prelude::*;

match asr.recognize(&audio, None).await {
    Ok(transcript) => {
        println!("Success: {}", transcript.text);
    }
    Err(ASRError::ModelNotFound { model }) => {
        eprintln!("Model not available: {}", model);
    }
    Err(ASRError::AudioTooShort { duration }) => {
        eprintln!("Audio too short: {:.1}s", duration);
    }
    Err(ASRError::LanguageNotSupported { language }) => {
        eprintln!("Language not supported: {:?}", language);
    }
    Err(e) => {
        eprintln!("Recognition failed: {}", e);
    }
}
```

## Examples

Check out the [examples](examples/) directory for more comprehensive usage examples:

- [`basic_recognition.rs`]examples/basic_recognition.rs - Simple speech recognition
- [`phoneme_alignment.rs`]examples/phoneme_alignment.rs - Detailed phoneme alignment
- [`audio_analysis.rs`]examples/audio_analysis.rs - Audio quality analysis
- [`batch_processing.rs`]examples/batch_processing.rs - Efficient batch processing
- [`streaming_recognition.rs`]examples/streaming_recognition.rs - Real-time recognition
- [`multilingual.rs`]examples/multilingual.rs - Multi-language support

## Benchmarks

Performance benchmarks on common datasets:

| Model | Dataset | WER | RTF | Memory |
|-------|---------|-----|-----|--------|
| Whisper-base | LibriSpeech | 5.2% | 0.3x | 1.2GB |
| DeepSpeech | CommonVoice | 8.1% | 0.8x | 800MB |
| Wav2Vec2-base | LibriSpeech | 6.4% | 0.5x | 1.0GB |

*RTF = Real Time Factor (processing time / audio duration)*

## Community Support

### 🆘 Getting Help

- **GitHub Issues**: For bug reports and feature requests
  - 🐛 [Bug Report]https://github.com/cool-japan/voirs/issues/new?template=bug_report.md
  -[Feature Request]https://github.com/cool-japan/voirs/issues/new?template=feature_request.md
  - 📖 [Documentation Request]https://github.com/cool-japan/voirs/issues/new?template=documentation.md

- **GitHub Discussions**: For questions, ideas, and community chat
  - 💬 [General Discussion]https://github.com/cool-japan/voirs/discussions
  - 🤝 [Help & Questions]https://github.com/cool-japan/voirs/discussions/categories/q-a
  - 🎯 [Ideas & Suggestions]https://github.com/cool-japan/voirs/discussions/categories/ideas

### 🌟 Connect with the Community

- **Discord Server**: Real-time chat and support
  - 🔗 [Join VoiRS Community Discord]https://discord.gg/voirs-community
  - Channels: `#general`, `#help`, `#showcase`, `#development`

- **Matrix**: Bridged with Discord for matrix users
  - 🔗 [#voirs:matrix.org]https://matrix.to/#/#voirs:matrix.org

### 📚 Learning Resources

- **Documentation**: [docs.rs/voirs-recognizer]https://docs.rs/voirs-recognizer
- **Examples**: [GitHub Examples]https://github.com/cool-japan/voirs/tree/main/crates/voirs-recognizer/examples
- **Tutorials**: [VoiRS Learning Hub]https://github.com/cool-japan/voirs/wiki
- **Blog**: [Medium @voirs-dev]https://medium.com/@voirs-dev

### 🚀 Professional Support

For commercial deployments and enterprise support:
- **Email**: support@voirs.dev
- **Consulting**: Available for integration assistance, performance optimization, and custom development

### 🎯 Roadmap & Planning

- **Project Board**: [GitHub Projects]https://github.com/orgs/cool-japan/projects/voirs
- **Milestones**: [GitHub Milestones]https://github.com/cool-japan/voirs/milestones
- **Changelog**: [CHANGELOG.md]../../CHANGELOG.md

### 🏆 Recognition

- **Contributors**: [All Contributors]https://github.com/cool-japan/voirs/graphs/contributors
- **Sponsors**: [GitHub Sponsors]https://github.com/sponsors/cool-japan
- **Citations**: See [Citation]#citation section for academic references

## Contributing

We welcome contributions! Please see our [Contributing Guide](../../CONTRIBUTING.md) for details.

### Development Setup

```bash
# Clone the repository
git clone https://github.com/cool-japan/voirs.git
cd voirs/crates/voirs-recognizer

# Install dependencies
cargo build --all-features

# Run tests
cargo test --all-features

# Run benchmarks
cargo bench --all-features
```

## License

This project is licensed under either of

 * Apache License, Version 2.0, ([LICENSE-APACHE]../../LICENSE-APACHE or http://www.apache.org/licenses/LICENSE-2.0)
 * MIT license ([LICENSE-MIT]../../LICENSE-MIT or http://opensource.org/licenses/MIT)

at your option.

## Citation

If you use VoiRS Recognizer in your research, please cite:

```bibtex
@software{voirs_recognizer,
  title = {VoiRS Recognizer: Advanced Speech Recognition for Neural TTS},
  author = {Tetsuya Kitahata},
  organization = {Cool Japan Co., Ltd.},
  year = {2024},
  url = {https://github.com/cool-japan/voirs}
}
```