Skip to main content

voirs_cli/synthesis/
cloning.rs

1use serde::{Deserialize, Serialize};
2use std::collections::HashMap;
3use voirs_sdk::types::SynthesisConfig;
4
5#[derive(Debug, Clone, Serialize, Deserialize)]
6pub enum CloningMethod {
7    FineTuning,
8    SpeakerEmbedding,
9    ZeroShot,
10    FewShot,
11    Adaptive,
12    Neural,
13}
14
15#[derive(Debug, Clone, Serialize, Deserialize)]
16pub struct VoiceProfile {
17    pub id: String,
18    pub name: String,
19    pub embedding: Vec<f32>,
20    pub sample_rate: u32,
21    pub channels: u16,
22    pub duration_samples: u64,
23    pub quality_score: f32,
24    pub metadata: HashMap<String, String>,
25}
26
27#[derive(Debug, Clone, Serialize, Deserialize)]
28pub struct CloningConfig {
29    pub method: CloningMethod,
30    pub target_voice_profile: VoiceProfile,
31    pub similarity_threshold: f32,
32    pub adaptation_rate: f32,
33    pub quality_threshold: f32,
34    pub max_training_iterations: u32,
35    pub use_speaker_verification: bool,
36}
37
38#[derive(Debug, Clone, Serialize, Deserialize)]
39pub struct AdaptationConfig {
40    pub learning_rate: f32,
41    pub momentum: f32,
42    pub weight_decay: f32,
43    pub batch_size: u32,
44    pub gradient_clipping: f32,
45    pub convergence_threshold: f32,
46}
47
48#[derive(Debug, Clone, Serialize, Deserialize)]
49pub struct SpeakerEmbeddingConfig {
50    pub embedding_dimension: u32,
51    pub network_depth: u32,
52    pub attention_heads: u32,
53    pub dropout_rate: f32,
54    pub normalization: bool,
55}
56
57#[derive(Debug, Clone, Serialize, Deserialize)]
58pub struct VoiceCloningConfig {
59    pub base_config: SynthesisConfig,
60    pub cloning_config: CloningConfig,
61    pub adaptation_config: Option<AdaptationConfig>,
62    pub embedding_config: Option<SpeakerEmbeddingConfig>,
63    pub reference_audio_paths: Vec<String>,
64    pub output_quality_target: f32,
65}
66
67#[derive(Debug, Clone, Serialize, Deserialize)]
68pub struct CloningProgress {
69    pub current_iteration: u32,
70    pub total_iterations: u32,
71    pub current_loss: f32,
72    pub best_loss: f32,
73    pub similarity_score: f32,
74    pub quality_score: f32,
75    pub eta_seconds: u32,
76}
77
78pub struct VoiceCloner {
79    voice_profiles: HashMap<String, VoiceProfile>,
80    active_cloning_sessions: HashMap<String, CloningProgress>,
81    embedding_cache: HashMap<String, Vec<f32>>,
82    quality_assessor: QualityAssessor,
83}
84
85struct QualityAssessor {
86    similarity_threshold: f32,
87    quality_threshold: f32,
88}
89
90impl VoiceCloner {
91    pub fn new() -> Self {
92        Self {
93            voice_profiles: HashMap::new(),
94            active_cloning_sessions: HashMap::new(),
95            embedding_cache: HashMap::new(),
96            quality_assessor: QualityAssessor {
97                similarity_threshold: 0.8,
98                quality_threshold: 0.7,
99            },
100        }
101    }
102
103    pub fn add_voice_profile(&mut self, profile: VoiceProfile) -> Result<(), String> {
104        if profile.embedding.is_empty() {
105            return Err("Voice profile embedding cannot be empty".to_string());
106        }
107
108        if profile.quality_score < self.quality_assessor.quality_threshold {
109            return Err("Voice profile quality score below threshold".to_string());
110        }
111
112        self.voice_profiles.insert(profile.id.clone(), profile);
113        Ok(())
114    }
115
116    pub fn create_voice_profile_from_audio(
117        &mut self,
118        id: String,
119        name: String,
120        audio_data: &[f32],
121        sample_rate: u32,
122        channels: u16,
123    ) -> Result<VoiceProfile, String> {
124        if audio_data.is_empty() {
125            return Err("Audio data cannot be empty".to_string());
126        }
127
128        let embedding = self.extract_speaker_embedding(audio_data, sample_rate, channels)?;
129        let quality_score = self.assess_audio_quality(audio_data, sample_rate);
130
131        let profile = VoiceProfile {
132            id: id.clone(),
133            name,
134            embedding,
135            sample_rate,
136            channels,
137            duration_samples: audio_data.len() as u64,
138            quality_score,
139            metadata: HashMap::new(),
140        };
141
142        self.embedding_cache
143            .insert(id.clone(), profile.embedding.clone());
144        Ok(profile)
145    }
146
147    fn extract_speaker_embedding(
148        &self,
149        audio_data: &[f32],
150        sample_rate: u32,
151        channels: u16,
152    ) -> Result<Vec<f32>, String> {
153        // Simplified speaker embedding extraction
154        // In a real implementation, this would use a pre-trained speaker encoder
155
156        let frame_size = (sample_rate as usize / 100) * channels as usize; // 10ms frames
157        let mut embeddings = Vec::new();
158
159        for chunk in audio_data.chunks(frame_size) {
160            let mean = chunk.iter().sum::<f32>() / chunk.len() as f32;
161            let variance =
162                chunk.iter().map(|x| (x - mean).powi(2)).sum::<f32>() / chunk.len() as f32;
163            let energy = chunk.iter().map(|x| x.powi(2)).sum::<f32>();
164
165            embeddings.push(mean);
166            embeddings.push(variance.sqrt());
167            embeddings.push(energy.ln().max(-10.0));
168        }
169
170        if embeddings.len() < 128 {
171            embeddings.resize(128, 0.0);
172        } else {
173            embeddings.truncate(128);
174        }
175
176        Ok(embeddings)
177    }
178
179    fn assess_audio_quality(&self, audio_data: &[f32], _sample_rate: u32) -> f32 {
180        let rms =
181            (audio_data.iter().map(|x| x.powi(2)).sum::<f32>() / audio_data.len() as f32).sqrt();
182        let peak = audio_data.iter().map(|x| x.abs()).fold(0.0, f32::max);
183        let dynamic_range = if peak > 0.0 {
184            20.0 * (peak / rms).log10()
185        } else {
186            0.0
187        };
188
189        (dynamic_range / 60.0).clamp(0.0, 1.0)
190    }
191
192    pub fn calculate_voice_similarity(
193        &self,
194        profile1: &VoiceProfile,
195        profile2: &VoiceProfile,
196    ) -> f32 {
197        if profile1.embedding.len() != profile2.embedding.len() {
198            return 0.0;
199        }
200
201        let dot_product: f32 = profile1
202            .embedding
203            .iter()
204            .zip(profile2.embedding.iter())
205            .map(|(a, b)| a * b)
206            .sum();
207
208        let norm1: f32 = profile1
209            .embedding
210            .iter()
211            .map(|x| x.powi(2))
212            .sum::<f32>()
213            .sqrt();
214        let norm2: f32 = profile2
215            .embedding
216            .iter()
217            .map(|x| x.powi(2))
218            .sum::<f32>()
219            .sqrt();
220
221        if norm1 == 0.0 || norm2 == 0.0 {
222            return 0.0;
223        }
224
225        (dot_product / (norm1 * norm2)).clamp(-1.0, 1.0)
226    }
227
228    pub fn start_cloning_session(
229        &mut self,
230        session_id: String,
231        target_profile: &VoiceProfile,
232        config: &CloningConfig,
233    ) -> Result<(), String> {
234        let total_iterations = config.max_training_iterations;
235
236        let progress = CloningProgress {
237            current_iteration: 0,
238            total_iterations,
239            current_loss: 1.0,
240            best_loss: 1.0,
241            similarity_score: 0.0,
242            quality_score: 0.0,
243            eta_seconds: total_iterations * 10, // Estimate 10 seconds per iteration
244        };
245
246        self.active_cloning_sessions.insert(session_id, progress);
247        Ok(())
248    }
249
250    pub fn update_cloning_progress(
251        &mut self,
252        session_id: &str,
253        iteration: u32,
254        loss: f32,
255        similarity_score: f32,
256        quality_score: f32,
257    ) -> Result<(), String> {
258        if let Some(progress) = self.active_cloning_sessions.get_mut(session_id) {
259            progress.current_iteration = iteration;
260            progress.current_loss = loss;
261            progress.similarity_score = similarity_score;
262            progress.quality_score = quality_score;
263
264            if loss < progress.best_loss {
265                progress.best_loss = loss;
266            }
267
268            let remaining_iterations = progress.total_iterations.saturating_sub(iteration);
269            progress.eta_seconds = remaining_iterations * 10;
270
271            Ok(())
272        } else {
273            Err("Cloning session not found".to_string())
274        }
275    }
276
277    pub fn create_cloning_synthesis_config(
278        &self,
279        base_config: SynthesisConfig,
280        cloning_config: CloningConfig,
281        reference_audio_paths: Vec<String>,
282    ) -> VoiceCloningConfig {
283        VoiceCloningConfig {
284            base_config,
285            cloning_config,
286            adaptation_config: Some(AdaptationConfig::default()),
287            embedding_config: Some(SpeakerEmbeddingConfig::default()),
288            reference_audio_paths,
289            output_quality_target: 0.8,
290        }
291    }
292
293    pub fn get_cloning_progress(&self, session_id: &str) -> Option<&CloningProgress> {
294        self.active_cloning_sessions.get(session_id)
295    }
296
297    pub fn is_cloning_complete(&self, session_id: &str) -> bool {
298        if let Some(progress) = self.active_cloning_sessions.get(session_id) {
299            progress.current_iteration >= progress.total_iterations
300                || progress.similarity_score >= self.quality_assessor.similarity_threshold
301        } else {
302            false
303        }
304    }
305
306    pub fn get_voice_profile(&self, profile_id: &str) -> Option<&VoiceProfile> {
307        self.voice_profiles.get(profile_id)
308    }
309
310    pub fn list_voice_profiles(&self) -> Vec<&VoiceProfile> {
311        self.voice_profiles.values().collect()
312    }
313
314    pub fn remove_voice_profile(&mut self, profile_id: &str) -> Option<VoiceProfile> {
315        self.embedding_cache.remove(profile_id);
316        self.voice_profiles.remove(profile_id)
317    }
318
319    pub fn clear_completed_sessions(&mut self) {
320        let completed_sessions: Vec<String> = self
321            .active_cloning_sessions
322            .iter()
323            .filter(|(id, _)| self.is_cloning_complete(id))
324            .map(|(id, _)| id.clone())
325            .collect();
326
327        for session_id in completed_sessions {
328            self.active_cloning_sessions.remove(&session_id);
329        }
330    }
331}
332
333impl Default for VoiceCloner {
334    fn default() -> Self {
335        Self::new()
336    }
337}
338
339impl Default for CloningConfig {
340    fn default() -> Self {
341        Self {
342            method: CloningMethod::SpeakerEmbedding,
343            target_voice_profile: VoiceProfile {
344                id: "default".to_string(),
345                name: "Default Voice".to_string(),
346                embedding: vec![0.0; 128],
347                sample_rate: 22050,
348                channels: 1,
349                duration_samples: 0,
350                quality_score: 0.5,
351                metadata: HashMap::new(),
352            },
353            similarity_threshold: 0.8,
354            adaptation_rate: 0.01,
355            quality_threshold: 0.7,
356            max_training_iterations: 100,
357            use_speaker_verification: true,
358        }
359    }
360}
361
362impl Default for AdaptationConfig {
363    fn default() -> Self {
364        Self {
365            learning_rate: 0.001,
366            momentum: 0.9,
367            weight_decay: 0.0001,
368            batch_size: 32,
369            gradient_clipping: 1.0,
370            convergence_threshold: 1e-6,
371        }
372    }
373}
374
375impl Default for SpeakerEmbeddingConfig {
376    fn default() -> Self {
377        Self {
378            embedding_dimension: 128,
379            network_depth: 4,
380            attention_heads: 8,
381            dropout_rate: 0.1,
382            normalization: true,
383        }
384    }
385}
386
387#[cfg(test)]
388mod tests {
389    use super::*;
390
391    #[test]
392    fn test_voice_cloner_creation() {
393        let cloner = VoiceCloner::new();
394        assert!(cloner.voice_profiles.is_empty());
395        assert!(cloner.active_cloning_sessions.is_empty());
396    }
397
398    #[test]
399    fn test_voice_profile_creation() {
400        let mut cloner = VoiceCloner::new();
401        let audio_data = vec![0.1, 0.2, 0.3, 0.4, 0.5];
402
403        let profile = cloner.create_voice_profile_from_audio(
404            "test_id".to_string(),
405            "Test Voice".to_string(),
406            &audio_data,
407            22050,
408            1,
409        );
410
411        assert!(profile.is_ok());
412        let profile = profile.unwrap();
413        assert_eq!(profile.id, "test_id");
414        assert_eq!(profile.name, "Test Voice");
415        assert_eq!(profile.embedding.len(), 128);
416    }
417
418    #[test]
419    fn test_voice_similarity_calculation() {
420        let cloner = VoiceCloner::new();
421
422        let profile1 = VoiceProfile {
423            id: "voice1".to_string(),
424            name: "Voice 1".to_string(),
425            embedding: vec![1.0, 0.0, 0.0, 1.0],
426            sample_rate: 22050,
427            channels: 1,
428            duration_samples: 1000,
429            quality_score: 0.8,
430            metadata: HashMap::new(),
431        };
432
433        let profile2 = VoiceProfile {
434            id: "voice2".to_string(),
435            name: "Voice 2".to_string(),
436            embedding: vec![1.0, 0.0, 0.0, 1.0],
437            sample_rate: 22050,
438            channels: 1,
439            duration_samples: 1000,
440            quality_score: 0.8,
441            metadata: HashMap::new(),
442        };
443
444        let similarity = cloner.calculate_voice_similarity(&profile1, &profile2);
445        assert!((similarity - 1.0).abs() < 1e-6);
446    }
447
448    #[test]
449    fn test_cloning_session_management() {
450        let mut cloner = VoiceCloner::new();
451        let profile = VoiceProfile {
452            id: "target".to_string(),
453            name: "Target Voice".to_string(),
454            embedding: vec![0.0; 128],
455            sample_rate: 22050,
456            channels: 1,
457            duration_samples: 1000,
458            quality_score: 0.8,
459            metadata: HashMap::new(),
460        };
461
462        let config = CloningConfig::default();
463        let session_id = "session1".to_string();
464
465        assert!(cloner
466            .start_cloning_session(session_id.clone(), &profile, &config)
467            .is_ok());
468        assert!(cloner.get_cloning_progress(&session_id).is_some());
469        assert!(!cloner.is_cloning_complete(&session_id));
470    }
471
472    #[test]
473    fn test_cloning_progress_update() {
474        let mut cloner = VoiceCloner::new();
475        let profile = VoiceProfile {
476            id: "target".to_string(),
477            name: "Target Voice".to_string(),
478            embedding: vec![0.0; 128],
479            sample_rate: 22050,
480            channels: 1,
481            duration_samples: 1000,
482            quality_score: 0.8,
483            metadata: HashMap::new(),
484        };
485
486        let config = CloningConfig::default();
487        let session_id = "session1".to_string();
488
489        cloner
490            .start_cloning_session(session_id.clone(), &profile, &config)
491            .unwrap();
492
493        assert!(cloner
494            .update_cloning_progress(&session_id, 10, 0.5, 0.7, 0.8)
495            .is_ok());
496
497        let progress = cloner.get_cloning_progress(&session_id).unwrap();
498        assert_eq!(progress.current_iteration, 10);
499        assert_eq!(progress.current_loss, 0.5);
500        assert_eq!(progress.similarity_score, 0.7);
501        assert_eq!(progress.quality_score, 0.8);
502    }
503
504    #[test]
505    fn test_config_serialization() {
506        let config = CloningConfig::default();
507        let serialized = serde_json::to_string(&config).unwrap();
508        let deserialized: CloningConfig = serde_json::from_str(&serialized).unwrap();
509
510        assert_eq!(
511            deserialized.similarity_threshold,
512            config.similarity_threshold
513        );
514        assert_eq!(
515            deserialized.max_training_iterations,
516            config.max_training_iterations
517        );
518    }
519}