breakpoint_manager/windows-breakpoint-manager.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
use std::sync::{
atomic::{AtomicBool, Ordering},
Arc,
};
use isr::{
cache::{IsrCache, JsonCodec},
macros::symbols,
Profile,
};
use vmi::{
arch::amd64::{Amd64, EventMonitor, EventReason, ExceptionVector, Interrupt},
driver::xen::VmiXenDriver,
os::{
windows::{WindowsObjectType, WindowsOs, WindowsOsExt as _},
ProcessObject,
},
utils::{
bpm::{Breakpoint, BreakpointController, BreakpointManager},
ptm::{PageTableMonitor, PageTableMonitorEvent},
},
MemoryAccess, Va, VcpuId, View, VmiContext, VmiCore, VmiDriver, VmiError, VmiEventResponse,
VmiHandler, VmiSession,
};
use xen::XenStore;
symbols! {
#[derive(Debug)]
pub struct Symbols {
NtCreateFile: u64,
NtWriteFile: u64,
PspInsertProcess: u64,
MmCleanProcessAddressSpace: u64,
// symbols! macro also accepts an Option<u64> as a value,
// where `None` means that the symbol is not present in the profile.
// MiInsertVad: Option<u64>,
// MiInsertPrivateVad: Option<u64>,
// MiGetWsAndInsertVad: Option<u64>,
// MiDeleteVad: Option<u64>,
// MiDeletePartialVad: Option<u64>,
// MiDeleteVirtualAddresses: Option<u64>,
// MiRemoveVadAndView: Option<u64>,
}
}
pub struct Monitor<Driver>
where
Driver: VmiDriver<Architecture = Amd64>,
{
terminate_flag: Arc<AtomicBool>,
view: View,
bpm: BreakpointManager<BreakpointController<Driver>>,
ptm: PageTableMonitor<Driver>,
}
#[allow(non_snake_case)]
impl<Driver> Monitor<Driver>
where
Driver: VmiDriver<Architecture = Amd64>,
{
pub fn new(
vmi: &VmiSession<Driver, WindowsOs<Driver>>,
profile: &Profile,
terminate_flag: Arc<AtomicBool>,
) -> Result<Self, VmiError> {
// Get the base address of the kernel.
// This base address is essential to correctly offset monitored
// functions.
//
// NOTE: `kernel_image_base` tries to find the kernel in the memory
// with the help of the CPU registers. On AMD64 architecture,
// the kernel image base is usually found using the `MSR_LSTAR`
// register, which contains the address of the system call
// handler. This register is set by the operating system during
// boot and is left unchanged (unless some rootkits are involved).
//
// Therefore, what we are doing here is querying the registers
// of the first VCPU and trying to find the kernel image base
// address using them.
let registers = vmi.registers(VcpuId(0))?;
let kernel_image_base = vmi.os().kernel_image_base(®isters)?;
tracing::info!(%kernel_image_base);
// Get the system process.
//
// The system process is the first process created by the kernel.
// In Windows, it is referenced by the kernel symbol `PsInitialSystemProcess`.
// To monitor page table entries, we need to locate the translation root
// of this process.
let system_process = vmi.os().system_process(®isters)?;
tracing::info!(%system_process);
// Get the translation root of the system process.
// This is effectively "the CR3 of the kernel".
//
// The translation root is the root of the page table hierarchy (also
// known as the Directory Table Base or PML4).
let root = vmi
.os()
.process_translation_root(®isters, system_process)?;
tracing::info!(%root);
// Load the symbols from the profile.
let symbols = Symbols::new(profile)?;
// Enable monitoring of the INT3 and singlestep events.
//
// INT3 is used to monitor the execution of specific functions.
// Singlestep is used to monitor the modifications of page table
// entries.
vmi.monitor_enable(EventMonitor::Interrupt(ExceptionVector::Breakpoint))?;
vmi.monitor_enable(EventMonitor::Singlestep)?;
// Create a new view for the monitor.
// This view is used for monitoring function calls and memory accesses.
let view = vmi.create_view(MemoryAccess::RWX)?;
vmi.switch_to_view(view)?;
// Create a new breakpoint controller.
//
// The breakpoint controller is used to insert breakpoints for specific
// functions.
//
// From the guest's perspective, these breakpoints are "hidden", since
// the breakpoint controller will unset the read/write access to the
// physical memory page where the breakpoint is inserted, while keeping
// the execute access.
//
// This way, the guest will be able to execute the code, but attempts to
// read or write the memory will trigger the `memory_access` callback.
//
// When a VCPU tries to execute the breakpoint instruction:
// - an `interrupt` callback will be triggered
// - the breakpoint will be handled (e.g., log the function call)
// - a fast-singlestep[1] will be performed over the INT3 instruction
//
// When a VCPU tries to read from this page (e.g., a PatchGuard check):
// - `memory_access` callback will be triggered (with the `MemoryAccess::R`
// access type)
// - fast-singlestep[1] will be performed over the instruction that tried to
// read the memory
//
// This way, the instruction will read the original memory content.
//
// [1] Fast-singlestep is a VMI feature that allows to switch the VCPU
// to a different view, execute a single instruction, and then
// switch back to the original view. In this case, the view is
// switched to the `default_view` (which is unmodified).
let mut bpm = BreakpointManager::new();
// Create a new page table monitor.
//
// The page table monitor is used to monitor the page table entries of
// the hooked functions.
//
// More specifically, it is used to monitor the pages that the breakpoint
// was inserted into. This is necessary to handle the case when the
// page containing the breakpoint is paged out (and then paged in
// again).
//
// `PageTableMonitor` works by unsetting the write access to the page
// tables of the hooked functions. When the page is paged out, the
// `PRESENT` bit in the page table entry is unset and, conversely, when
// the page is paged in, the `PRESENT` bit is set again.
//
// When that happens:
// - the `memory_access` callback will be triggered (with the `MemoryAccess::R`
// access type)
// - the callback will mark the page as dirty in the page table monitor
// - a singlestep will be performed over the instruction that tried to modify
// the memory containing the page table entry
// - the `singlestep` handler will process the dirty page table entries and
// inform the breakpoint controller to handle the changes
let mut ptm = PageTableMonitor::new();
// Pause the VM to avoid race conditions between inserting breakpoints
// and monitoring page table entries. The VM resumes when the pause
// guard is dropped.
let _pause_guard = vmi.pause_guard()?;
// Insert breakpoint for the `NtCreateFile` function.
let va_NtCreateFile = kernel_image_base + symbols.NtCreateFile;
let cx_NtCreateFile = (va_NtCreateFile, root);
let bp_NtCreateFile = Breakpoint::new(cx_NtCreateFile, view)
.global()
.with_tag("NtCreateFile");
bpm.insert(vmi, bp_NtCreateFile)?;
ptm.monitor(vmi, cx_NtCreateFile, view, "NtCreateFile")?;
tracing::info!(%va_NtCreateFile);
// Insert breakpoint for the `NtWriteFile` function.
let va_NtWriteFile = kernel_image_base + symbols.NtWriteFile;
let cx_NtWriteFile = (va_NtWriteFile, root);
let bp_NtWriteFile = Breakpoint::new(cx_NtWriteFile, view)
.global()
.with_tag("NtWriteFile");
bpm.insert(vmi, bp_NtWriteFile)?;
ptm.monitor(vmi, cx_NtWriteFile, view, "NtWriteFile")?;
tracing::info!(%va_NtWriteFile);
// Insert breakpoint for the `PspInsertProcess` function.
let va_PspInsertProcess = kernel_image_base + symbols.PspInsertProcess;
let cx_PspInsertProcess = (va_PspInsertProcess, root);
let bp_PspInsertProcess = Breakpoint::new(cx_PspInsertProcess, view)
.global()
.with_tag("PspInsertProcess");
bpm.insert(vmi, bp_PspInsertProcess)?;
ptm.monitor(vmi, cx_PspInsertProcess, view, "PspInsertProcess")?;
// Insert breakpoint for the `MmCleanProcessAddressSpace` function.
let va_MmCleanProcessAddressSpace = kernel_image_base + symbols.MmCleanProcessAddressSpace;
let cx_MmCleanProcessAddressSpace = (va_MmCleanProcessAddressSpace, root);
let bp_MmCleanProcessAddressSpace = Breakpoint::new(cx_MmCleanProcessAddressSpace, view)
.global()
.with_tag("MmCleanProcessAddressSpace");
bpm.insert(vmi, bp_MmCleanProcessAddressSpace)?;
ptm.monitor(
vmi,
cx_MmCleanProcessAddressSpace,
view,
"MmCleanProcessAddressSpace",
)?;
Ok(Self {
terminate_flag,
view,
bpm,
ptm,
})
}
#[tracing::instrument(skip_all)]
fn memory_access(
&mut self,
vmi: &VmiContext<'_, Driver, WindowsOs<Driver>>,
) -> Result<VmiEventResponse<Amd64>, VmiError> {
let memory_access = vmi.event().reason().as_memory_access();
tracing::trace!(
pa = %memory_access.pa,
va = %memory_access.va,
access = %memory_access.access,
);
if memory_access.access.contains(MemoryAccess::W) {
// It is assumed that a write memory access event is caused by a
// page table modification.
//
// The page table entry is marked as dirty in the page table monitor
// and a singlestep is performed to process the dirty entries.
self.ptm
.mark_dirty_entry(memory_access.pa, self.view, vmi.event().vcpu_id());
Ok(VmiEventResponse::toggle_singlestep().and_set_view(vmi.default_view()))
}
else if memory_access.access.contains(MemoryAccess::R) {
// When the guest tries to read from the memory, a fast-singlestep
// is performed over the instruction that tried to read the memory.
// This is done to allow the instruction to read the original memory
// content.
Ok(VmiEventResponse::toggle_fast_singlestep().and_set_view(vmi.default_view()))
}
else {
panic!("Unhandled memory access: {memory_access:?}");
}
}
#[tracing::instrument(skip_all, fields(pid, process))]
fn interrupt(
&mut self,
vmi: &VmiContext<'_, Driver, WindowsOs<Driver>>,
) -> Result<VmiEventResponse<Amd64>, VmiError> {
let tag = match self.bpm.get_by_event(vmi.event(), ()) {
Some(breakpoints) => {
// Breakpoints can have multiple tags, but we have set only one
// tag for each breakpoint.
let first_breakpoint = breakpoints.into_iter().next().expect("breakpoint");
first_breakpoint.tag()
}
None => {
if BreakpointController::is_breakpoint(vmi, vmi.event())? {
// This breakpoint was not set by us. Reinject it.
tracing::warn!("Unknown breakpoint, reinjecting");
return Ok(VmiEventResponse::reinject_interrupt());
}
else {
// We have received a breakpoint event, but there is no
// breakpoint instruction at the current memory location.
// This can happen if the event was triggered by a breakpoint
// we just removed.
tracing::warn!("Ignoring old breakpoint event");
return Ok(
VmiEventResponse::toggle_fast_singlestep().and_set_view(vmi.default_view())
);
}
}
};
let process = vmi.os().current_process()?;
let process_id = vmi.os().process_id(process)?;
let process_name = vmi.os().process_filename(process)?;
tracing::Span::current()
.record("pid", process_id.0)
.record("process", process_name);
match tag {
"NtCreateFile" => self.NtCreateFile(vmi)?,
"NtWriteFile" => self.NtWriteFile(vmi)?,
"PspInsertProcess" => self.PspInsertProcess(vmi)?,
"MmCleanProcessAddressSpace" => self.MmCleanProcessAddressSpace(vmi)?,
_ => panic!("Unhandled tag: {tag}"),
}
Ok(VmiEventResponse::toggle_fast_singlestep().and_set_view(vmi.default_view()))
}
#[tracing::instrument(skip_all)]
fn singlestep(
&mut self,
vmi: &VmiContext<'_, Driver, WindowsOs<Driver>>,
) -> Result<VmiEventResponse<Amd64>, VmiError> {
// Get the page table modifications by processing the dirty page table
// entries.
let ptm_events = self.ptm.process_dirty_entries(vmi, vmi.event().vcpu_id())?;
for event in &ptm_events {
// Log the page table modifications.
match &event {
PageTableMonitorEvent::PageIn(update) => tracing::debug!(?update, "page-in"),
PageTableMonitorEvent::PageOut(update) => tracing::debug!(?update, "page-out"),
}
// Let the breakpoint controller handle the page table modifications.
self.bpm.handle_ptm_event(vmi, event)?;
}
// Disable singlestep and switch back to our view.
Ok(VmiEventResponse::toggle_singlestep().and_set_view(self.view))
}
#[tracing::instrument(skip_all)]
fn NtCreateFile(
&mut self,
vmi: &VmiContext<'_, Driver, WindowsOs<Driver>>,
) -> Result<(), VmiError> {
//
// NTSTATUS
// NtCreateFile (
// _Out_ PHANDLE FileHandle,
// _In_ ACCESS_MASK DesiredAccess,
// _In_ POBJECT_ATTRIBUTES ObjectAttributes,
// _Out_ PIO_STATUS_BLOCK IoStatusBlock,
// _In_opt_ PLARGE_INTEGER AllocationSize,
// _In_ ULONG FileAttributes,
// _In_ ULONG ShareAccess,
// _In_ ULONG CreateDisposition,
// _In_ ULONG CreateOptions,
// _In_reads_bytes_opt_(EaLength) PVOID EaBuffer,
// _In_ ULONG EaLength
// );
//
let ObjectAttributes = Va(vmi.os().function_argument(2)?);
let process = vmi.os().current_process()?;
let path = match vmi
.os()
.object_attributes_to_object_name(process, ObjectAttributes)?
{
Some(path) => path,
None => {
tracing::warn!(%ObjectAttributes, "No object name found");
return Ok(());
}
};
tracing::info!(%path);
Ok(())
}
#[tracing::instrument(skip_all)]
fn NtWriteFile(
&mut self,
vmi: &VmiContext<'_, Driver, WindowsOs<Driver>>,
) -> Result<(), VmiError> {
//
// NTSTATUS
// NtWriteFile (
// _In_ HANDLE FileHandle,
// _In_opt_ HANDLE Event,
// _In_opt_ PIO_APC_ROUTINE ApcRoutine,
// _In_opt_ PVOID ApcContext,
// _Out_ PIO_STATUS_BLOCK IoStatusBlock,
// _In_reads_bytes_(Length) PVOID Buffer,
// _In_ ULONG Length,
// _In_opt_ PLARGE_INTEGER ByteOffset,
// _In_opt_ PULONG Key
// );
//
let FileHandle = vmi.os().function_argument(0)?;
let process = vmi.os().current_process()?;
let object = match vmi.os().handle_to_object_address(process, FileHandle)? {
Some(object) => object,
None => {
tracing::warn!("No object found for handle");
return Ok(());
}
};
if !matches!(vmi.os().object_type(object)?, Some(WindowsObjectType::File)) {
tracing::warn!("Not a file object");
return Ok(());
}
let path = vmi.os().file_object_to_full_path(object)?;
tracing::info!(%path);
Ok(())
}
#[tracing::instrument(skip_all)]
fn PspInsertProcess(
&mut self,
vmi: &VmiContext<'_, Driver, WindowsOs<Driver>>,
) -> Result<(), VmiError> {
//
// NTSTATUS
// PspInsertProcess (
// _In_ PEPROCESS NewProcess,
// _In_ PEPROCESS Parent,
// _In_ ULONG DesiredAccess,
// _In_ ULONG CreateFlags,
// ...
// );
//
let NewProcess = vmi.os().function_argument(0)?;
let Parent = vmi.os().function_argument(1)?;
let process_object = ProcessObject(Va(NewProcess));
let process_id = vmi.os().process_id(process_object)?;
let parent_process_object = ProcessObject(Va(Parent));
let parent_process_id = vmi.os().process_id(parent_process_object)?;
// We rely heavily on the 2nd argument to be the parent process object.
// If that ever changes, this assertion should catch it.
//
// So far it is verified that it works for Windows 7 up to Windows 11
// (23H2, build 22631).
debug_assert_eq!(
parent_process_id,
vmi.os().process_parent_process_id(process_object)?
);
let peb = vmi.os().process_peb(process_object)?;
let filename = vmi.os().process_filename(process_object)?;
let image_base = vmi.os().process_image_base(process_object)?;
tracing::info!(
%process_id,
filename,
%image_base,
?peb,
);
Ok(())
}
#[tracing::instrument(skip_all)]
fn MmCleanProcessAddressSpace(
&mut self,
vmi: &VmiContext<'_, Driver, WindowsOs<Driver>>,
) -> Result<(), VmiError> {
//
// VOID
// MmCleanProcessAddressSpace (
// _In_ PEPROCESS Process
// );
//
let Process = vmi.os().function_argument(0)?;
let process_object = ProcessObject(Va(Process));
let process_id = vmi.os().process_id(process_object)?;
let filename = vmi.os().process_filename(process_object)?;
let image_base = vmi.os().process_image_base(process_object)?;
tracing::info!(%process_id, filename, %image_base);
Ok(())
}
fn dispatch(
&mut self,
vmi: &VmiContext<'_, Driver, WindowsOs<Driver>>,
) -> Result<VmiEventResponse<Amd64>, VmiError> {
let event = vmi.event();
let result = match event.reason() {
EventReason::MemoryAccess(_) => self.memory_access(vmi),
EventReason::Interrupt(_) => self.interrupt(vmi),
EventReason::Singlestep(_) => self.singlestep(vmi),
_ => panic!("Unhandled event: {:?}", event.reason()),
};
// If VMI tries to read from a page that is not present, it will return
// a page fault error. In this case, we inject a page fault interrupt
// to the guest.
//
// Once the guest handles the page fault, it will try to retry the
// instruction that caused the page fault.
if let Err(VmiError::PageFault(pfs)) = result {
tracing::warn!(?pfs, "Page fault, injecting");
vmi.inject_interrupt(event.vcpu_id(), Interrupt::page_fault(pfs[0].address, 0))?;
return Ok(VmiEventResponse::default());
}
result
}
}
impl<Driver> VmiHandler<Driver, WindowsOs<Driver>> for Monitor<Driver>
where
Driver: VmiDriver<Architecture = Amd64>,
{
fn handle_event(
&mut self,
vmi: VmiContext<'_, Driver, WindowsOs<Driver>>,
) -> VmiEventResponse<Amd64> {
// Flush the V2P cache on every event to avoid stale translations.
vmi.flush_v2p_cache();
self.dispatch(&vmi).expect("dispatch")
}
fn finished(&self) -> bool {
self.terminate_flag.load(Ordering::Relaxed)
}
}
fn main() -> Result<(), Box<dyn std::error::Error>> {
tracing_subscriber::fmt()
.with_max_level(tracing::Level::DEBUG)
.init();
let domain_id = 'x: {
for name in &["win7", "win10", "win11", "ubuntu22"] {
if let Some(domain_id) = XenStore::domain_id_from_name(name)? {
break 'x domain_id;
}
}
panic!("Domain not found");
};
tracing::debug!(?domain_id);
// Setup VMI.
let driver = VmiXenDriver::<Amd64>::new(domain_id)?;
let core = VmiCore::new(driver)?;
// Try to find the kernel information.
// This is necessary in order to load the profile.
let kernel_info = {
let _pause_guard = core.pause_guard()?;
let regs = core.registers(0.into())?;
WindowsOs::find_kernel(&core, ®s)?.expect("kernel information")
};
// Load the profile.
// The profile contains offsets to kernel functions and data structures.
let isr = IsrCache::<JsonCodec>::new("cache")?;
let entry = isr.entry_from_codeview(kernel_info.codeview)?;
let profile = entry.profile()?;
// Create the VMI session.
tracing::info!("Creating VMI session");
let terminate_flag = Arc::new(AtomicBool::new(false));
signal_hook::flag::register(signal_hook::consts::SIGHUP, terminate_flag.clone())?;
signal_hook::flag::register(signal_hook::consts::SIGINT, terminate_flag.clone())?;
signal_hook::flag::register(signal_hook::consts::SIGALRM, terminate_flag.clone())?;
signal_hook::flag::register(signal_hook::consts::SIGTERM, terminate_flag.clone())?;
let os = WindowsOs::<VmiXenDriver<Amd64>>::new(&profile)?;
let session = VmiSession::new(core, os);
session.handle(|session| Monitor::new(session, &profile, terminate_flag))?;
Ok(())
}