# <img src="docs/veloxx_logo.png" alt="Veloxx Logo" height="70px"> Veloxx: Lightweight Rust-Powered Data Processing & Analytics Library
[](https://crates.io/crates/veloxx)
> **New in 0.2.1:** Major performance improvements across all core operations. See CHANGELOG for details.
Veloxx is a new Rust library designed for highly performant and **extremely lightweight** in-memory data processing and analytics. It prioritizes minimal dependencies, optimal memory footprint, and compile-time guarantees, making it an ideal choice for resource-constrained environments, high-performance computing, and applications where every byte and cycle counts.
## Core Principles & Design Goals
* **Extreme Lightweighting:** Strives for zero or very few, carefully selected external crates. Focuses on minimal overhead and small binary size.
* **Performance First:** Leverages Rust's zero-cost abstractions, with potential for SIMD and parallelism. Data structures are optimized for cache efficiency.
* **Safety & Reliability:** Fully utilizes Rust's ownership and borrowing system to ensure memory safety and prevent common data manipulation errors. Unsafe code is minimized and thoroughly audited.
* **Ergonomics & Idiomatic Rust API:** Designed for a clean, discoverable, and user-friendly API that feels natural to Rust developers, supporting method chaining and strong static typing.
* **Composability & Extensibility:** Features a modular design, allowing components to be independent and easily combinable, and is built to be easily extendable.
## Key Features
### Core Data Structures
* **DataFrame:** A columnar data store supporting heterogeneous data types per column (i32, f64, bool, String, DateTime). Efficient storage and handling of missing values.
* **Series (or Column):** A single-typed, named column of data within a DataFrame, providing type-specific operations.
### Data Ingestion & Loading
* **From `Vec<Vec<T>>` / Iterator:** Basic in-memory construction from Rust native collections.
* **CSV Support:** Minimalistic, highly efficient CSV parser for loading data.
* **JSON Support:** Efficient parsing for common JSON structures.
* **Custom Data Sources:** Traits/interfaces for users to implement their own data loading mechanisms.
### Data Cleaning & Preparation
* `drop_nulls()`: Remove rows with any null values.
* `fill_nulls(value)`: Fill nulls with a specified value (type-aware, including DateTime).
* `interpolate_nulls()`: Basic linear interpolation for numeric and DateTime series.
* **Type Casting:** Efficient conversion between compatible data types for Series (e.g., i32 to f64).
* `rename_column(old_name, new_name)`: Rename columns.
### Data Transformation & Manipulation
* **Selection:** `select_columns(names)`, `drop_columns(names)`.
* **Filtering:** Predicate-based row selection using logical (`AND`, `OR`, `NOT`) and comparison operators (`==`, `!=`, `<`, `>`, `<=`, `>=`).
* **Projection:** `with_column(new_name, expression)`, `apply()` for user-defined functions.
* **Sorting:** Sort DataFrame by one or more columns (ascending/descending).
* **Joining:** Basic inner, left, and right join operations on common keys.
* **Concatenation/Append:** Combine DataFrames vertically.
### Aggregation & Reduction
* **Simple Aggregations:** `sum()`, `mean()`, `median()`, `min()`, `max()`, `count()`, `std_dev()`.
* **Group By:** Perform aggregations on groups defined by one or more columns.
* **Unique Values:** `unique()` for a Series or DataFrame columns.
### Basic Analytics & Statistics
* `describe()`: Provides summary statistics for numeric columns (count, mean, std, min, max, quartiles).
* `correlation()`: Calculate Pearson correlation between two numeric Series.
* `covariance()`: Calculate covariance.
### Output & Export
* **To `Vec<Vec<T>>`:** Export DataFrame content back to standard Rust collections.
* **To CSV:** Efficiently write DataFrame to a CSV file.
* **Display/Pretty Print:** User-friendly console output for DataFrame and Series.
## Installation
Add the following to your `Cargo.toml` file:
```toml
[dependencies]
veloxx = "0.2.1" # Or the latest version
```
## Usage Example
Here's a quick example demonstrating how to create a DataFrame, filter it, and perform a group-by aggregation:
```rust
use veloxx::dataframe::DataFrame;
use veloxx::series::Series;
use veloxx::types::{Value, DataType};
use veloxx::conditions::Condition;
use veloxx::expressions::Expr;
use std::collections::BTreeMap;
fn main() -> Result<(), String> {
// 1. Create a DataFrame
let mut columns = BTreeMap::new();
columns.insert("name".to_string(), Series::new_string("name", vec![Some("Alice".to_string()), Some("Bob".to_string()), Some("Charlie".to_string()), Some("David".to_string())]));
columns.insert("age".to_string(), Series::new_i32("age", vec![Some(25), Some(30), Some(22), Some(35)]));
columns.insert("city".to_string(), Series::new_string("city", vec![Some("New York".to_string()), Some("London".to_string()), Some("New York".to_string()), Some("Paris".to_string())]));
columns.insert("last_login".to_string(), Series::new_datetime("last_login", vec![Some(1678886400), Some(1678972800), Some(1679059200), Some(1679145600)]));
let df = DataFrame::new(columns)?;
println!("Original DataFrame:
{}", df);
// 2. Filter data: age > 25 AND city == "New York"
let condition = Condition::And(
Box::new(Condition::Gt("age".to_string(), Value::I32(25))),
Box::new(Condition::Eq("city".to_string(), Value::String("New York".to_string()))),
);
let filtered_df = df.filter(&condition)?;
println!("
Filtered DataFrame (age > 25 AND city == \"New York\"):
{}", filtered_df);
// 3. Add a new column: age_in_10_years = age + 10
let expr_add_10 = Expr::Add(Box::new(Expr::Column("age".to_string())), Box::new(Expr::Literal(Value::I32(10))));
let df_with_new_col = df.with_column("age_in_10_years", &expr_add_10)?;
println!("
DataFrame with new column (age_in_10_years):
{}", df_with_new_col);
// 4. Group by city and calculate average age and count of users
let grouped_df = df.group_by(vec!["city".to_string()])?;
let aggregated_df = grouped_df.agg(vec![("age", "mean"), ("name", "count")])?;
println!("
Aggregated DataFrame (average age and user count by city):
{}", aggregated_df);
// 5. Demonstrate DateTime filtering (users logged in after a specific date)
let specific_date_timestamp = 1679000000; // Example timestamp
let condition_dt = Condition::Gt("last_login".to_string(), Value::DateTime(specific_date_timestamp));
let filtered_df_dt = df.filter(&condition_dt)?;
println!("
Filtered DataFrame (users logged in after {}):
{}", specific_date_timestamp, filtered_df_dt);
Ok(())
}
```
## Non-Functional Requirements
* **Comprehensive Documentation:** Extensive `///` documentation for all public APIs, examples, and design choices.
* **Robust Testing:** Thorough unit and integration tests covering all functionalities and edge cases.
* **Performance Benchmarking:** Includes benchmarks to track performance and memory usage, ensuring lightweight and high-performance goals are met.
* **Cross-Platform Compatibility:** Designed to work on common operating systems (Linux, macOS, Windows).
* **Safety:** Upholds Rust's safety guarantees, with minimal and heavily justified `unsafe` code.
## Future Considerations / Roadmap
* **Streaming Data:** Support for processing data in a streaming fashion.
* **Time-Series Functionality:** Basic time-series resampling, rolling windows.
* **FFI (Foreign Function Interface):** Consider C API for integration with other languages (Python, JavaScript).
* **Simple Plotting Integration:** Provide hooks or basic data preparation for common plotting libraries.
* **Persistence:** Basic serialization/deserialization formats (e.g., custom binary format, Parquet subset).
## License
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.