<div align="center">
# Velociplot π¦
_Scientific plotting at velociraptor speed_
**velociplot** (Velociraptor + plot) is a fast, publication-quality plotting library for Rust. Quick, precise, and deadly effective for creating scientific figures.
</div>
## π― What is velociplot?
*Veloci-plot* = Velocity + plot
Like a velociraptor: **quick, precise, and deadly effective**
A pure Rust plotting library designed for scientists, engineers, and developers who need high-performance, publication-ready visualizations.
## β¨ Features (Planned)
- π¦ **Blazingly Fast** - Plot millions of points in milliseconds
- π **Publication Quality** - LaTeX math, precise DPI control, vector output
- π **Scientific Plots** - Line, scatter, histogram, heatmap, contour, 3D surface
- π¨ **Beautiful Defaults** - Perceptually uniform colormaps, colorblind-friendly
- π **Multiple Formats** - PDF, SVG, PNG, EPS (vector + raster)
- π§ **Ergonomic API** - Simple for basics, powerful for complex figures
- π **Pure Rust** - No Python/matplotlib required
## π§ Status
**Early Development** - Basic plotting is now functional!
Current version: `0.0.1-alpha`
β
**What works now:**
- β
Line plots with customizable colors and widths
- β
**Axes with tick marks and labels**
- β
**Grid lines**
- β
**Legends with automatic positioning**
- β
**Text rendering** (axis labels, legend text, annotations)
- β
PNG output via tiny-skia backend
- β
Data from functions, vectors, or tuples
- β
Automatic bounds calculation
- β
Pure Rust, no C dependencies
π§ **Coming soon:** More plot types (scatter points, bar, histogram), SVG/PDF output, LaTeX math rendering
## π Quick Example
```rust
use velociplot::prelude::*;
// Create data - a simple parabola
let data = Series::from_function(0.0, 10.0, 50, |x| x * x);
// Create and customize the plot
let plot = LinePlot::new(data)
.color(Color::from_hex("#1f77b4").unwrap())
.line_width(2.5);
// Set up canvas and render
let bounds = plot.bounds().unwrap().with_padding(0.1);
let mut canvas = SkiaCanvas::new(800, 600, bounds)?;
canvas.fill_background(&Color::WHITE.to_rgba())?;
// Add axes with grid
let x_axis = Axis::new(AxisPosition::Bottom)
.label("X")
.show_grid(true);
let y_axis = Axis::new(AxisPosition::Left)
.label("Y = XΒ²")
.show_grid(true);
x_axis.draw(&mut canvas)?;
y_axis.draw(&mut canvas)?;
plot.draw(&mut canvas)?;
// Add legend
if let Some(entry) = plot.legend_entry() {
let legend = Legend::new()
.add_entry(entry)
.position(LegendPosition::UpperRight);
legend.draw(&mut canvas)?;
}
// Save to PNG
canvas.save_png("plot.png")?;
```
See [examples/](examples/) for more including multi-series plots with legends!
### Custom Fonts
You can use custom fonts for text rendering:
```rust
let mut canvas = SkiaCanvas::new(800, 600, bounds)?;
// Load a custom font from a file
canvas.load_font_from_file("path/to/your/font.ttf")?;
// Or load from bytes
let font_bytes = include_bytes!("../assets/MyFont.ttf");
canvas.load_font_from_bytes(font_bytes)?;
```
By default, velociplot uses JetBrains Mono embedded in the library.
### Legend Customization
#### Understanding Vertical Alignment
Legends display a colored line next to text labels. The vertical alignment determines where that line appears relative to the text. Different fonts have different proportions (x-height, ascenders, descenders), so the "visually centered" position varies.
**Why this matters:**
- Typography has multiple reference points: baseline, x-height, cap-height
- The **optical center** (where text "feels" centered) isn't at 50% of the text box
- Most lowercase letters (a, e, o, n) sit on the **baseline** and extend to the **x-height**
- The visual center is typically around the middle of the x-height
**How it works:**
```
Text Box: βββββββββββ β 0.0 (top)
β T β
β e ββββ 0.70 (default - optical center)
β x β
β t ββββ 0.75 (baseline)
βββββββββββ β 1.0 (bottom)
```
Fine-tune the alignment to match your font:
```rust
let legend = Legend::new()
.add_entry(entry)
.position(LegendPosition::UpperRight)
.line_vertical_align(0.70); // 0.0 = top, 1.0 = bottom
```
**Recommended values:**
- `0.55` - Higher (fonts with large x-height like Verdana)
- `0.65` - Geometric center of x-height
- `0.70` - **Default** (optimized for JetBrains Mono)
- `0.75` - Baseline (mathematical horizontal reference)
**Testing your font:**
```bash
cargo run --example legend_alignment_test
# Generates 6 comparison plots (0.50, 0.55, 0.60, 0.65, 0.70, 0.75)
# Open the PNG files and pick the one that looks best centered
```
The default (0.70) was chosen after visual testing with JetBrains Mono, the embedded font. If you load a custom font, you may want to adjust this value.
## π¦ Installation
```toml
# Add to Cargo.toml (not yet on crates.io)
[dependencies]
velociplot = { git = "https://github.com/ibrahimcesar/velociplot" }
```
Or build from source:
```bash
git clone https://github.com/ibrahimcesar/velociplot
cd velociplot
cargo build --release
cargo run --example basic_line
```
## πΊοΈ Roadmap
### Phase 1: Foundation β
**DONE!**
- [x] Core architecture and traits
- [x] Basic 2D coordinate system
- [x] Simple line plots
- [x] PNG output (raster via tiny-skia)
- [x] Color and style system
### Phase 2: Core Plots
- [ ] Bar charts and histograms
- [ ] Error bars and bands
- [ ] Multiple series support
- [ ] Legend and annotations
- [ ] Axis customization (labels, limits, scales)
### Phase 3: Publication Quality
- [ ] LaTeX math rendering
- [ ] Vector output (PDF, SVG, EPS)
- [ ] DPI and size control
- [ ] Multiple subplots and layouts
- [ ] Publication templates (Nature, Science, IEEE, ACS)
### Phase 4: Advanced Plots
- [ ] Heatmaps and colormaps
- [ ] Contour plots
- [ ] 3D surface plots
- [ ] Polar plots
- [ ] Vector fields (quiver)
### Phase 5: Ecosystem Integration
- [ ] Integration with `ndarray`
- [ ] Integration with `polars` DataFrames
- [ ] Jupyter notebook support
- [ ] CLI tool for quick plotting
- [ ] Python bindings (PyO3)
## π¨ Design Philosophy
**Inspired by matplotlib, but Rust-native:**
- β
**Performance** - 10-100x faster than Python/matplotlib
- β
**Type Safety** - Catch errors at compile time
- β
**No Dependencies** - No Python, no C libraries (for core features)
- β
**Modern Defaults** - Beautiful out-of-the-box
- β
**Progressive Disclosure** - Easy to start, powerful when needed
**API Principles:**
- Simple one-liners for common tasks
- Builder pattern for complex figures
- Method chaining for fluent API
- Sensible defaults (but full control when needed)
## π― Use Cases
- **Academic Papers** - Publication-ready figures with LaTeX
- **Data Analysis** - Quick exploratory plots
- **Engineering** - Technical visualizations and reports
- **Real-time Monitoring** - High-performance streaming plots
- **Web Services** - Generate plots server-side (no GUI needed)
## π§ Architecture
```bash
velociplot/
βββ velociplot-core/ # Core plotting engine
βββ velociplot-backend/ # Rendering backends (Cairo, Skia, etc.)
βββ velociplot-formats/ # Output formats (PDF, SVG, PNG)
βββ velociplot-styles/ # Style presets and themes
βββ velociplot-cli/ # Command-line tool (optional)
```
## π€ Contributing
Contributions are welcome! This project is in early stages.
**How to contribute:**
- π Report bugs or suggest features via Issues
- π» Submit PRs for bug fixes or features
- π Improve documentation
- π¨ Create plot examples or style templates
- π§ͺ Add test cases
## π Documentation
- [API Documentation](https://docs.rs/velociplot) (coming soon)
- [User Guide](https://velociplot.rs) (coming soon)
- [Examples Gallery](./examples/) (coming soon)
## π Acknowledgments
Standing on the shoulders of giants:
- [matplotlib](https://matplotlib.org/) - The gold standard for scientific plotting
- [plotters](https://github.com/plotters-rs/plotters) - Rust plotting pioneer
- [egui_plot](https://github.com/emilk/egui) - Interactive plotting in Rust
- [poloto](https://github.com/tiby312/poloto) - SVG plotting techniques
- [resvg](https://github.com/RazrFalcon/resvg) - SVG rendering
## π License
MIT OR Apache-2.0
## π¦ Why "velociplot"?
Because your scientific plots should be as fast and efficient as a velociraptor hunting prey. No more waiting minutes for matplotlib to render complex figures!
---
**velociplot** - *Because your plots shouldn't take ages to render* π¦β‘
## πΈ Example Output
<div align="center">
### Basic Line Plot

### Multiple Series

</div>
---
*Status: β
**Phase 1 Complete** - Basic plotting now functional!*
**Star** β this repo to follow development!
## Contributors
<!-- ALL-CONTRIBUTORS-LIST:START - Do not remove or modify this section -->
<!-- prettier-ignore-start -->
<!-- markdownlint-disable -->
<table>
<tbody>
<tr>
<td align="center" valign="top" width="14.28%"><a href="https://ibrahimcesar.cloud"><img src="https://github.com/ibrahimcesar.png" width="100px;" alt="Ibrahim Cesar"/><br /><sub><b>Ibrahim Cesar</b></sub></a><br /><a href="https://github.com/ibrahimcesar/velociplot/commits?author=ibrahimcesar" title="Code">π»</a> <a href="https://github.com/ibrahimcesar/velociplot/commits?author=ibrahimcesar" title="Documentation">π</a> <a href="#example-ibrahimcesar" title="Examples">π‘</a> <a href="#ideas-ibrahimcesar" title="Ideas, Planning, & Feedback">π€</a> <a href="#infra-ibrahimcesar" title="Infrastructure (Hosting, Build-Tools, etc)">π</a> <a href="#maintenance-ibrahimcesar" title="Maintenance">π§</a> <a href="https://github.com/ibrahimcesar/velociplot/commits?author=ibrahimcesar" title="Tests">β
</a></td>
</tr>
</tbody>
</table>
<!-- markdownlint-restore -->
<!-- prettier-ignore-end -->
<!-- ALL-CONTRIBUTORS-LIST:END -->
This project follows the [all-contributors](https://github.com/all-contributors/all-contributors) specification. Contributions of any kind welcome!