# velesdb-core
[](https://crates.io/crates/velesdb-core)
[](https://docs.rs/velesdb-core)
[](https://github.com/cyberlife-coder/velesdb/blob/main/LICENSE)
[](https://github.com/cyberlife-coder/VelesDB/actions)
High-performance vector database engine written in Rust.
## Features
- **Blazing Fast**: HNSW index with explicit SIMD (4x faster than auto-vectorized)
- **Hybrid Search**: Combine vector similarity + BM25 full-text search with RRF fusion
- **Persistent Storage**: Memory-mapped files for efficient disk access
- **Multiple Distance Metrics**: Cosine, Euclidean, Dot Product, Hamming, Jaccard
- **ColumnStore Filtering**: 122x faster than JSON filtering at scale
- **VelesQL**: SQL-like query language with MATCH support for full-text search
- **Bulk Operations**: Optimized batch insert with parallel HNSW indexing
## Installation
```bash
cargo add velesdb-core
```
## Quick Start
```rust
use velesdb_core::{Database, DistanceMetric, Point};
use serde_json::json;
fn main() -> Result<(), Box<dyn std::error::Error>> {
// Create a new database
let db = Database::open("./my_vectors")?;
// Create a collection with 384-dimensional vectors
let collection = db.create_collection("documents", 384, DistanceMetric::Cosine)?;
// Insert vectors with metadata
let points = vec![
Point::new(1, vec![0.1; 384], Some(json!({"title": "Hello World", "category": "greeting"}))),
Point::new(2, vec![0.2; 384], Some(json!({"title": "Rust Programming", "category": "tech"}))),
];
collection.upsert(&points)?;
// Vector similarity search
let query = vec![0.15; 384];
let results = collection.search(&query, 5)?;
for result in results {
println!("ID: {}, Score: {:.4}", result.point.id, result.score);
}
// Hybrid search (vector + full-text)
let hybrid_results = collection.hybrid_search(
&query,
"rust programming",
5,
Some(0.7) // 70% vector, 30% text
)?;
Ok(())
}
```
## Distance Metrics
| `Cosine` | Text embeddings, normalized vectors |
| `Euclidean` | Image features, spatial data |
| `DotProduct` | When vectors are pre-normalized |
| `Hamming` | Binary vectors, hash comparisons |
| `Jaccard` | Set similarity, sparse vectors |
## Performance
### Vector Operations (768D)
| Dot Product | **~39 ns** | 26M ops/sec |
| Euclidean Distance | **~49 ns** | 20M ops/sec |
| Cosine Similarity | **~81 ns** | 12M ops/sec |
| Hamming (Binary) | **~6 ns** | 164M ops/sec |
### End-to-End Benchmark (10k vectors, 768D)
| **Ingest** | 22.3s | **3.0s** | 7.4x |
| **Search Latency** | 52.8ms | **4.0ms** | 13x |
| **Throughput** | 18.9 QPS | **246.8 QPS** | 13x |
### Key Performance Features
- Search latency: **< 5ms** for 10k vectors
- Bulk import: **3,300 vectors/sec** with `upsert_bulk()`
- ColumnStore filtering: **122x faster** than JSON at 100k items
- Memory efficient with SQ8 quantization (4x reduction)
> 📊 **Benchmark kit:** See [benchmarks/](../../benchmarks/) for reproducible tests.
## License
Elastic License 2.0 (ELv2)
See [LICENSE](https://github.com/cyberlife-coder/velesdb/blob/main/LICENSE) for details.