# velesdb-core
[](https://crates.io/crates/velesdb-core)
[](https://docs.rs/velesdb-core)
[](https://github.com/cyberlife-coder/velesdb/blob/main/LICENSE)
High-performance vector database engine written in Rust.
## Features
- **Blazing Fast**: HNSW index with SIMD-optimized distance calculations
- **Persistent Storage**: Memory-mapped files for efficient disk access
- **Multiple Distance Metrics**: Cosine, Euclidean, Dot Product, Hamming, Jaccard
- **Metadata Filtering**: Filter search results by payload attributes
- **VelesQL**: SQL-like query language for vector operations
## Installation
```bash
cargo add velesdb-core
```
## Quick Start
```rust
use velesdb_core::{Database, DistanceMetric};
use serde_json::json;
fn main() -> Result<(), Box<dyn std::error::Error>> {
// Create a new database
let db = Database::open("./my_vectors")?;
// Create a collection with 384-dimensional vectors
let collection = db.create_collection("documents", 384, DistanceMetric::Cosine)?;
// Insert vectors with metadata
collection.upsert(vec![
(1, vec![0.1; 384], json!({"title": "Hello World", "category": "greeting"})),
(2, vec![0.2; 384], json!({"title": "Rust Programming", "category": "tech"})),
])?;
// Search for similar vectors
let query = vec![0.15; 384];
let results = collection.search(&query, 5)?;
for result in results {
println!("ID: {}, Score: {:.4}", result.id, result.score);
}
Ok(())
}
```
## Distance Metrics
| `Cosine` | Text embeddings, normalized vectors |
| `Euclidean` | Image features, spatial data |
| `DotProduct` | When vectors are pre-normalized |
| `Hamming` | Binary vectors, hash comparisons |
| `Jaccard` | Set similarity, sparse vectors |
## Performance
- Search latency: **< 1ms** for 100k vectors
- Insert throughput: **> 50k vectors/sec**
- Memory efficient with quantization support
## License
Business Source License 1.1 (BSL-1.1)
See [LICENSE](https://github.com/cyberlife-coder/velesdb/blob/main/LICENSE) for details.