[][src]Struct vek::vec::repr_simd::rgba::Rgba

#[repr(simd)]pub struct Rgba<T> {
    pub r: T,
    pub g: T,
    pub b: T,
    pub a: T,
}

Vector type suited for RGBA color data.

There is no trait bound on ColorComponent, but if T doesn't implement it, you'll miss some goodies.

Fields

r: Tg: Tb: Ta: T

Implementations

impl<T> Rgba<T>[src]

pub const fn new(r: T, g: T, b: T, a: T) -> Self[src]

Creates a vector from elements.

impl<T> Rgba<T>[src]

pub fn broadcast(val: T) -> Self where
    T: Copy
[src]

Broadcasts a single value to all elements of a new vector.

This function is also named splat() in some libraries, or set1() in Intel intrinsics.

"Broadcast" was chosen as the name because it is explicit enough and is the same wording as the description in relevant Intel intrinsics.

assert_eq!(Vec4::broadcast(5), Vec4::new(5,5,5,5));
assert_eq!(Vec4::broadcast(5), Vec4::from(5));

pub fn zero() -> Self where
    T: Zero
[src]

Creates a new vector with all elements set to zero.

assert_eq!(Vec4::zero(), Vec4::new(0,0,0,0));
assert_eq!(Vec4::zero(), Vec4::broadcast(0));
assert_eq!(Vec4::zero(), Vec4::from(0));

pub fn one() -> Self where
    T: One
[src]

Creates a new vector with all elements set to one.

assert_eq!(Vec4::one(), Vec4::new(1,1,1,1));
assert_eq!(Vec4::one(), Vec4::broadcast(1));
assert_eq!(Vec4::one(), Vec4::from(1));

pub fn iota() -> Self where
    T: Zero + One + AddAssign + Copy
[src]

Produces a vector of the first n integers, starting from zero, where n is the number of elements for this vector type.

The iota (ι) function, originating from APL.

See this StackOverflow answer.

This is mostly useful for debugging purposes and tests.

assert_eq!(Vec4::iota(), Vec4::new(0, 1, 2, 3));

pub const fn elem_count(&self) -> usize[src]

Convenience method which returns the number of elements of this vector.

let v = Vec4::new(0,1,2,3);
assert_eq!(v.elem_count(), 4);

pub const ELEM_COUNT: usize[src]

Convenience constant representing the number of elements for this vector type.

pub fn into_tuple(self) -> (T, T, T, T)[src]

Converts this into a tuple with the same number of elements by consuming.

pub fn into_array(self) -> [T; 4][src]

Converts this vector into a fixed-size array.

pub fn as_slice(&self) -> &[T][src]

View this vector as an immutable slice.

pub fn as_mut_slice(&mut self) -> &mut [T][src]

View this vector as a mutable slice.

pub fn from_slice(slice: &[T]) -> Self where
    T: Default + Copy
[src]

Collects the content of a slice into a new vector. Elements are initialized to their default values.

pub fn map<D, F>(self, f: F) -> Rgba<D> where
    F: FnMut(T) -> D, 
[src]

Returns a memberwise-converted copy of this vector, using the given conversion closure.

let v = Vec4::new(0_f32, 1., 1.8, 3.14);
let i = v.map(|x| x.round() as i32);
assert_eq!(i, Vec4::new(0, 1, 2, 3));

Performing LERP on integer vectors by concisely converting them to floats:

let a = Vec4::new(0,1,2,3).map(|x| x as f32);
let b = Vec4::new(2,3,4,5).map(|x| x as f32);
let v = Vec4::lerp(a, b, 0.5_f32).map(|x| x.round() as i32);
assert_eq!(v, Vec4::new(1,2,3,4));

pub fn map2<D, F, S>(self, other: Rgba<S>, f: F) -> Rgba<D> where
    F: FnMut(T, S) -> D, 
[src]

Applies the function f to each element of two vectors, pairwise, and returns the result.

let a = Vec4::<u8>::new(255, 254, 253, 252);
let b = Vec4::<u8>::new(1, 2, 3, 4);
let v = a.map2(b, |a, b| a.wrapping_add(b));
assert_eq!(v, Vec4::zero());
let v = a.map2(b, u8::wrapping_add);
assert_eq!(v, Vec4::zero());

pub fn map3<D, F, S1, S2>(self, a: Rgba<S1>, b: Rgba<S2>, f: F) -> Rgba<D> where
    F: FnMut(T, S1, S2) -> D, 
[src]

Applies the function f to each element of three vectors, and returns the result.

let a = Vec4::<u8>::new(255, 254, 253, 252);
let b = Vec4::<u8>::new(1, 2, 3, 4);
let c = Vec4::<u8>::new(1, 2, 3, 4);
let v = a.map3(b, c, |a, b, c| a.wrapping_add(b) + c);
assert_eq!(v, c);

pub fn apply<F>(&mut self, f: F) where
    T: Copy,
    F: FnMut(T) -> T, 
[src]

Applies the function f to each element of this vector, in-place.

let mut v = Vec4::new(0_u32, 1, 2, 3);
v.apply(|x| x.count_ones());
assert_eq!(v, Vec4::new(0, 1, 1, 2));

pub fn apply2<F, S>(&mut self, other: Rgba<S>, f: F) where
    T: Copy,
    F: FnMut(T, S) -> T, 
[src]

Applies the function f to each element of two vectors, pairwise, in-place.

let mut a = Vec4::<u8>::new(255, 254, 253, 252);
let b = Vec4::<u8>::new(1, 2, 3, 4);
a.apply2(b, |a, b| a.wrapping_add(b));
assert_eq!(a, Vec4::zero());
a.apply2(b, u8::wrapping_add);
assert_eq!(a, b);

pub fn apply3<F, S1, S2>(&mut self, a: Rgba<S1>, b: Rgba<S2>, f: F) where
    T: Copy,
    F: FnMut(T, S1, S2) -> T, 
[src]

Applies the function f to each element of three vectors, in-place.

let mut a = Vec4::<u8>::new(255, 254, 253, 252);
let b = Vec4::<u8>::new(1, 2, 3, 4);
let c = Vec4::<u8>::new(1, 2, 3, 4);
a.apply3(b, c, |a, b, c| a.wrapping_add(b) + c);
assert_eq!(a, c);

pub fn zip<S>(self, other: Rgba<S>) -> Rgba<(T, S)>[src]

"Zips" two vectors together into a vector of tuples.

let a = Vec4::<u8>::new(255, 254, 253, 252);
let b = Vec4::<u8>::new(1, 2, 3, 4);
assert_eq!(a.zip(b), Vec4::new((255, 1), (254, 2), (253, 3), (252, 4)));

pub fn as_<D>(self) -> Rgba<D> where
    T: AsPrimitive<D>,
    D: 'static + Copy
[src]

Returns a memberwise-converted copy of this vector, using AsPrimitive.

Examples

let v = Vec4::new(0_f32, 1., 2., 3.);
let i: Vec4<i32> = v.as_();
assert_eq!(i, Vec4::new(0, 1, 2, 3));

Safety

In Rust versions before 1.45.0, some uses of the as operator were not entirely safe. In particular, it was undefined behavior if:

  • A truncated floating point value cannot fit in the target integer type (#10184);
This example is not tested
let x: u8 = (1.04E+17).as_(); // UB
  • Or a floating point value does not fit in another floating point type (#15536).
This example is not tested
let x: f32 = (1e300f64).as_(); // UB

pub fn numcast<D>(self) -> Option<Rgba<D>> where
    T: NumCast,
    D: NumCast
[src]

Returns a memberwise-converted copy of this vector, using NumCast.

let v = Vec4::new(0_f32, 1., 2., 3.);
let i: Vec4<i32> = v.numcast().unwrap();
assert_eq!(i, Vec4::new(0, 1, 2, 3));

pub fn mul_add<V: Into<Self>>(self, mul: V, add: V) -> Self where
    T: MulAdd<T, T, Output = T>, 
[src]

Fused multiply-add. Returns self * mul + add, and may be implemented efficiently by the hardware.

The compiler is often able to detect this kind of operation, so generally you don't need to use it. However, it can make your intent clear.

The name for this method is the one used by the same operation on primitive floating-point types.

let a = Vec4::new(0,1,2,3);
let b = Vec4::new(4,5,6,7);
let c = Vec4::new(8,9,0,1);
assert_eq!(a*b+c, a.mul_add(b, c));

pub fn is_any_negative(&self) -> bool where
    T: Signed
[src]

Is any of the elements negative ?

This was intended for checking the validity of extent vectors, but can make sense for other types too.

pub fn are_all_positive(&self) -> bool where
    T: Signed
[src]

Are all of the elements positive ?

pub fn min<V>(a: V, b: V) -> Self where
    V: Into<Self>,
    T: Ord
[src]

Compares elements of a and b, and returns the minimum values into a new vector, using total ordering.

let a = Vec4::new(0,1,2,3);
let b = Vec4::new(3,2,1,0);
let m = Vec4::new(0,1,1,0);
assert_eq!(m, Vec4::min(a, b));

pub fn max<V>(a: V, b: V) -> Self where
    V: Into<Self>,
    T: Ord
[src]

Compares elements of a and b, and returns the maximum values into a new vector, using total ordering.

let a = Vec4::new(0,1,2,3);
let b = Vec4::new(3,2,1,0);
let m = Vec4::new(3,2,2,3);
assert_eq!(m, Vec4::max(a, b));

pub fn partial_min<V>(a: V, b: V) -> Self where
    V: Into<Self>,
    T: PartialOrd
[src]

Compares elements of a and b, and returns the minimum values into a new vector, using partial ordering.

let a = Vec4::new(0,1,2,3);
let b = Vec4::new(3,2,1,0);
let m = Vec4::new(0,1,1,0);
assert_eq!(m, Vec4::partial_min(a, b));

pub fn partial_max<V>(a: V, b: V) -> Self where
    V: Into<Self>,
    T: PartialOrd
[src]

Compares elements of a and b, and returns the maximum values into a new vector, using partial ordering.

let a = Vec4::new(0,1,2,3);
let b = Vec4::new(3,2,1,0);
let m = Vec4::new(3,2,2,3);
assert_eq!(m, Vec4::partial_max(a, b));

pub fn reduce_min(self) -> T where
    T: Ord
[src]

Returns the element which has the lowest value in this vector, using total ordering.

assert_eq!(-5, Vec4::new(0, 5, -5, 8).reduce_min());

pub fn reduce_max(self) -> T where
    T: Ord
[src]

Returns the element which has the highest value in this vector, using total ordering.

assert_eq!(8, Vec4::new(0, 5, -5, 8).reduce_max());

pub fn reduce_partial_min(self) -> T where
    T: PartialOrd
[src]

Returns the element which has the lowest value in this vector, using partial ordering.

assert_eq!(-5_f32, Vec4::new(0_f32, 5., -5., 8.).reduce_partial_min());

pub fn reduce_partial_max(self) -> T where
    T: PartialOrd
[src]

Returns the element which has the highest value in this vector, using partial ordering.

assert_eq!(8_f32, Vec4::new(0_f32, 5., -5., 8.).reduce_partial_max());

pub fn reduce_bitand(self) -> T where
    T: BitAnd<T, Output = T>, 
[src]

Returns the result of bitwise-AND (&) on all elements of this vector.

assert_eq!(true,  Vec4::new(true, true, true, true).reduce_bitand());
assert_eq!(false, Vec4::new(true, false, true, true).reduce_bitand());
assert_eq!(false, Vec4::new(true, true, true, false).reduce_bitand());

pub fn reduce_bitor(self) -> T where
    T: BitOr<T, Output = T>, 
[src]

Returns the result of bitwise-OR (|) on all elements of this vector.

assert_eq!(false, Vec4::new(false, false, false, false).reduce_bitor());
assert_eq!(true,  Vec4::new(false, false, true, false).reduce_bitor());

pub fn reduce_bitxor(self) -> T where
    T: BitXor<T, Output = T>, 
[src]

Returns the result of bitwise-XOR (^) on all elements of this vector.

assert_eq!(false, Vec4::new(true, true, true, true).reduce_bitxor());
assert_eq!(true,  Vec4::new(true, false, true, true).reduce_bitxor());

pub fn reduce<F>(self, f: F) -> T where
    F: FnMut(T, T) -> T, 
[src]

Reduces this vector with the given accumulator closure.

pub fn product(self) -> T where
    T: Mul<Output = T>, 
[src]

Returns the product of each of this vector's elements.

assert_eq!(1*2*3*4, Vec4::new(1, 2, 3, 4).product());

pub fn sum(self) -> T where
    T: Add<T, Output = T>, 
[src]

Returns the sum of each of this vector's elements.

assert_eq!(1+2+3+4, Vec4::new(1, 2, 3, 4).sum());

pub fn average(self) -> T where
    T: Add<T, Output = T> + Div<T, Output = T> + From<u8>, 
[src]

Returns the average of this vector's elements.

assert_eq!(2.5_f32, Vec4::new(1_f32, 2., 3., 4.).average());

You should avoid using it on u8 vectors, not only because integer overflows cause panics in debug mode, but also because of integer division, the result may not be the one you expect.

This example panics
// This causes a panic!
let red = Vec4::new(255u8, 1, 0, 0);
let grey_level = red.average();
assert_eq!(grey_level, 128);

You may want to convert the elements to bigger integers (or floating-point) instead:

let red = Vec4::new(255u8, 1, 128, 128);

let red = red.map(|c| c as u16);
let grey_level = red.average() as u8;
assert_eq!(grey_level, 128);

let red = red.map(|c| c as f32);
let grey_level = red.average().round() as u8;
assert_eq!(grey_level, 128);

pub fn sqrt(self) -> Self where
    T: Real
[src]

Returns a new vector which elements are the respective square roots of this vector's elements.

let v = Vec4::new(1f32, 2f32, 3f32, 4f32);
let s = Vec4::new(1f32, 4f32, 9f32, 16f32);
assert_eq!(v, s.sqrt());

pub fn rsqrt(self) -> Self where
    T: Real
[src]

Returns a new vector which elements are the respective reciprocal square roots of this vector's elements.

let v = Vec4::new(1f32, 0.5f32, 1f32/3f32, 0.25f32);
let s = Vec4::new(1f32, 4f32, 9f32, 16f32);
assert_eq!(v, s.rsqrt());

pub fn recip(self) -> Self where
    T: Real
[src]

Returns a new vector which elements are the respective reciprocal of this vector's elements.

let v = Vec4::new(1f32, 0.5f32, 0.25f32, 0.125f32);
let s = Vec4::new(1f32, 2f32, 4f32, 8f32);
assert_eq!(v, s.recip());
assert_eq!(s, v.recip());

pub fn ceil(self) -> Self where
    T: Real
[src]

Returns a new vector which elements are rounded to the nearest greater integer.

let v = Vec4::new(0_f32, 1., 1.8, 3.14);
assert_eq!(v.ceil(), Vec4::new(0f32, 1f32, 2f32, 4f32));

pub fn floor(self) -> Self where
    T: Real
[src]

Returns a new vector which elements are rounded down to the nearest lower integer.

let v = Vec4::new(0_f32, 1., 1.8, 3.14);
assert_eq!(v.floor(), Vec4::new(0f32, 1f32, 1f32, 3f32));

pub fn round(self) -> Self where
    T: Real
[src]

Returns a new vector which elements are rounded to the nearest integer.

let v = Vec4::new(0_f32, 1., 1.8, 3.14);
assert_eq!(v.round(), Vec4::new(0f32, 1f32, 2f32, 3f32));

pub fn hadd(self, rhs: Self) -> Self where
    T: Add<T, Output = T>, 
[src]

Horizontally adds adjacent pairs of elements in self and rhs into a new vector.

let a = Vec4::new(0, 1, 2, 3);
let b = Vec4::new(4, 5, 6, 7);
let h = Vec4::new(0+1, 2+3, 4+5, 6+7);
assert_eq!(h, a.hadd(b));

pub fn partial_cmpeq<Rhs: AsRef<Self>>(&self, rhs: &Rhs) -> Rgba<bool> where
    T: PartialEq
[src]

Compares each element of two vectors with the partial equality test, returning a boolean vector.

let u = Vec4::new(0,2,2,6);
let v = Vec4::new(0,1,2,3);
assert_eq!(u.partial_cmpeq(&v), Vec4::new(true, false, true, false));

pub fn partial_cmpne<Rhs: AsRef<Self>>(&self, rhs: &Rhs) -> Rgba<bool> where
    T: PartialEq
[src]

Compares each element of two vectors with the partial not-equal test, returning a boolean vector.

let u = Vec4::new(0,2,2,6);
let v = Vec4::new(0,1,2,3);
assert_eq!(u.partial_cmpne(&v), Vec4::new(false, true, false, true));

pub fn partial_cmpge<Rhs: AsRef<Self>>(&self, rhs: &Rhs) -> Rgba<bool> where
    T: PartialOrd
[src]

Compares each element of two vectors with the partial greater-or-equal test, returning a boolean vector.

let u = Vec4::new(0,2,2,2);
let v = Vec4::new(0,1,2,3);
assert_eq!(u.partial_cmpge(&v), Vec4::new(true, true, true, false));

pub fn partial_cmpgt<Rhs: AsRef<Self>>(&self, rhs: &Rhs) -> Rgba<bool> where
    T: PartialOrd
[src]

Compares each element of two vectors with the partial greater-than test, returning a boolean vector.

let u = Vec4::new(0,2,2,6);
let v = Vec4::new(0,1,2,3);
assert_eq!(u.partial_cmpgt(&v), Vec4::new(false, true, false, true));

pub fn partial_cmple<Rhs: AsRef<Self>>(&self, rhs: &Rhs) -> Rgba<bool> where
    T: PartialOrd
[src]

Compares each element of two vectors with the partial less-or-equal test, returning a boolean vector.

let u = Vec4::new(0,2,2,2);
let v = Vec4::new(0,1,2,3);
assert_eq!(u.partial_cmple(&v), Vec4::new(true, false, true, true));

pub fn partial_cmplt<Rhs: AsRef<Self>>(&self, rhs: &Rhs) -> Rgba<bool> where
    T: PartialOrd
[src]

Compares each element of two vectors with the partial less-than test, returning a boolean vector.

let u = Vec4::new(0,2,2,2);
let v = Vec4::new(0,1,2,3);
assert_eq!(u.partial_cmplt(&v), Vec4::new(false, false, false, true));

pub fn cmpeq<Rhs: AsRef<Self>>(&self, rhs: &Rhs) -> Rgba<bool> where
    T: Eq
[src]

Compares each element of two vectors with the partial equality test, returning a boolean vector.

let u = Vec4::new(0,2,2,6);
let v = Vec4::new(0,1,2,3);
assert_eq!(u.cmpeq(&v), Vec4::new(true, false, true, false));

pub fn cmpne<Rhs: AsRef<Self>>(&self, rhs: &Rhs) -> Rgba<bool> where
    T: Eq
[src]

Compares each element of two vectors with the total not-equal test, returning a boolean vector.

let u = Vec4::new(0,2,2,6);
let v = Vec4::new(0,1,2,3);
assert_eq!(u.cmpne(&v), Vec4::new(false, true, false, true));

pub fn cmpge<Rhs: AsRef<Self>>(&self, rhs: &Rhs) -> Rgba<bool> where
    T: Ord
[src]

Compares each element of two vectors with the total greater-or-equal test, returning a boolean vector.

let u = Vec4::new(0,2,2,2);
let v = Vec4::new(0,1,2,3);
assert_eq!(u.cmpge(&v), Vec4::new(true, true, true, false));

pub fn cmpgt<Rhs: AsRef<Self>>(&self, rhs: &Rhs) -> Rgba<bool> where
    T: Ord
[src]

Compares each element of two vectors with the total greater-than test, returning a boolean vector.

let u = Vec4::new(0,2,2,6);
let v = Vec4::new(0,1,2,3);
assert_eq!(u.cmpgt(&v), Vec4::new(false, true, false, true));

pub fn cmple<Rhs: AsRef<Self>>(&self, rhs: &Rhs) -> Rgba<bool> where
    T: Ord
[src]

Compares each element of two vectors with the total less-or-equal test, returning a boolean vector.

let u = Vec4::new(0,2,2,2);
let v = Vec4::new(0,1,2,3);
assert_eq!(u.cmple(&v), Vec4::new(true, false, true, true));

pub fn cmplt<Rhs: AsRef<Self>>(&self, rhs: &Rhs) -> Rgba<bool> where
    T: Ord
[src]

Compares each element of two vectors with the total less-than test, returning a boolean vector.

let u = Vec4::new(0,2,2,2);
let v = Vec4::new(0,1,2,3);
assert_eq!(u.cmplt(&v), Vec4::new(false, false, false, true));

pub fn lerp_unclamped_precise<S: Into<Self>>(
    from: Self,
    to: Self,
    factor: S
) -> Self where
    T: Copy + One + Mul<Output = T> + Sub<Output = T> + MulAdd<T, T, Output = T>, 
[src]

Returns the linear interpolation of from to to with factor unconstrained. See the Lerp trait.

pub fn lerp_unclamped<S: Into<Self>>(from: Self, to: Self, factor: S) -> Self where
    T: Copy + Sub<Output = T> + MulAdd<T, T, Output = T>, 
[src]

Same as lerp_unclamped_precise, implemented as a possibly faster but less precise operation. See the Lerp trait.

pub fn lerp<S: Into<Self> + Clamp + Zero + One>(
    from: Self,
    to: Self,
    factor: S
) -> Self where
    T: Copy + Sub<Output = T> + MulAdd<T, T, Output = T>, 
[src]

Returns the linear interpolation of from to to with factor constrained to be between 0 and 1. See the Lerp trait.

pub fn lerp_precise<S: Into<Self> + Clamp + Zero + One>(
    from: Self,
    to: Self,
    factor: S
) -> Self where
    T: Copy + One + Mul<Output = T> + Sub<Output = T> + MulAdd<T, T, Output = T>, 
[src]

Returns the linear interpolation of from to to with factor constrained to be between 0 and 1. See the Lerp trait.

impl Rgba<bool>[src]

pub fn reduce_and(self) -> bool[src]

Returns the result of logical AND (&&) on all elements of this vector.

assert_eq!(true,  Vec4::new(true, true, true, true).reduce_and());
assert_eq!(false, Vec4::new(true, false, true, true).reduce_and());
assert_eq!(false, Vec4::new(true, true, true, false).reduce_and());

pub fn reduce_or(self) -> bool[src]

Returns the result of logical OR (||) on all elements of this vector.

assert_eq!(false, Vec4::new(false, false, false, false).reduce_or());
assert_eq!(true,  Vec4::new(false, false, true, false).reduce_or());

pub fn reduce_ne(self) -> bool[src]

Reduces this vector using total inequality.

assert_eq!(false, Vec4::new(true, true, true, true).reduce_ne());
assert_eq!(true,  Vec4::new(true, false, true, true).reduce_ne());

impl<T> Rgba<T>[src]

pub fn into_repr_c(self) -> CVec<T>[src]

Converts this vector into its #[repr(C)] counterpart.

impl<T: ColorComponent> Rgba<T>[src]

pub fn new_opaque(r: T, g: T, b: T) -> Self[src]

Creates an RGBA color from RGB elements and full alpha.

pub fn new_transparent(r: T, g: T, b: T) -> Self[src]

Creates an RGBA color from RGB elements and zero alpha.

pub fn from_opaque<V: Into<Rgb<T>>>(color: V) -> Self[src]

Creates an RGBA color from an RGB vector and full alpha.

pub fn from_transparent<V: Into<Rgb<T>>>(color: V) -> Self[src]

Creates an RGBA color from an RGB vector and zero alpha.

impl<T> Rgba<T>[src]

pub fn from_translucent<V: Into<Rgb<T>>>(color: V, opacity: T) -> Self[src]

Creates an RGBA color from an RGB vector and variable alpha.

impl<T: ColorComponent> Rgba<T>[src]

pub fn black() -> Self[src]

pub fn white() -> Self[src]

pub fn red() -> Self[src]

pub fn green() -> Self[src]

pub fn blue() -> Self[src]

pub fn cyan() -> Self[src]

pub fn magenta() -> Self[src]

pub fn yellow() -> Self[src]

pub fn gray(value: T) -> Self where
    T: Copy
[src]

pub fn grey(value: T) -> Self where
    T: Copy
[src]

pub fn inverted_rgb(self) -> Self where
    T: Sub<Output = T>, 
[src]

Returns this color with RGB elements inverted. Alpha is preserved.

let opaque_orange = Rgba::new(255_u8, 128, 0, 255_u8);
assert_eq!(opaque_orange.inverted_rgb(), Rgba::new(0, 127, 255, 255));
assert_eq!(Rgba::<u8>::black().inverted_rgb(), Rgba::white());
assert_eq!(Rgba::<u8>::white().inverted_rgb(), Rgba::black());
assert_eq!(Rgba::<u8>::red().inverted_rgb(), Rgba::cyan());

pub fn average_rgb(self) -> T where
    T: Add<T, Output = T> + Div<T, Output = T> + From<u8>, 
[src]

Returns the average of this vector's RGB elements.

This is not the same as average because average takes all elements into account, which includes alpha. Be careful when calling this on integer vectors. See the average() method of vectors for a discussion and example.

impl<T> Rgba<T>[src]

pub fn shuffled_argb(self) -> Self[src]

Returns this vector with elements shuffled to map RGBA to ARGB.

pub fn shuffled_bgra(self) -> Self[src]

Returns this vector with elements shuffled to map RGBA to BGRA.

impl<T> Rgba<T>[src]

pub fn shuffled<M: Into<ShuffleMask4>>(self, mask: M) -> Self where
    T: Copy
[src]

Shuffle elements from this vector, using mask.

The relevant x86 intrinsic is _mm_shuffle_ps(v, v, mask).

let a = Vec4::<u32>::new(0,1,2,3);
assert_eq!(a.shuffled((0,1,2,3)), Vec4::new(0,1,2,3));
assert_eq!(a.shuffled((3,2,1,0)), Vec4::new(3,2,1,0));
assert_eq!(a.shuffled((2,3,4,5)), Vec4::new(2,3,0,1));
assert_eq!(a.shuffled(1), Vec4::new(1,1,1,1));
assert_eq!(a.shuffled(1), Vec4::broadcast(1));

pub fn shuffled_0101(self) -> Self where
    T: Copy
[src]

Moves the lower two elements of this vector to the upper two elements of the result. The lower two elements of this vector are passed through to the result.

The relevant x86 intrinsic is _mm_movelh_ps(v, v).

let a = Vec4::<u32>::new(0,1,2,3);
let b = Vec4::<u32>::new(0,1,0,1);
assert_eq!(a.shuffled_0101(), b);

pub fn shuffled_2323(self) -> Self where
    T: Copy
[src]

Moves the upper two elements of this vector to the lower two elements of the result. The upper two elements of this vector are passed through to the result.

The relevant x86 intrinsic is _mm_movehl_ps(v, v).

let a = Vec4::<u32>::new(0,1,2,3);
let b = Vec4::<u32>::new(2,3,2,3);
assert_eq!(a.shuffled_2323(), b);

pub fn shuffle_lo_hi<M: Into<ShuffleMask4>>(lo: Self, hi: Self, mask: M) -> Self where
    T: Copy
[src]

Shuffle elements from lo's low part and hi's high part using mask.

To shuffle a single vector, you may pass it as the first two arguments, or use the shuffled() method.

The relevant x86 intrinsic is _mm_shuffle_ps(lo, hi, mask).

let a = Vec4::<u32>::new(0,1,2,3);
let b = Vec4::<u32>::new(4,5,6,7);
assert_eq!(Vec4::shuffle_lo_hi(a, b, (0,1,2,3)), Vec4::new(0,1,6,7));
assert_eq!(Vec4::shuffle_lo_hi(a, b, (3,2,1,0)), Vec4::new(3,2,5,4));

pub fn interleave_0011(a: Self, b: Self) -> Self[src]

Interleaves the lower two elements from a and b.

The relevant x86 intrinsic is _mm_unpacklo_ps(a, b).

let a = Vec4::<u32>::new(0,1,2,3);
let b = Vec4::<u32>::new(4,5,6,7);
let c = Vec4::<u32>::new(0,4,1,5);
assert_eq!(Vec4::interleave_0011(a, b), c);

pub fn interleave_2233(a: Self, b: Self) -> Self[src]

Interleaves the upper two elements from a and b.

The relevant x86 intrinsic is _mm_unpackhi_ps(a, b).

let a = Vec4::<u32>::new(0,1,2,3);
let b = Vec4::<u32>::new(4,5,6,7);
let c = Vec4::<u32>::new(2,6,3,7);
assert_eq!(Vec4::interleave_2233(a, b), c);

pub fn shuffle_lo_hi_0101(a: Self, b: Self) -> Self[src]

Moves the lower two elements of b to the upper two elements of the result. The lower two elements of a are passed through to the result.

The relevant x86 intrinsic is _mm_movelh_ps(a, b).

let a = Vec4::<u32>::new(0,1,2,3);
let b = Vec4::<u32>::new(4,5,6,7);
let c = Vec4::<u32>::new(0,1,4,5);
assert_eq!(Vec4::shuffle_lo_hi_0101(a, b), c);

pub fn shuffle_hi_lo_2323(a: Self, b: Self) -> Self[src]

Moves the upper two elements of b to the lower two elements of the result. The upper two elements of a are passed through to the result.

The relevant x86 intrinsic is _mm_movehl_ps(a, b).

let a = Vec4::<u32>::new(0,1,2,3);
let b = Vec4::<u32>::new(4,5,6,7);
let c = Vec4::<u32>::new(6,7,2,3);
assert_eq!(Vec4::shuffle_hi_lo_2323(a, b), c);

pub fn shuffled_0022(self) -> Self where
    T: Copy
[src]

Returns a copy of this vector with v[1] set to v[0] and v[3] set to v[2].

The relevant x86 intrinsic is _mm_moveldup_ps(v).

let a = Vec4::<u32>::new(0,1,2,3);
let b = Vec4::<u32>::new(0,0,2,2);
assert_eq!(a.shuffled_0022(), b);

pub fn shuffled_1133(self) -> Self where
    T: Copy
[src]

Returns a copy of this vector with v[0] set to v[1] and v[2] set to v[3].

The relevant x86 intrinsic is _mm_movehdup_ps(v).

let a = Vec4::<u32>::new(0,1,2,3);
let b = Vec4::<u32>::new(1,1,3,3);
assert_eq!(a.shuffled_1133(), b);

impl<T> Rgba<T>[src]

pub fn rgb(self) -> Rgb<T>[src]

Same as Rgb::from(self), but more concise.

Trait Implementations

impl<T: AbsDiffEq> AbsDiffEq<Rgba<T>> for Rgba<T> where
    T::Epsilon: Copy
[src]

type Epsilon = T::Epsilon

Used for specifying relative comparisons.

impl<'a, T> Add<&'a Rgba<T>> for Rgba<T> where
    T: Add<&'a T, Output = T>, 
[src]

type Output = Rgba<T>

The resulting type after applying the + operator.

impl<'a, 'b, T> Add<&'a Rgba<T>> for &'b Rgba<T> where
    &'b T: Add<&'a T, Output = T>, 
[src]

type Output = Rgba<T>

The resulting type after applying the + operator.

impl<'a, 'b, T> Add<&'a T> for &'b Rgba<T> where
    &'b T: Add<&'a T, Output = T>, 
[src]

type Output = Rgba<T>

The resulting type after applying the + operator.

impl<'a, T> Add<Rgba<T>> for &'a Rgba<T> where
    &'a T: Add<T, Output = T>, 
[src]

type Output = Rgba<T>

The resulting type after applying the + operator.

impl Add<Rgba<f32>> for f32[src]

type Output = Rgba<f32>

The resulting type after applying the + operator.

impl Add<Rgba<f64>> for f64[src]

type Output = Rgba<f64>

The resulting type after applying the + operator.

impl Add<Rgba<i16>> for i16[src]

type Output = Rgba<i16>

The resulting type after applying the + operator.

impl Add<Rgba<i32>> for i32[src]

type Output = Rgba<i32>

The resulting type after applying the + operator.

impl Add<Rgba<i64>> for i64[src]

type Output = Rgba<i64>

The resulting type after applying the + operator.

impl Add<Rgba<i8>> for i8[src]

type Output = Rgba<i8>

The resulting type after applying the + operator.

impl Add<Rgba<u16>> for u16[src]

type Output = Rgba<u16>

The resulting type after applying the + operator.

impl Add<Rgba<u32>> for u32[src]

type Output = Rgba<u32>

The resulting type after applying the + operator.

impl Add<Rgba<u64>> for u64[src]

type Output = Rgba<u64>

The resulting type after applying the + operator.

impl Add<Rgba<u8>> for u8[src]

type Output = Rgba<u8>

The resulting type after applying the + operator.

impl<'a, T> Add<T> for &'a Rgba<T> where
    &'a T: Add<T, Output = T>,
    T: Copy
[src]

type Output = Rgba<T>

The resulting type after applying the + operator.

impl<V, T> Add<V> for Rgba<T> where
    V: Into<Rgba<T>>,
    T: Add<T, Output = T>, 
[src]

type Output = Self

The resulting type after applying the + operator.

impl<V, T> AddAssign<V> for Rgba<T> where
    V: Into<Rgba<T>>,
    T: AddAssign<T>, 
[src]

impl<T> AsMut<[T]> for Rgba<T>[src]

impl<T> AsMut<Rgba<T>> for Rgba<T>[src]

impl<T> AsRef<[T]> for Rgba<T>[src]

impl<T> AsRef<Rgba<T>> for Rgba<T>[src]

impl<'a, T> BitAnd<&'a Rgba<T>> for Rgba<T> where
    T: BitAnd<&'a T, Output = T>, 
[src]

type Output = Rgba<T>

The resulting type after applying the & operator.

impl<'a, 'b, T> BitAnd<&'a Rgba<T>> for &'b Rgba<T> where
    &'b T: BitAnd<&'a T, Output = T>, 
[src]

type Output = Rgba<T>

The resulting type after applying the & operator.

impl<'a, 'b, T> BitAnd<&'a T> for &'b Rgba<T> where
    &'b T: BitAnd<&'a T, Output = T>, 
[src]

type Output = Rgba<T>

The resulting type after applying the & operator.

impl<'a, T> BitAnd<Rgba<T>> for &'a Rgba<T> where
    &'a T: BitAnd<T, Output = T>, 
[src]

type Output = Rgba<T>

The resulting type after applying the & operator.

impl<'a, T> BitAnd<T> for &'a Rgba<T> where
    &'a T: BitAnd<T, Output = T>,
    T: Copy
[src]

type Output = Rgba<T>

The resulting type after applying the & operator.

impl<V, T> BitAnd<V> for Rgba<T> where
    V: Into<Rgba<T>>,
    T: BitAnd<T, Output = T>, 
[src]

type Output = Self

The resulting type after applying the & operator.

impl<V, T> BitAndAssign<V> for Rgba<T> where
    V: Into<Rgba<T>>,
    T: BitAndAssign<T>, 
[src]

impl<'a, T> BitOr<&'a Rgba<T>> for Rgba<T> where
    T: BitOr<&'a T, Output = T>, 
[src]

type Output = Rgba<T>

The resulting type after applying the | operator.

impl<'a, 'b, T> BitOr<&'a Rgba<T>> for &'b Rgba<T> where
    &'b T: BitOr<&'a T, Output = T>, 
[src]

type Output = Rgba<T>

The resulting type after applying the | operator.

impl<'a, 'b, T> BitOr<&'a T> for &'b Rgba<T> where
    &'b T: BitOr<&'a T, Output = T>, 
[src]

type Output = Rgba<T>

The resulting type after applying the | operator.

impl<'a, T> BitOr<Rgba<T>> for &'a Rgba<T> where
    &'a T: BitOr<T, Output = T>, 
[src]

type Output = Rgba<T>

The resulting type after applying the | operator.

impl<'a, T> BitOr<T> for &'a Rgba<T> where
    &'a T: BitOr<T, Output = T>,
    T: Copy
[src]

type Output = Rgba<T>

The resulting type after applying the | operator.

impl<V, T> BitOr<V> for Rgba<T> where
    V: Into<Rgba<T>>,
    T: BitOr<T, Output = T>, 
[src]

type Output = Self

The resulting type after applying the | operator.

impl<V, T> BitOrAssign<V> for Rgba<T> where
    V: Into<Rgba<T>>,
    T: BitOrAssign<T>, 
[src]

impl<'a, T> BitXor<&'a Rgba<T>> for Rgba<T> where
    T: BitXor<&'a T, Output = T>, 
[src]

type Output = Rgba<T>

The resulting type after applying the ^ operator.

impl<'a, 'b, T> BitXor<&'a Rgba<T>> for &'b Rgba<T> where
    &'b T: BitXor<&'a T, Output = T>, 
[src]

type Output = Rgba<T>

The resulting type after applying the ^ operator.

impl<'a, 'b, T> BitXor<&'a T> for &'b Rgba<T> where
    &'b T: BitXor<&'a T, Output = T>, 
[src]

type Output = Rgba<T>

The resulting type after applying the ^ operator.

impl<'a, T> BitXor<Rgba<T>> for &'a Rgba<T> where
    &'a T: BitXor<T, Output = T>, 
[src]

type Output = Rgba<T>

The resulting type after applying the ^ operator.

impl<'a, T> BitXor<T> for &'a Rgba<T> where
    &'a T: BitXor<T, Output = T>,
    T: Copy
[src]

type Output = Rgba<T>

The resulting type after applying the ^ operator.

impl<V, T> BitXor<V> for Rgba<T> where
    V: Into<Rgba<T>>,
    T: BitXor<T, Output = T>, 
[src]

type Output = Self

The resulting type after applying the ^ operator.

impl<V, T> BitXorAssign<V> for Rgba<T> where
    V: Into<Rgba<T>>,
    T: BitXorAssign<T>, 
[src]

impl<T> Borrow<[T]> for Rgba<T>[src]

impl<T> BorrowMut<[T]> for Rgba<T>[src]

impl<T: Clamp> Clamp<Rgba<T>> for Rgba<T>[src]

impl<T: Clamp + Copy> Clamp<T> for Rgba<T>[src]

impl<T: Clone> Clone for Rgba<T>[src]

impl<T: Copy> Copy for Rgba<T>[src]

impl<T: Debug> Debug for Rgba<T>[src]

impl<T: Default> Default for Rgba<T>[src]

impl<T> Deref for Rgba<T>[src]

type Target = [T]

The resulting type after dereferencing.

impl<T> DerefMut for Rgba<T>[src]

impl<'de, T> Deserialize<'de> for Rgba<T> where
    T: Deserialize<'de>, 
[src]

impl<T: Display> Display for Rgba<T>[src]

Displays the vector, formatted as rgba({...}, {...}, {...}, {...}) where ... are the actual formatting parameters.

impl<'a, T> Div<&'a Rgba<T>> for Rgba<T> where
    T: Div<&'a T, Output = T>, 
[src]

type Output = Rgba<T>

The resulting type after applying the / operator.

impl<'a, 'b, T> Div<&'a Rgba<T>> for &'b Rgba<T> where
    &'b T: Div<&'a T, Output = T>, 
[src]

type Output = Rgba<T>

The resulting type after applying the / operator.

impl<'a, 'b, T> Div<&'a T> for &'b Rgba<T> where
    &'b T: Div<&'a T, Output = T>, 
[src]

type Output = Rgba<T>

The resulting type after applying the / operator.

impl<'a, T> Div<Rgba<T>> for &'a Rgba<T> where
    &'a T: Div<T, Output = T>, 
[src]

type Output = Rgba<T>

The resulting type after applying the / operator.

impl<'a, T> Div<T> for &'a Rgba<T> where
    &'a T: Div<T, Output = T>,
    T: Copy
[src]

type Output = Rgba<T>

The resulting type after applying the / operator.

impl<V, T> Div<V> for Rgba<T> where
    V: Into<Rgba<T>>,
    T: Div<T, Output = T>, 
[src]

type Output = Self

The resulting type after applying the / operator.

impl<V, T> DivAssign<V> for Rgba<T> where
    V: Into<Rgba<T>>,
    T: DivAssign<T>, 
[src]

impl<T: Eq> Eq for Rgba<T>[src]

impl<T> From<[T; 4]> for Rgba<T>[src]

impl<T> From<(T, T, T, T)> for Rgba<T>[src]

impl<T: ColorComponent> From<Rgb<T>> for Rgba<T>[src]

impl<T> From<Rgba<T>> for Vec4<T>[src]

impl<T> From<Rgba<T>> for Rgba<T>[src]

impl<T> From<Rgba<T>> for CVec<T>[src]

impl<T> From<Rgba<T>> for Rgb<T>[src]

impl<T: Copy> From<T> for Rgba<T>[src]

A vector can be obtained from a single scalar by broadcasting it.

This conversion is important because it allows scalars to be smoothly accepted as operands in most vector operations.

For instance :

assert_eq!(Vec4::min(4, 5), Vec4::broadcast(4));
assert_eq!(Vec4::max(4, 5), Vec4::broadcast(5));
assert_eq!(Vec4::from(4), Vec4::broadcast(4));
assert_eq!(Vec4::from(4).mul_add(4, 5), Vec4::broadcast(21));

// scaling_3d() logically accepts a Vec3...
let _ = Mat4::<f32>::scaling_3d(Vec3::broadcast(5.0));
// ... but there you go; quick uniform scale, thanks to Into !
let _ = Mat4::scaling_3d(5_f32);

On the other hand, it also allows writing nonsense. To minimize surprises, the names of operations try to be as explicit as possible.

// This creates a matrix that translates to (5,5,5), but it's probably not what you meant.
// Hopefully the `_3d` suffix would help you catch this.
let _ = Mat4::translation_3d(5_f32);
// translation_3d() takes V: Into<Vec3> because it allows it to accept
// Vec2, Vec3 and Vec4, and also with both repr(C) and repr(simd) layouts.

impl<T> From<Vec4<T>> for Rgba<T>[src]

impl<T: Default> FromIterator<T> for Rgba<T>[src]

impl<T: Hash> Hash for Rgba<T>[src]

impl<'a, T> IntoIterator for &'a Rgba<T>[src]

type Item = &'a T

The type of the elements being iterated over.

type IntoIter = Iter<'a, T>

Which kind of iterator are we turning this into?

impl<'a, T> IntoIterator for &'a mut Rgba<T>[src]

type Item = &'a mut T

The type of the elements being iterated over.

type IntoIter = IterMut<'a, T>

Which kind of iterator are we turning this into?

impl<T> IntoIterator for Rgba<T>[src]

type Item = T

The type of the elements being iterated over.

type IntoIter = IntoIter<T>

Which kind of iterator are we turning this into?

impl<T: IsBetween<Output = bool>> IsBetween<Rgba<T>> for Rgba<T>[src]

type Output = Rgba<bool>

bool for scalars, or vector of bools for vectors.

impl<T: IsBetween<Output = bool> + Copy> IsBetween<T> for Rgba<T>[src]

type Output = Rgba<bool>

bool for scalars, or vector of bools for vectors.

impl<T, Factor> Lerp<Factor> for Rgba<T> where
    T: Lerp<Factor, Output = T>,
    Factor: Copy
[src]

type Output = Self

The resulting type after performing the LERP operation.

impl<'a, T, Factor> Lerp<Factor> for &'a Rgba<T> where
    &'a T: Lerp<Factor, Output = T>,
    Factor: Copy
[src]

type Output = Rgba<T>

The resulting type after performing the LERP operation.

impl<'a, T> Mul<&'a Rgba<T>> for Rgba<T> where
    T: Mul<&'a T, Output = T>, 
[src]

type Output = Rgba<T>

The resulting type after applying the * operator.

impl<'a, 'b, T> Mul<&'a Rgba<T>> for &'b Rgba<T> where
    &'b T: Mul<&'a T, Output = T>, 
[src]

type Output = Rgba<T>

The resulting type after applying the * operator.

impl<'a, 'b, T> Mul<&'a T> for &'b Rgba<T> where
    &'b T: Mul<&'a T, Output = T>, 
[src]

type Output = Rgba<T>

The resulting type after applying the * operator.

impl<'a, T> Mul<Rgba<T>> for &'a Rgba<T> where
    &'a T: Mul<T, Output = T>, 
[src]

type Output = Rgba<T>

The resulting type after applying the * operator.

impl Mul<Rgba<f32>> for f32[src]

type Output = Rgba<f32>

The resulting type after applying the * operator.

impl Mul<Rgba<f64>> for f64[src]

type Output = Rgba<f64>

The resulting type after applying the * operator.

impl Mul<Rgba<i16>> for i16[src]

type Output = Rgba<i16>

The resulting type after applying the * operator.

impl Mul<Rgba<i32>> for i32[src]

type Output = Rgba<i32>

The resulting type after applying the * operator.

impl Mul<Rgba<i64>> for i64[src]

type Output = Rgba<i64>

The resulting type after applying the * operator.

impl Mul<Rgba<i8>> for i8[src]

type Output = Rgba<i8>

The resulting type after applying the * operator.

impl Mul<Rgba<u16>> for u16[src]

type Output = Rgba<u16>

The resulting type after applying the * operator.

impl Mul<Rgba<u32>> for u32[src]

type Output = Rgba<u32>

The resulting type after applying the * operator.

impl Mul<Rgba<u64>> for u64[src]

type Output = Rgba<u64>

The resulting type after applying the * operator.

impl Mul<Rgba<u8>> for u8[src]

type Output = Rgba<u8>

The resulting type after applying the * operator.

impl<'a, T> Mul<T> for &'a Rgba<T> where
    &'a T: Mul<T, Output = T>,
    T: Copy
[src]

type Output = Rgba<T>

The resulting type after applying the * operator.

impl<V, T> Mul<V> for Rgba<T> where
    V: Into<Rgba<T>>,
    T: Mul<T, Output = T>, 
[src]

type Output = Self

The resulting type after applying the * operator.

impl<'a, 'b, T> MulAdd<&'a Rgba<T>, &'b Rgba<T>> for Rgba<T> where
    T: MulAdd<&'a T, &'b T, Output = T>, 
[src]

type Output = Rgba<T>

The resulting type after applying the fused multiply-add operation.

impl<'a, 'b, 'c, T> MulAdd<&'a Rgba<T>, &'b Rgba<T>> for &'c Rgba<T> where
    &'c T: MulAdd<&'a T, &'b T, Output = T>, 
[src]

type Output = Rgba<T>

The resulting type after applying the fused multiply-add operation.

impl<'a, T> MulAdd<&'a Rgba<T>, Rgba<T>> for Rgba<T> where
    T: MulAdd<&'a T, T, Output = T>, 
[src]

type Output = Rgba<T>

The resulting type after applying the fused multiply-add operation.

impl<'a, 'c, T> MulAdd<&'a Rgba<T>, Rgba<T>> for &'c Rgba<T> where
    &'c T: MulAdd<&'a T, T, Output = T>, 
[src]

type Output = Rgba<T>

The resulting type after applying the fused multiply-add operation.

impl<'b, T> MulAdd<Rgba<T>, &'b Rgba<T>> for Rgba<T> where
    T: MulAdd<T, &'b T, Output = T>, 
[src]

type Output = Rgba<T>

The resulting type after applying the fused multiply-add operation.

impl<'b, 'c, T> MulAdd<Rgba<T>, &'b Rgba<T>> for &'c Rgba<T> where
    &'c T: MulAdd<T, &'b T, Output = T>, 
[src]

type Output = Rgba<T>

The resulting type after applying the fused multiply-add operation.

impl<T> MulAdd<Rgba<T>, Rgba<T>> for Rgba<T> where
    T: MulAdd<T, T, Output = T>, 
[src]

type Output = Rgba<T>

The resulting type after applying the fused multiply-add operation.

impl<'c, T> MulAdd<Rgba<T>, Rgba<T>> for &'c Rgba<T> where
    &'c T: MulAdd<T, T, Output = T>, 
[src]

type Output = Rgba<T>

The resulting type after applying the fused multiply-add operation.

impl<V, T> MulAssign<V> for Rgba<T> where
    V: Into<Rgba<T>>,
    T: MulAssign<T>, 
[src]

impl<T> Neg for Rgba<T> where
    T: Neg<Output = T>, 
[src]

type Output = Self

The resulting type after applying the - operator.

impl<T> Not for Rgba<T> where
    T: Not<Output = T>, 
[src]

type Output = Self

The resulting type after applying the ! operator.

impl<T: One> One for Rgba<T>[src]

impl<T: PartialEq> PartialEq<Rgba<T>> for Rgba<T>[src]

impl<T> Product<Rgba<T>> for Rgba<T> where
    T: Mul<T, Output = T> + One
[src]

impl<T: RelativeEq> RelativeEq<Rgba<T>> for Rgba<T> where
    T::Epsilon: Copy
[src]

impl<'a, T> Rem<&'a Rgba<T>> for Rgba<T> where
    T: Rem<&'a T, Output = T>, 
[src]

type Output = Rgba<T>

The resulting type after applying the % operator.

impl<'a, 'b, T> Rem<&'a Rgba<T>> for &'b Rgba<T> where
    &'b T: Rem<&'a T, Output = T>, 
[src]

type Output = Rgba<T>

The resulting type after applying the % operator.

impl<'a, 'b, T> Rem<&'a T> for &'b Rgba<T> where
    &'b T: Rem<&'a T, Output = T>, 
[src]

type Output = Rgba<T>

The resulting type after applying the % operator.

impl<'a, T> Rem<Rgba<T>> for &'a Rgba<T> where
    &'a T: Rem<T, Output = T>, 
[src]

type Output = Rgba<T>

The resulting type after applying the % operator.

impl<'a, T> Rem<T> for &'a Rgba<T> where
    &'a T: Rem<T, Output = T>,
    T: Copy
[src]

type Output = Rgba<T>

The resulting type after applying the % operator.

impl<V, T> Rem<V> for Rgba<T> where
    V: Into<Rgba<T>>,
    T: Rem<T, Output = T>, 
[src]

type Output = Self

The resulting type after applying the % operator.

impl<V, T> RemAssign<V> for Rgba<T> where
    V: Into<Rgba<T>>,
    T: RemAssign<T>, 
[src]

impl<T> Serialize for Rgba<T> where
    T: Serialize
[src]

impl<'a, T> Shl<&'a Rgba<T>> for Rgba<T> where
    T: Shl<&'a T, Output = T>, 
[src]

type Output = Rgba<T>

The resulting type after applying the << operator.

impl<'a, 'b, T> Shl<&'a Rgba<T>> for &'b Rgba<T> where
    &'b T: Shl<&'a T, Output = T>, 
[src]

type Output = Rgba<T>

The resulting type after applying the << operator.

impl<'a, 'b, T> Shl<&'a T> for &'b Rgba<T> where
    &'b T: Shl<&'a T, Output = T>, 
[src]

type Output = Rgba<T>

The resulting type after applying the << operator.

impl<'a, T> Shl<Rgba<T>> for &'a Rgba<T> where
    &'a T: Shl<T, Output = T>, 
[src]

type Output = Rgba<T>

The resulting type after applying the << operator.

impl<'a, T> Shl<T> for &'a Rgba<T> where
    &'a T: Shl<T, Output = T>,
    T: Copy
[src]

type Output = Rgba<T>

The resulting type after applying the << operator.

impl<V, T> Shl<V> for Rgba<T> where
    V: Into<Rgba<T>>,
    T: Shl<T, Output = T>, 
[src]

type Output = Self

The resulting type after applying the << operator.

impl<V, T> ShlAssign<V> for Rgba<T> where
    V: Into<Rgba<T>>,
    T: ShlAssign<T>, 
[src]

impl<'a, T> Shr<&'a Rgba<T>> for Rgba<T> where
    T: Shr<&'a T, Output = T>, 
[src]

type Output = Rgba<T>

The resulting type after applying the >> operator.

impl<'a, 'b, T> Shr<&'a Rgba<T>> for &'b Rgba<T> where
    &'b T: Shr<&'a T, Output = T>, 
[src]

type Output = Rgba<T>

The resulting type after applying the >> operator.

impl<'a, 'b, T> Shr<&'a T> for &'b Rgba<T> where
    &'b T: Shr<&'a T, Output = T>, 
[src]

type Output = Rgba<T>

The resulting type after applying the >> operator.

impl<'a, T> Shr<Rgba<T>> for &'a Rgba<T> where
    &'a T: Shr<T, Output = T>, 
[src]

type Output = Rgba<T>

The resulting type after applying the >> operator.

impl<'a, T> Shr<T> for &'a Rgba<T> where
    &'a T: Shr<T, Output = T>,
    T: Copy
[src]

type Output = Rgba<T>

The resulting type after applying the >> operator.

impl<V, T> Shr<V> for Rgba<T> where
    V: Into<Rgba<T>>,
    T: Shr<T, Output = T>, 
[src]

type Output = Self

The resulting type after applying the >> operator.

impl<V, T> ShrAssign<V> for Rgba<T> where
    V: Into<Rgba<T>>,
    T: ShrAssign<T>, 
[src]

impl<T> StructuralEq for Rgba<T>[src]

impl<T> StructuralPartialEq for Rgba<T>[src]

impl<'a, T> Sub<&'a Rgba<T>> for Rgba<T> where
    T: Sub<&'a T, Output = T>, 
[src]

type Output = Rgba<T>

The resulting type after applying the - operator.

impl<'a, 'b, T> Sub<&'a Rgba<T>> for &'b Rgba<T> where
    &'b T: Sub<&'a T, Output = T>, 
[src]

type Output = Rgba<T>

The resulting type after applying the - operator.

impl<'a, 'b, T> Sub<&'a T> for &'b Rgba<T> where
    &'b T: Sub<&'a T, Output = T>, 
[src]

type Output = Rgba<T>

The resulting type after applying the - operator.

impl<'a, T> Sub<Rgba<T>> for &'a Rgba<T> where
    &'a T: Sub<T, Output = T>, 
[src]

type Output = Rgba<T>

The resulting type after applying the - operator.

impl<'a, T> Sub<T> for &'a Rgba<T> where
    &'a T: Sub<T, Output = T>,
    T: Copy
[src]

type Output = Rgba<T>

The resulting type after applying the - operator.

impl<V, T> Sub<V> for Rgba<T> where
    V: Into<Rgba<T>>,
    T: Sub<T, Output = T>, 
[src]

type Output = Self

The resulting type after applying the - operator.

impl<V, T> SubAssign<V> for Rgba<T> where
    V: Into<Rgba<T>>,
    T: SubAssign<T>, 
[src]

impl<T> Sum<Rgba<T>> for Rgba<T> where
    T: Add<T, Output = T> + Zero
[src]

impl<T: UlpsEq> UlpsEq<Rgba<T>> for Rgba<T> where
    T::Epsilon: Copy
[src]

impl<T: Wrap> Wrap<Rgba<T>> for Rgba<T>[src]

impl<T: Wrap + Copy> Wrap<T> for Rgba<T>[src]

impl<T: Zero + PartialEq> Zero for Rgba<T>[src]

Auto Trait Implementations

impl<T> RefUnwindSafe for Rgba<T> where
    T: RefUnwindSafe

impl<T> Send for Rgba<T> where
    T: Send

impl<T> Sync for Rgba<T> where
    T: Sync

impl<T> Unpin for Rgba<T> where
    T: Unpin

impl<T> UnwindSafe for Rgba<T> where
    T: UnwindSafe

Blanket Implementations

impl<T> Any for T where
    T: 'static + ?Sized
[src]

impl<I> Average for I where
    I: Integer + Shr<usize, Output = I>,
    &'a I: for<'a, 'b> BitAnd<&'b I>,
    &'a I: for<'a, 'b> BitOr<&'b I>,
    &'a I: for<'a, 'b> BitXor<&'b I>,
    <&'a I as BitAnd<&'b I>>::Output == I,
    <&'a I as BitOr<&'b I>>::Output == I,
    <&'a I as BitXor<&'b I>>::Output == I, 
[src]

pub fn average_floor(&self, other: &I) -> I[src]

Returns the floor value of the average of self and other.

pub fn average_ceil(&self, other: &I) -> I[src]

Returns the ceil value of the average of self and other.

impl<T> Borrow<T> for T where
    T: ?Sized
[src]

impl<T> BorrowMut<T> for T where
    T: ?Sized
[src]

impl<T> Clamp01 for T where
    T: Clamp<T> + Zero + One
[src]

impl<T> ClampMinus1 for T where
    T: Clamp<T> + Neg<Output = T> + One
[src]

impl<T> DeserializeOwned for T where
    T: for<'de> Deserialize<'de>, 
[src]

impl<T> From<!> for T[src]

impl<T> From<T> for T[src]

impl<T, U> Into<U> for T where
    U: From<T>, 
[src]

impl<I> IntoIterator for I where
    I: Iterator
[src]

type Item = <I as Iterator>::Item

The type of the elements being iterated over.

type IntoIter = I

Which kind of iterator are we turning this into?

impl<T> IsBetween01 for T where
    T: IsBetween<T> + Zero + One
[src]

impl<T, Rhs> NumAssignOps<Rhs> for T where
    T: AddAssign<Rhs> + SubAssign<Rhs> + MulAssign<Rhs> + DivAssign<Rhs> + RemAssign<Rhs>, 
[src]

impl<T, Rhs, Output> NumOps<Rhs, Output> for T where
    T: Sub<Rhs, Output = Output> + Mul<Rhs, Output = Output> + Div<Rhs, Output = Output> + Add<Rhs, Output = Output> + Rem<Rhs, Output = Output>, 
[src]

impl<T, Base> RefNum<Base> for T where
    T: NumOps<Base, Base> + for<'r> NumOps<&'r Base, Base>, 
[src]

impl<T> ToOwned for T where
    T: Clone
[src]

type Owned = T

The resulting type after obtaining ownership.

impl<T> ToString for T where
    T: Display + ?Sized
[src]

impl<T, U> TryFrom<U> for T where
    U: Into<T>, 
[src]

type Error = Infallible

The type returned in the event of a conversion error.

impl<T, U> TryInto<U> for T where
    U: TryFrom<T>, 
[src]

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.