# vectX
[](https://crates.io/crates/vectx)
[](https://hub.docker.com/r/antonellofratepietro/vectx)
[](https://github.com/antonellof/vectX#license)
A fast, in-memory vector database with **100% Qdrant API compatibility**.
vectX is a drop-in replacement for Qdrant, providing high-performance vector similarity search with full API compatibility.
---
## Quick Start
```bash
# Run vectX
docker run -p 6333:6333 antonellofratepietro/vectx:latest
# Create collection
curl -X PUT localhost:6333/collections/products -d '{
"vectors": {"size": 1536, "distance": "Cosine"}
}'
# Insert points
curl -X PUT localhost:6333/collections/products/points -d '{
"points": [{
"id": 1,
"vector": [0.1, 0.2, 0.3, ...],
"payload": {"name": "iPhone", "price": 999}
}]
}'
# Search
curl -X POST localhost:6333/collections/products/points/search -d '{
"vector": [0.1, 0.2, 0.3, ...],
"limit": 10
}'
```
---
## Key Features
| **100% Qdrant Compatible** | Use existing Qdrant clients, drop-in replacement |
| **High Performance** | Fast in-memory vector search with HNSW indexing |
| **Full Vector DB** | Search, filter, facets, scroll, recommendations |
| **Persistence** | WAL and snapshot support for data durability |
| **REST & gRPC APIs** | Full Qdrant API compatibility |
| **Multi-vector Support** | Named vectors and sparse vectors |
---
## REST API
Full Qdrant API compatibility:
| `PUT /collections/{name}` | Create collection |
| `POST /collections/{name}/points/search` | Vector similarity search |
| `POST /collections/{name}/points/scroll` | Filter and browse with pagination |
| `POST /collections/{name}/points/recommend` | Recommendations from examples |
| `POST /collections/{name}/facet` | Aggregated counts by field |
| `PUT /collections/{name}/points` | Upsert points |
| `GET /collections/{name}/points` | Get points by IDs |
| `DELETE /collections/{name}/points` | Delete points |
---
## Examples
Example applications demonstrating vectX usage:
- [Data Chatbot](examples/data-chatbot/README.md) — Next.js demo with CSV upload and vector search
- [Fastest RAG Stack](examples/fastest-rag-stack/README.md) — RAG application with Streamlit UI
---
## Installation
```bash
# Docker
docker run -p 6333:6333 antonellofratepietro/vectx:latest
# Cargo
cargo install vectx
# Source
git clone https://github.com/antonellof/vectX.git && cd vectX && cargo run --release
```
---
## Use with Qdrant Clients
```typescript
import { QdrantClient } from '@qdrant/js-client-rest';
const client = new QdrantClient({ url: 'http://localhost:6333' });
// All standard Qdrant operations work
await client.search('products', { vector: [...], limit: 10 });
```
---
## Documentation
- [Quick Start](documentation/QUICK_START.md) — Get running in 5 minutes
- [API Reference](documentation/API.md) — REST and gRPC endpoints
- [Architecture](documentation/ARCHITECTURE.md) — System design and internals
- [Docker Guide](documentation/DOCKER.md) — Container deployment
- [Persistence](documentation/PERSISTENCE.md) — WAL, snapshots, storage
- [Performance](documentation/PERFORMANCE.md) — Benchmarks and tuning
## License
MIT OR Apache-2.0