vector-space 0.5.0

Generic vector space trait for compatibility across various libraries
Documentation

Vector Space

Crates.io Docs License

A minimal, stable foundation for generic vector math in Rust. Provides the VectorSpace trait.

Designed as a general-purpose base for any vector-like type. Its simplicity ensures compatibility across libraries. It can be used as a compatibility layer between different vector math, physics, and rendering libraries. Implement once, use everywhere.

Key Components

  • VectorSpace: Trait defining a Scalar type, that can be implemented for types that have the properties of a vector space (Add, Sub, Mul, Div, Neg, Zero).
  • VectorSpaceAssign: Automatically implemented trait for types that implement VectorSpace and the proper assign traits (AddAssign, SubAssign, MulAssign, DivAssign).
  • AffineSpace: Represents a type whose difference is a vector type, like points.
  • interpolate: Interpolates between two points.

Features

  • Universal for any Scalar-typed structure.
  • Efficient: No allocations.
  • Flexible ops: Blanket impls for scalars (f32, f64).

Example

use std::ops::{Add, Div, Mul, Neg, Sub};

use num_traits::Zero;
use vector_space::{VectorSpace, interpolate};

#[derive(Clone, Copy, PartialEq, Debug)]
struct Vector {
    x: f32,
    y: f32,
}

impl Vector {
    fn new(x: f32, y: f32) -> Self {
        Self { x, y }
    }
}

impl Add for Vector {
    type Output = Self;

    fn add(self, other: Self) -> Self {
        Self {
            x: self.x + other.x,
            y: self.y + other.y,
        }
    }
}

impl Sub for Vector {
    type Output = Self;

    fn sub(self, other: Self) -> Self {
        Self {
            x: self.x - other.x,
            y: self.y - other.y,
        }
    }
}

impl Mul<f32> for Vector {
    type Output = Self;

    fn mul(self, other: f32) -> Self {
        Self {
            x: self.x * other,
            y: self.y * other,
        }
    }
}

impl Div<f32> for Vector {
    type Output = Self;

    fn div(self, other: f32) -> Self {
        Self {
            x: self.x / other,
            y: self.y / other,
        }
    }
}

impl Neg for Vector {
    type Output = Self;

    fn neg(self) -> Self {
        Self {
            x: -self.x,
            y: -self.y,
        }
    }
}

impl Zero for Vector {
    fn zero() -> Self {
        Self { x: 0.0, y: 0.0 }
    }

    fn is_zero(&self) -> bool {
        self.x == 0.0 && self.y == 0.0
    }
}

impl VectorSpace for Vector {
    type Scalar = f32;
}

let a = Vector::new(-1.0, 2.0);
let b = Vector::new(3.0, 6.0);

assert_eq!(interpolate(a, b, 0.75), Vector::new(2.0, 5.0));