1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
/*!
A safe tree using an arena allocator that allows deletion without suffering from
[the ABA problem](https://en.wikipedia.org/wiki/ABA_problem) by using generational
indices.

It uses [generational-arena](https://github.com/fitzgen/generational-arena) under
the hood, made by [fitzgen](https://github.com/fitzgen), special thanks to him.

[generational-arena](https://github.com/fitzgen/generational-arena) is itself inspired
by [Catherine West's closing keynote at RustConf
2018](http://rustconf.com/program.html#closingkeynote), where these ideas
were presented in the context of an Entity-Component-System for games
programming.

## What? Why?

When you are working with a tree and you want to add and delete individual
nodes at a time, or you are writing a game and its world consists of many
inter-referencing objects with dynamic lifetimes that depend on user
input. These are situations where matching Rust's ownership and lifetime rules
can get tricky.

It doesn't make sense to use shared ownership with interior mutability (ie
`Rc<RefCell<T>>` or `Arc<Mutex<T>>`) nor borrowed references (ie `&'a T` or `&'a
mut T`) for structures. The cycles rule out reference counted types, and the
required shared mutability rules out borrows. Furthermore, lifetimes are dynamic
and don't follow the borrowed-data-outlives-the-borrower discipline.

In these situations, it is tempting to store objects in a `Vec<T>` and have them
reference each other via their indices. No more borrow checker or ownership
problems! Often, this solution is good enough.

However, now we can't delete individual items from that `Vec<T>` when we no
longer need them, because we end up either

* messing up the indices of every element that follows the deleted one, or

* suffering from the [ABA
  problem](https://en.wikipedia.org/wiki/ABA_problem). To elaborate further, if
  we tried to replace the `Vec<T>` with a `Vec<Option<T>>`, and delete an
  element by setting it to `None`, then we create the possibility for this buggy
  sequence:

    * `obj1` references `obj2` at index `i`

    * someone else deletes `obj2` from index `i`, setting that element to `None`

    * a third thing allocates `obj3`, which ends up at index `i`, because the
      element at that index is `None` and therefore available for allocation

    * `obj1` attempts to get `obj2` at index `i`, but incorrectly is given
      `obj3`, when instead the get should fail.

By introducing a monotonically increasing generation counter to the collection,
associating each element in the collection with the generation when it was
inserted, and getting elements from the collection with the *pair* of index and
the generation at the time when the element was inserted, then we can solve the
aforementioned ABA problem. When indexing into the collection, if the index
pair's generation does not match the generation of the element at that index,
then the operation fails.

## Features

* Zero `unsafe`
* There is different iterators to traverse the tree
* Well tested

## Usage

First, add `vec-tree` to your `Cargo.toml`:

```toml
[dependencies]
vec-tree = "0.1"
```

Then, import the crate and use the `vec-tree::Tree`

```rust
extern crate vec_tree;
use vec_tree::VecTree;

let mut tree = VecTree::new();

// Insert some elements into the tree.
let root_node = tree.insert_root(1);
let child_node_1 = tree.insert(10, root_node);
let child_node_2 = tree.insert(11, root_node);
let child_node_3 = tree.insert(12, root_node);
let grandchild = tree.insert(100, child_node_3);

// Inserted elements can be accessed infallibly via indexing (and missing
// entries will panic).
assert_eq!(tree[child_node_1], 10);

// Alternatively, the `get` and `get_mut` methods provide fallible lookup.
if let Some(node_value) = tree.get(child_node_2) {
    println!("The node value is: {}", node_value);
}
if let Some(node_value) = tree.get_mut(grandchild) {
    *node_value = 101;
}

// We can remove elements.
tree.remove(child_node_3);

// Insert a new one.
let child_node_4 = tree.insert(13, root_node);

// The tree does not contain `child_node_3` anymore, but it does contain
// `child_node_4`, even though they are almost certainly at the same index
// within the arena of the tree in practice. Ambiguities are resolved with
// an associated generation tag.
assert!(!tree.contains(child_node_3));
assert!(tree.contains(child_node_4));

// We can also move a node (and its descendants).
tree.append_child(child_node_1, child_node_4);

// Iterate over the children of a node.
for value in tree.children(child_node_1) {
    println!("value: {:?}", value);
}

// Or all the descendants in depth first search order.
let descendants = tree
    .descendants(root_node)
    .map(|node| tree[node])
    .collect::<Vec<i32>>();

assert_eq!(descendants, [1, 10, 13, 11]);
```
 */

#![forbid(unsafe_code)]

extern crate generational_arena;
use generational_arena::Arena;
pub use generational_arena::Index;

use core::ops;
use std::{fmt, mem};

/// The `VecTree` allows inserting and removing elements that are referred to by
/// `Index`.
///
/// [See the module-level documentation for example usage and motivation.](./index.html)
#[derive(Clone, Debug)]
pub struct VecTree<T> {
    nodes: Arena<Node<T>>,
    root_index: Option<Index>,
}

#[derive(Clone, Debug)]
struct Node<T> {
    parent: Option<Index>,
    previous_sibling: Option<Index>,
    next_sibling: Option<Index>,
    first_child: Option<Index>,
    last_child: Option<Index>,
    data: T,
}

const DEFAULT_CAPACITY: usize = 4;

impl<T> Default for VecTree<T> {
    fn default() -> Self {
        VecTree::with_capacity(DEFAULT_CAPACITY)
    }
}

impl<T> VecTree<T> {
    /// Constructs a new, empty `VecTree`.
    ///
    /// # Examples
    ///
    /// ```
    /// use vec_tree::VecTree;
    ///
    /// let mut tree = VecTree::<usize>::new();
    /// # let _ = tree;
    /// ```
    pub fn new() -> VecTree<T> {
        VecTree::with_capacity(DEFAULT_CAPACITY)
    }

    /// Constructs a new, empty `VecTree<T>` with the specified capacity.
    ///
    /// The `VecTree<T>` will be able to hold `n` elements without further allocation.
    ///
    /// # Examples
    ///
    /// ```
    /// use vec_tree::VecTree;
    ///
    /// let mut tree = VecTree::with_capacity(10);
    /// let root = tree.try_insert_root(0).unwrap();
    ///
    /// // These insertions will not require further allocation.
    /// for i in 1..10 {
    ///     assert!(tree.try_insert(i, root).is_ok());
    /// }
    ///
    /// // But now we are at capacity, and there is no more room.
    /// assert!(tree.try_insert(99, root).is_err());
    /// ```
    pub fn with_capacity(n: usize) -> VecTree<T> {
        VecTree {
            nodes: Arena::with_capacity(n),
            root_index: None,
        }
    }


    /// Allocate space for `additional_capacity` more elements in the tree.
    ///
    /// # Panics
    ///
    /// Panics if this causes the capacity to overflow.
    ///
    /// # Examples
    ///
    /// ```
    /// use vec_tree::VecTree;
    ///
    /// let mut tree = VecTree::with_capacity(10);
    /// tree.reserve(5);
    /// assert_eq!(tree.capacity(), 15);
    /// # let _: VecTree<usize> = tree;
    /// ```
    #[inline]
    pub fn reserve(&mut self, additional_capacity: usize) {
        self.nodes.reserve(additional_capacity);
    }

    /// Attempts to insert `data` into the tree using existing capacity.
    ///
    /// This method will never allocate new capacity in the tree.
    ///
    /// If insertion succeeds, then the `data`'s index is returned. If
    /// insertion fails, then `Err(data)` is returned to give ownership of
    /// `data` back to the caller.
    ///
    /// # Examples
    ///
    /// ```
    /// use vec_tree::VecTree;
    ///
    /// let mut tree = VecTree::new();
    /// let root = tree.insert_root(0);
    ///
    /// match tree.try_insert(42, root) {
    ///     Ok(idx) => {
    ///         // Insertion succeeded.
    ///         assert_eq!(tree[idx], 42);
    ///     }
    ///     Err(x) => {
    ///         // Insertion failed.
    ///         assert_eq!(x, 42);
    ///     }
    /// };
    /// ```
    #[inline]
    pub fn try_insert(&mut self, data: T, parent_id: Index) -> Result<Index, T> {
        let node_result = self.try_create_node(data);

        match node_result {
            Ok(node) => {
                self.append_child(parent_id, node);
                node_result
            }
            Err(err) => Err(err),
        }
    }

    /// Insert `data` into the tree, allocating more capacity if necessary.
    ///
    /// The `data`'s associated index in the tree is returned.
    ///
    /// # Examples
    ///
    /// ```
    /// use vec_tree::VecTree;
    ///
    /// let mut tree = VecTree::with_capacity(1);
    /// assert_eq!(tree.capacity(), 1);
    ///
    /// let root = tree.insert_root(0);
    ///
    /// let idx = tree.insert(42, root);
    /// assert_eq!(tree[idx], 42);
    /// assert_eq!(tree.capacity(), 2);
    /// ```
    #[inline]
    pub fn insert(&mut self, data: T, parent_id: Index) -> Index {
        let node = self.create_node(data);

        self.append_child(parent_id, node);

        node
    }

    /// Attempts to insert `data` into the tree as root node using existing
    /// capacity.
    ///
    /// This method will never allocate new capacity in the tree.
    ///
    /// If insertion succeeds, then the `data`'s index is returned. If
    /// insertion fails, then `Err(data)` is returned to give ownership of
    /// `data` back to the caller.
    ///
    /// # Examples
    ///
    /// ```
    /// use vec_tree::VecTree;
    ///
    /// let mut tree = VecTree::new();
    ///
    /// match tree.try_insert_root(42) {
    ///     Ok(idx) => {
    ///         // Insertion succeeded.
    ///         assert_eq!(tree[idx], 42);
    ///     }
    ///     Err(x) => {
    ///         // Insertion failed.
    ///         assert_eq!(x, 42);
    ///     }
    /// };
    /// ```
    #[inline]
    pub fn try_insert_root(&mut self, data: T) -> Result<Index, T> {
        if self.root_index.is_some() {
            panic!("A root node already exists");
        }

        match self.try_create_node(data) {
            Ok(node_id) => {
                self.root_index = Some(node_id);
                Ok(node_id)
            }
            Err(error) => Err(error),
        }
    }

    /// Insert `data` into the tree as a root node, allocating more
    /// capacity if necessary.
    ///
    /// The `data`'s associated index in the tree is returned.
    ///
    /// # Examples
    ///
    /// ```
    /// use vec_tree::VecTree;
    ///
    /// let mut tree = VecTree::with_capacity(1);
    /// assert_eq!(tree.capacity(), 1);
    ///
    /// let root = tree.insert_root(42);
    ///
    /// assert_eq!(tree[root], 42);
    /// ```
    #[inline]
    pub fn insert_root(&mut self, data: T) -> Index {
        if self.root_index.is_some() {
            panic!("A root node already exists");
        }

        let node_id = self.create_node(data);
        self.root_index = Some(node_id);
        node_id
    }

    #[inline]
    fn try_create_node(&mut self, data: T) -> Result<Index, T> {
        let new_node = Node {
            parent: None,
            first_child: None,
            last_child: None,
            previous_sibling: None,
            next_sibling: None,
            data,
        };

        match self.nodes.try_insert(new_node) {
            Ok(index) => Ok(index),
            Err(Node { data, .. }) => Err(data),
        }
    }

    #[inline]
    fn create_node(&mut self, data: T) -> Index {
        let new_node = Node {
            parent: None,
            first_child: None,
            last_child: None,
            previous_sibling: None,
            next_sibling: None,
            data,
        };

        self.nodes.insert(new_node)
    }

    /// Remove the element at index `node_id` from the tree.
    ///
    /// If the element at index `node_id` is still in the tree, then it is
    /// returned. If it is not in the tree, then `None` is returned.
    ///
    /// # Examples
    ///
    /// ```
    /// use vec_tree::VecTree;
    ///
    /// let mut tree = VecTree::new();
    /// let root = tree.insert_root(42);
    ///
    /// assert_eq!(tree.remove(root), Some(42));
    /// assert_eq!(tree.remove(root), None);
    /// ```
    pub fn remove(&mut self, node_id: Index) -> Option<T> {
        if !self.contains(node_id) {
            return None;
        }

        let descendants = self.descendants(node_id).skip(1).collect::<Vec<Index>>();
        let node = self.nodes.remove(node_id).unwrap();

        let previous_sibling_opt = node.previous_sibling;
        let next_sibling_opt = node.next_sibling;

        if let Some(previous_sibling_idx) = previous_sibling_opt {
            if let Some(next_sibling_idx) = next_sibling_opt {
                // If has previous and next.
                let (previous_sibling, next_sibling) =
                    self.nodes.get2_mut(previous_sibling_idx, next_sibling_idx);

                previous_sibling.unwrap().next_sibling = Some(next_sibling_idx);
                next_sibling.unwrap().previous_sibling = Some(previous_sibling_idx);
            } else if let Some(parent_idx) = node.parent {
                // If has previous but no next.
                let previous_sibling = &mut self.nodes[previous_sibling_idx];
                previous_sibling.next_sibling = None;

                let parent = &mut self.nodes[parent_idx];
                parent.last_child = Some(previous_sibling_idx);
            }
        } else if let Some(next_sibling_idx) = next_sibling_opt {
            // If has next but no previous.
            let next_sibling = &mut self.nodes[next_sibling_idx];
            next_sibling.previous_sibling = None;

            if let Some(parent_idx) = node.parent {
                let parent = &mut self.nodes[parent_idx];
                parent.first_child = Some(next_sibling_idx);
            }
        } else if let Some(parent_idx) = node.parent {
            // If it has no previous and no next.
            let parent = &mut self.nodes[parent_idx];
            parent.first_child = None;
            parent.last_child = None;
        }

        // Remove descendants from arena.
        for node_id in descendants {
            self.nodes.remove(node_id);
        }

        // Set root_index to None if needed
        if let Some(root_index) = self.root_index {
            if root_index == node_id {
                self.root_index = None;
            }
        }

        Some(node.data)
    }

    /// Is the element at index `node_id` in the tree?
    ///
    /// Returns `true` if the element at `node_id` is in the tree, `false` otherwise.
    ///
    /// # Examples
    ///
    /// ```
    /// use vec_tree::VecTree;
    ///
    /// let mut tree = VecTree::new();
    /// let root = tree.insert_root(0);
    ///
    /// assert!(tree.contains(root));
    /// tree.remove(root);
    /// assert!(!tree.contains(root));
    /// ```
    pub fn contains(&self, node_id: Index) -> bool {
        self.nodes.get(node_id).is_some()
    }

    #[inline]
    pub fn append_child(&mut self, node_id: Index, new_child_id: Index) {
        self.detach(new_child_id);

        let last_child_opt;
        {
            let (node_opt, new_child_node_opt) = self.nodes.get2_mut(node_id, new_child_id);

            if node_opt.is_none() {
                panic!("The node you are trying to append to is invalid");
            }

            if new_child_node_opt.is_none() {
                panic!("The node you are trying to append is invalid");
            }

            let node = node_opt.unwrap();
            let new_child_node = new_child_node_opt.unwrap();

            new_child_node.parent = Some(node_id);

            last_child_opt = mem::replace(&mut node.last_child, Some(new_child_id));
            if let Some(last_child) = last_child_opt {
                new_child_node.previous_sibling = Some(last_child);
            } else {
                debug_assert!(node.first_child.is_none());
                node.first_child = Some(new_child_id);
            }
        }

        if let Some(last_child) = last_child_opt {
            debug_assert!(self.nodes[last_child].next_sibling.is_none());
            self.nodes[last_child].next_sibling = Some(new_child_id);
        }
    }

    #[inline]
    fn detach(&mut self, node_id: Index) {
        let (parent, previous_sibling, next_sibling) = {
            let node = &mut self.nodes[node_id];
            (
                node.parent.take(),
                node.previous_sibling.take(),
                node.next_sibling.take(),
            )
        };

        if let Some(next_sibling) = next_sibling {
            self.nodes[next_sibling].previous_sibling = previous_sibling;
        } else if let Some(parent) = parent {
            self.nodes[parent].last_child = previous_sibling;
        }

        if let Some(previous_sibling) = previous_sibling {
            self.nodes[previous_sibling].next_sibling = next_sibling;
        } else if let Some(parent) = parent {
            self.nodes[parent].first_child = next_sibling;
        }
    }

    /// Get a shared reference to the element at index `node_id` if it is in the
    /// tree.
    ///
    /// If the element at index `node_id` is not in the tree, then `None` is returned.
    ///
    /// # Examples
    ///
    /// ```
    /// use vec_tree::VecTree;
    ///
    /// let mut tree = VecTree::new();
    /// let root = tree.insert_root(42);
    ///
    /// assert_eq!(tree.get(root), Some(&42));
    /// tree.remove(root);
    /// assert!(tree.get(root).is_none());
    /// ```
    pub fn get(&self, node_id: Index) -> Option<&T> {
        match self.nodes.get(node_id) {
            Some(Node { ref data, .. }) => Some(data),
            _ => None,
        }
    }

    /// Get an exclusive reference to the element at index `node_id` if it is in the
    /// tree.
    ///
    /// If the element at index `node_id` is not in the tree, then `None` is returned.
    ///
    /// # Examples
    ///
    /// ```
    /// use vec_tree::VecTree;
    ///
    /// let mut tree = VecTree::new();
    /// let root = tree.insert_root(42);
    ///
    /// *tree.get_mut(root).unwrap() += 1;
    /// assert_eq!(tree.remove(root), Some(43));
    /// assert!(tree.get_mut(root).is_none());
    /// ```
    pub fn get_mut(&mut self, node_id: Index) -> Option<&mut T> {
        match self.nodes.get_mut(node_id) {
            Some(Node { ref mut data, .. }) => Some(data),
            _ => None,
        }
    }
    /// Get the root node index from the tree.
    ///
    /// If no root node is created in the tree, None is returned.
    ///
    /// # Examples
    ///
    /// ```
    /// use vec_tree::VecTree;
    ///
    /// let mut tree = VecTree::new();
    /// assert_eq!(tree.get_root_index(), None);
    ///
    /// tree.insert_root(42);
    /// let root = tree.get_root_index().unwrap();
    /// assert_eq!(tree[root], 42);
    /// ```
    pub fn get_root_index(&self) -> Option<Index> {
        self.root_index
    }

    /// Get the capacity of this tree.
    ///
    /// The capacity is the maximum number of elements the tree can hold
    /// without further allocation, including however many it currently
    /// contains.
    ///
    /// # Examples
    ///
    /// ```
    /// use vec_tree::VecTree;
    ///
    /// let mut tree = VecTree::with_capacity(10);
    /// let root = tree.insert_root(0);
    ///
    /// // `try_insert` does not allocate new capacity.
    /// for i in 1..10 {
    ///     assert!(tree.try_insert(i, root).is_ok());
    ///     assert_eq!(tree.capacity(), 10);
    /// }
    ///
    /// // But `insert` will if the root is already at capacity.
    /// tree.insert(11, root);
    /// assert!(tree.capacity() > 10);
    /// ```
    pub fn capacity(&self) -> usize {
        self.nodes.capacity()
    }

    /// Clear all the items inside the tree, but keep its allocation.
    ///
    /// # Examples
    ///
    /// ```
    /// use vec_tree::VecTree;
    ///
    /// let mut tree = VecTree::with_capacity(1);
    /// let root = tree.insert_root(42);
    /// tree.insert(43, root); // The capacity is doubled when reached.
    ///
    /// tree.clear();
    /// assert_eq!(tree.capacity(), 2);
    /// ```
    pub fn clear(&mut self) {
        self.nodes.clear();
        self.root_index = None;
    }

    /// Return an iterator of references to this node’s parent.
    pub fn parent(&self, node_id: Index) -> Option<Index> {
        match self.nodes.get(node_id) {
            Some(node) => node.parent,
            _ => None,
        }
    }

    /// Return an iterator of references to this node’s children.
    pub fn children(&self, node_id: Index) -> ChildrenIter<T> {
        ChildrenIter {
            tree: self,
            node_id: self.nodes[node_id].first_child,
        }
    }

    /// Return an iterator of references to this node and the siblings before it.
    ///
    /// Call `.next().unwrap()` once on the iterator to skip the node itself.
    pub fn preceding_siblings(&self, node_id: Index) -> PrecedingSiblingsIter<T> {
        PrecedingSiblingsIter {
            tree: self,
            node_id: Some(node_id),
        }
    }

    /// Return an iterator of references to this node and the siblings after it.
    ///
    /// Call `.next().unwrap()` once on the iterator to skip the node itself.
    pub fn following_siblings(&self, node_id: Index) -> FollowingSiblingsIter<T> {
        FollowingSiblingsIter {
            tree: self,
            node_id: Some(node_id),
        }
    }

    /// Return an iterator of references to this node and its ancestors.
    ///
    /// Call `.next().unwrap()` once on the iterator to skip the node itself.
    pub fn ancestors(&self, node_id: Index) -> AncestorsIter<T> {
        AncestorsIter {
            tree: self,
            node_id: Some(node_id),
        }
    }

    /// Return an iterator of references to this node and its descendants, in tree order.
    fn traverse(&self, node_id: Index) -> TraverseIter<T> {
        TraverseIter {
            tree: self,
            root: node_id,
            next: Some(NodeEdge::Start(node_id)),
        }
    }

    /// Return an iterator of references to this node and its descendants, with deoth in the tree,
    /// in tree order.
    fn traverse_with_depth(&self, node_id: Index) -> TraverseWithDepthIter<T> {
        TraverseWithDepthIter {
            tree: self,
            root: node_id,
            next: Some(NodeEdgeWithDepth::Start(node_id, 0)),
        }
    }

    /// Return an iterator of references to this node and its descendants, in tree order.
    ///
    /// Parent nodes appear before the descendants.
    /// Call `.next().unwrap()` once on the iterator to skip the node itself.
    pub fn descendants(&self, node_id: Index) -> DescendantsIter<T> {
        DescendantsIter(self.traverse(node_id))
    }

    /// Return an iterator of references to this node and its descendants, with deoth in the tree,
    /// in tree order.
    ///
    /// Parent nodes appear before the descendants.
    /// Call `.next().unwrap()` once on the iterator to skip the node itself.
    pub fn descendants_with_depth(&self, node_id: Index) -> DescendantsWithDepthIter<T> {
        DescendantsWithDepthIter(self.traverse_with_depth(node_id))
    }
}

impl<T> fmt::Display for Node<T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "Parent: {:?}, ", self.parent)?;
        write!(f, "Previous sibling: {:?}, ", self.previous_sibling)?;
        write!(f, "Next sibling: {:?}, ", self.next_sibling)?;
        write!(f, "First child: {:?}, ", self.first_child)?;
        write!(f, "Last child: {:?}", self.last_child)
    }
}

impl<T> ops::Index<Index> for VecTree<T> {
    type Output = T;

    fn index(&self, index: Index) -> &Self::Output {
        self.get(index).unwrap()
    }
}

impl<T> ops::IndexMut<Index> for VecTree<T> {
    fn index_mut(&mut self, index: Index) -> &mut Self::Output {
        self.get_mut(index).unwrap()
    }
}

macro_rules! impl_node_iterator {
    ($name:ident, $next:expr) => {
        impl<'a, T> Iterator for $name<'a, T> {
            type Item = Index;

            fn next(&mut self) -> Option<Index> {
                match self.node_id.take() {
                    Some(node_id) => {
                        self.node_id = $next(&self.tree.nodes[node_id]);
                        Some(node_id)
                    }
                    None => None,
                }
            }
        }
    };
}

/// An iterator of references to the children of a given node.
pub struct ChildrenIter<'a, T: 'a> {
    tree: &'a VecTree<T>,
    node_id: Option<Index>,
}
impl_node_iterator!(ChildrenIter, |node: &Node<T>| node.next_sibling);

/// An iterator of references to the siblings before a given node.
pub struct PrecedingSiblingsIter<'a, T: 'a> {
    tree: &'a VecTree<T>,
    node_id: Option<Index>,
}
impl_node_iterator!(PrecedingSiblingsIter, |node: &Node<T>| node
    .previous_sibling);

/// An iterator of references to the siblings after a given node.
pub struct FollowingSiblingsIter<'a, T: 'a> {
    tree: &'a VecTree<T>,
    node_id: Option<Index>,
}
impl_node_iterator!(FollowingSiblingsIter, |node: &Node<T>| node.next_sibling);

/// An iterator of references to the ancestors a given node.
pub struct AncestorsIter<'a, T: 'a> {
    tree: &'a VecTree<T>,
    node_id: Option<Index>,
}
impl_node_iterator!(AncestorsIter, |node: &Node<T>| node.parent);

#[derive(Debug, Clone)]
/// Indicator if the node is at a start or endpoint of the tree
pub enum NodeEdge<T> {
    /// Indicates that start of a node that has children. Yielded by `TraverseIter::next` before the
    /// node’s descendants.
    Start(T),

    /// Indicates that end of a node that has children. Yielded by `TraverseIter::next` after the
    /// node’s descendants.
    End(T),
}

/// An iterator of references to a given node and its descendants, in depth-first search pre-order
/// NLR traversal.
/// https://en.wikipedia.org/wiki/Tree_traversal#Pre-order_(NLR)
pub struct TraverseIter<'a, T: 'a> {
    tree: &'a VecTree<T>,
    root: Index,
    next: Option<NodeEdge<Index>>,
}

impl<'a, T> Iterator for TraverseIter<'a, T> {
    type Item = NodeEdge<Index>;

    fn next(&mut self) -> Option<NodeEdge<Index>> {
        match self.next.take() {
            Some(item) => {
                self.next = match item {
                    NodeEdge::Start(node_id) => match self.tree.nodes[node_id].first_child {
                        Some(first_child) => Some(NodeEdge::Start(first_child)),
                        None => Some(NodeEdge::End(node_id)),
                    },
                    NodeEdge::End(node_id) => {
                        if node_id == self.root {
                            None
                        } else {
                            match self.tree.nodes[node_id].next_sibling {
                                Some(next_sibling) => Some(NodeEdge::Start(next_sibling)),
                                None => {
                                    match self.tree.nodes[node_id].parent {
                                        Some(parent) => Some(NodeEdge::End(parent)),

                                        // `self.tree.nodes[node_id].parent` here can only be `None`
                                        // if the tree has been modified during iteration, but
                                        // silently stoping iteration seems a more sensible behavior
                                        // than panicking.
                                        None => None,
                                    }
                                }
                            }
                        }
                    }
                };
                Some(item)
            }
            None => None,
        }
    }
}

/// An iterator of references to a given node and its descendants, in tree order.
pub struct DescendantsIter<'a, T: 'a>(pub TraverseIter<'a, T>);

impl<'a, T> Iterator for DescendantsIter<'a, T> {
    type Item = Index;

    fn next(&mut self) -> Option<Index> {
        loop {
            match self.0.next() {
                Some(NodeEdge::Start(node_id)) => return Some(node_id),
                Some(NodeEdge::End(_)) => {}
                None => return None,
            }
        }
    }
}

#[derive(Debug, Clone)]
/// Indicator if the node is at a start or endpoint of the tree
pub enum NodeEdgeWithDepth<T> {
    /// Indicates that start of a node that has children. Yielded by `TraverseIter::next` before the
    /// node’s descendants.
    Start(T, u32),

    /// Indicates that end of a node that has children. Yielded by `TraverseIter::next` after the
    /// node’s descendants.
    End(T, u32),
}

/// An iterator of references to a given node and its descendants, with depth, in depth-first
/// search pre-order NLR traversal.
/// https://en.wikipedia.org/wiki/Tree_traversal#Pre-order_(NLR)
pub struct TraverseWithDepthIter<'a, T: 'a> {
    tree: &'a VecTree<T>,
    root: Index,
    next: Option<NodeEdgeWithDepth<Index>>,
}

impl<'a, T> Iterator for TraverseWithDepthIter<'a, T> {
    type Item = NodeEdgeWithDepth<Index>;

    fn next(&mut self) -> Option<NodeEdgeWithDepth<Index>> {
        match self.next.take() {
            Some(item) => {
                self.next = match item {
                    NodeEdgeWithDepth::Start(node_id, depth) => {
                        match self.tree.nodes[node_id].first_child {
                            Some(first_child) => {
                                Some(NodeEdgeWithDepth::Start(first_child, depth + 1))
                            }
                            None => Some(NodeEdgeWithDepth::End(node_id, depth)),
                        }
                    }
                    NodeEdgeWithDepth::End(node_id, depth) => {
                        if node_id == self.root {
                            None
                        } else {
                            match self.tree.nodes[node_id].next_sibling {
                                Some(next_sibling) => {
                                    Some(NodeEdgeWithDepth::Start(next_sibling, depth))
                                }
                                None => {
                                    match self.tree.nodes[node_id].parent {
                                        Some(parent) => {
                                            Some(NodeEdgeWithDepth::End(parent, depth - 1))
                                        }

                                        // `self.tree.nodes[node_id].parent` here can only be `None`
                                        // if the tree has been modified during iteration, but
                                        // silently stoping iteration seems a more sensible behavior
                                        // than panicking.
                                        None => None,
                                    }
                                }
                            }
                        }
                    }
                };
                Some(item)
            }
            None => None,
        }
    }
}

/// An iterator of references to a given node and its descendants, with depth, in tree order.
pub struct DescendantsWithDepthIter<'a, T: 'a>(pub TraverseWithDepthIter<'a, T>);

impl<'a, T> Iterator for DescendantsWithDepthIter<'a, T> {
    type Item = (Index, u32);

    fn next(&mut self) -> Option<(Index, u32)> {
        loop {
            match self.0.next() {
                Some(NodeEdgeWithDepth::Start(node_id, depth)) => return Some((node_id, depth)),
                Some(NodeEdgeWithDepth::End(_, _)) => {}
                None => return None,
            }
        }
    }
}