vc_8bit 0.1.12

This project is a virtual computer that takes a vector of bytes and runs it as instructions. Also included is a complete assembler and compiler.
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
pub mod assembly;
pub mod c_lang;

/// Defines the module for handling 8-bit version control operations.
pub mod vc_8bit {
    #[derive(Debug, Clone, Copy, PartialEq, Eq)]
    // A single bit value stored as a boolean
    pub struct Bit {
        pub value: bool
    }
    impl From<bool> for Bit {
        fn from(b: bool) -> Self {
            Bit { value: b }
        }
    }
    impl std::convert::TryFrom<i32> for Bit {
        type Error = &'static str;

        fn try_from(value: i32) -> Result<Self, Self::Error> {
            match value {
                0 | 1 => Ok(Bit { value: value != 0 }),
                _ => Err("Invalid value for Bit. Must be 0 or 1."),
            }
        }
    }
    impl Bit {
        pub fn zero() -> Self {
            Bit { value: false }
        }
        pub fn one() -> Self {
            Bit { value: true }
        }
        pub fn to_i32(&self) -> i32 {
            if self.value {
                1
            } else {
                0
            }
        }
        pub fn to_bool(&self) -> bool {
            self.value
        }
        pub fn new(value: bool) -> Self {
            Bit { value }
        }
        pub fn not(&self) -> Self {
            Bit { value: !self.value }
        }
        pub fn and(&self, other: &Self) -> Self {
            Bit { value: self.value & other.value }
        }
        pub fn or(&self, other: &Self) -> Self {
            Bit { value: self.value | other.value }
        }
        pub fn xor(&self, other: &Self) -> Self {
            Bit { value: self.value ^ other.value }
        }
        pub fn nand(&self, other: &Self) -> Self {
            Bit { value: !(self.value & other.value) }
        }
    }

    #[derive(Debug, Clone, Copy, PartialEq, Eq)]
    /// An 8 bit value stored as an array of 8 bits
    pub struct Byte {
        pub value: [Bit; 8]
    }
    pub const MAXBYTE: i32 = 255;
    impl std::convert::TryFrom<i32> for Byte {
        type Error = &'static str;

        fn try_from(value: i32) -> Result<Self, Self::Error> {
            match value {
                0..=MAXBYTE => {
                    let mut bits = [Bit::new(false); 8];
                    let bit_count = bits.len();
                    for (i, bit) in bits.iter_mut().enumerate() {
                        bit.value = (value >> (bit_count - 1 - i)) & 1 != 0;
                    }
                    Ok(Byte { value: bits })
                }
                _ => {
                    if value < 0 {
                        Ok(Byte::zero())
                    }
                    else {
                        Ok(Byte::full())
                    }
                }
            }
        }
    }
    impl Byte {
        /// # from_string
        /// Converts a string to a byte
        /// if the length is 8, the string is interpreted as a binary string
        /// else the string is interpreted as a decimal string
        /// # Examples
        /// binary
        /// ```
        /// use vc_8bit::Byte;
        /// let byte = Byte::from_string(String::from("11111111"));
        /// assert_eq!(byte.to_i32(), 255);
        /// ```
        /// decimal
        /// ```
        /// use vc_8bit::Byte;
        /// let byte = Byte::from_string(String::from("255"));
        /// assert_eq!(byte.to_i32(), 255);
        /// ```
        pub fn from_string(value: String) -> Byte {
            if value.len() == 8 {   
                let mut bits = [Bit::new(false); 8];
                for i in 0..8 {
                    bits[i] = Bit { value: value.chars().nth(i).unwrap() == '1' };
                }
                Byte::new(bits)
            }
            else {
                Byte::try_from(value.parse::<i32>().unwrap()).unwrap()
            }
        }
        /// reverses the bits in the byte
        pub fn reverse(&mut self) -> Self {
            let mut bits = self.value;
            for i in 0..8 {
                bits[7 - i] = self.value[i];
            }
            Byte { value: bits }
        } 
        /// returns a new byte with all bits set to 0
        pub fn zero() -> Self {
            Byte { value: [Bit::new(false); 8] }
        } 
        /// returns a new byte with all bits set to 1
        pub fn full() -> Self {
            Byte { value: [Bit::new(true); 8] }
        }
        pub fn new(bits: [Bit; 8]) -> Self {
            Byte { value: bits }
        }
        /// returns the value of the byte as an i32
        pub fn to_i32(&self) -> i32 {
            let mut value = 0;
            let bit_count = self.value.len();
            for (i, bit) in self.value.iter().enumerate() {
                if bit.value {
                    value |= 1 << (bit_count - 1 - i);
                }
            }
            value
        }
        /// returns the value of the byte as an u8
        pub fn to_u8(&self) -> u8 {
            let mut value = 0;
            for (i, bit) in self.value.iter().enumerate() {
                if bit.value {
                    value |= 1 << i;
                }
            }
            value
        }
        /// returns a new byte from an u8
        pub fn from_u8(mut value: u8) -> Self {
            let mut bits = [Bit { value: false }; 8];

            for i in 0..8 {
                bits[i].value = (value & 1) == 1;
                value >>= 1;
            }
            
            bits.reverse();
            Byte { value: bits }
        }
        /// returns the value of the byte as an u8 array
        pub fn to_u8_array(&self) -> [u8; 8] {
            let mut value = [0; 8];
            for (i, bit) in self.value.iter().enumerate() {
                value[i] = if bit.value { 1 } else { 0 };
            }
            value
        }
        pub fn not(&self) -> Self {
            let mut bits = [Bit::new(false); 8];
            for (i, bit) in bits.iter_mut().enumerate() {
                bit.value = !self.value[i].to_bool();
            }
            Byte { value: bits }
        }
        pub fn and(&self, other: &Self) -> Self {
            let mut bits = [Bit::new(false); 8];
            for (i, bit) in bits.iter_mut().enumerate() {
                bit.value = self.value[i].and(&other.value[i]).to_bool();
            }
            Byte { value: bits }
        }
        pub fn or(&self, other: &Self) -> Self {
            let mut bits = [Bit::new(false); 8];
            for (i, bit) in bits.iter_mut().enumerate() {
                bit.value = self.value[i].or(&other.value[i]).to_bool();
            }
            Byte { value: bits }
        }
        pub fn xor(&self, other: &Self) -> Self {
            let mut bits = [Bit::new(false); 8];
            for (i, bit) in bits.iter_mut().enumerate() {
                bit.value = self.value[i].xor(&other.value[i]).to_bool();
            }
            Byte { value: bits }
        }
        pub fn nand(&self, other: &Self) -> Self {
            let mut bits = [Bit::new(false); 8];
            for (i, bit) in bits.iter_mut().enumerate() {
                bit.value = self.value[i].nand(&other.value[i]).to_bool();
            }
            Byte { value: bits }
        }
        pub fn to_char(&self) -> char {
            std::char::from_u32(self.to_i32() as u32).unwrap()    
        }
        pub fn to_string(&self) -> String {
            format!("{}{}{}{}{}{}{}{}",
                self.value[0].to_i32(),
                self.value[1].to_i32(),
                self.value[2].to_i32(),
                self.value[3].to_i32(),
                self.value[4].to_i32(),
                self.value[5].to_i32(),
                self.value[6].to_i32(),
                self.value[7].to_i32())
        }
        pub fn from_byte_to_bit_array(byte: Byte) -> [Bit; 8] {
            byte.value
        }
        /// increments the value of the byte by 1
        pub fn increment(&mut self) {
            self.value = Byte::from_byte_to_bit_array(self.and(&Byte::full()).or(&self.not().and(&Byte::zero())));
        }
        /// decrements the value of the byte by 1
        pub fn decrement(&mut self) {
            let i32 = self.to_i32();
            if i32 == 0 {
                self.value = Byte::try_from(MAXBYTE).unwrap().value
            }
            self.value = Byte::try_from(i32 - 1).unwrap().value;
        }
        /// # Shift Array
        /// Shifts the value of the byte by the given amount
        /// # Parameters
        /// * `value` - The value to shift
        /// * `shift` - The amount to shift
        /// # Examples
        /// shift right
        /// ```rust
        /// use vc_8bit::Byte;
        /// let mut byte = Byte::new([true, true, true, true, true, true, true, true]);
        /// byte.shift(1);
        /// assert_eq!(byte, Byte::new([false, true, true, true, true, true, true, true]));
        /// ```
        /// shift left
        /// ```rust
        /// use vc_8bit::Byte;
        /// let mut byte = Byte::new([true, true, true, true, true, true, true, true]);
        /// byte.shift(-1);
        /// assert_eq!(byte, Byte::new([true, true, true, true, true, true, true, false]));
        /// ```
        pub fn shift_array(value: Byte, shift: i32) -> Byte {
            let arr = [value.value[0].to_bool(), value.value[1].to_bool(), value.value[2].to_bool(), value.value[3].to_bool(), value.value[4].to_bool(), value.value[5].to_bool(), value.value[6].to_bool(), value.value[7].to_bool()];
            let mut result = [false; 8];
            let len = arr.len() as i32;
        
            if shift == 0 {
                return Byte::new([arr[0].try_into().unwrap(), arr[1].try_into().unwrap(), arr[2].try_into().unwrap(), arr[3].try_into().unwrap(), arr[4].try_into().unwrap(), arr[5].try_into().unwrap(), arr[6].try_into().unwrap(), arr[7].try_into().unwrap()]);
            } else if shift > 0 {
                // Right shift
                for i in 0..len {
                    if i + shift < len {
                        result[(i + shift) as usize] = arr[i as usize];
                    }
                }
            } else {
                // Left shift (negative shift)
                for i in 0..len {
                    if i - shift < len {
                        result[i as usize] = arr[(i - shift) as usize];
                    }
                }
            }
        
            Byte::new([result[0].try_into().unwrap(), result[1].try_into().unwrap(), result[2].try_into().unwrap(), result[3].try_into().unwrap(), result[4].try_into().unwrap(), result[5].try_into().unwrap(), result[6].try_into().unwrap(), result[7].try_into().unwrap()])
        }
        pub fn shift(&mut self, direction: i32) {
            self.value = Byte::shift_array(*self, direction).value;
        }
        pub fn to_bool_array(&self) -> [bool; 8] {
            let mut result = [false; 8];
            for (i, bit) in self.value.iter().enumerate() {
                result[i] = bit.to_bool();
            }
            result
        }
        pub fn to_hex(&self) -> String {
            format!("{:02x}", self.to_i32())
        }
    }

    #[derive(Debug, Clone, Copy)]
    /// A register that can be read and written to using its address
    pub struct Register {
        pub value: Byte,
        pub address: Byte
    }
    impl Register {
        pub fn new(address: Byte, value: Byte) -> Self {
            Register { address, value }
        }
        pub fn read(&self) -> Byte {
            self.value
        }
        pub fn write(&mut self, value: Byte) {
            self.value = value;
        }
    }

    /// A 256 byte RAM
    const RAM_SIZE: usize = 256;
    /// A 2 byte stream
    const STREAM_SIZE: usize = 2;
    #[derive(Debug, Clone, Copy)]
    pub struct RAM {
        pub value: [Register; RAM_SIZE],
        pub index: Byte
    }
    impl RAM {
        pub fn new() -> Self {
            let mut registers: [Register; RAM_SIZE] = [Register::new(Byte::new([Bit::new(false); 8]), Byte::new([Bit::new(false); 8])); RAM_SIZE];
            for i in 0..RAM_SIZE {
                registers[i] = Register::new(
                    Byte::try_from(i as i32).unwrap(),
                    Byte::zero()
                    );
            }
            RAM { value: registers, index: Byte::zero() }
        }
        /// Inserts a vector of bytes into the RAM
        pub fn insert_bytes(&mut self, bytes: Vec<Byte>) {
            for (i, byte) in bytes.iter().enumerate() {
                self.write(Byte::try_from(i as i32).unwrap(), *byte);
            }
        }
        pub fn read(&self, address: Byte) -> Byte {
            self.value[address.to_i32() as usize].value
        }
        pub fn write(&mut self, address: Byte, value: Byte) {
            self.value[address.to_i32() as usize].value = value;
        }
        pub fn increment(&mut self) {
            self.index.increment();
        }
        pub fn decrement(&mut self) {
            self.index.decrement();
        }
        pub fn get_index(&self) -> Byte {
            self.index
        }
        pub fn set_index(&mut self, index: Byte) {
            self.index = index;
        }
        /// Returns an array of 2 bytes from the RAM at the index and increments the index by 2.
        pub fn get_byte_stream(&mut self) -> [Byte; STREAM_SIZE] {
            let mut bytes: [Byte; STREAM_SIZE] = [Byte::zero(); STREAM_SIZE];
            let i32_index = self.index.to_i32();
            for i in 0..STREAM_SIZE {
                let index = i + i32_index as usize;
                bytes[i] = self.read(Byte::try_from(index as i32).unwrap());
            }
            self.index = Byte::try_from(i32_index + STREAM_SIZE as i32).unwrap();
            bytes
        }
    }

    /// 8 ports
    const PORTS_SIZE: usize = 8;
    pub struct Ports {
        pub bus_dir: String
    }
    impl Ports {
        pub fn new(bus_dir: String) -> Self {
            if std::path::Path::new(&bus_dir).exists() {
                std::fs::remove_dir_all(&bus_dir).unwrap();
            }
            std::fs::create_dir_all(&bus_dir).unwrap();
            for i in 0..PORTS_SIZE {
                std::fs::File::create(format!("{}{}", bus_dir, i)).unwrap();
                _ = std::fs::write(format!("{}{}", bus_dir, i), Byte::zero().to_string());
            }
            Ports { bus_dir }
        }
        pub fn default() -> Self {
            Ports::new(String::from("src/ports/"))
        }
        pub fn read(&self, address: Byte) -> Byte {
            match std::fs::read_to_string(format!("{}{}", self.bus_dir, address.to_i32())) {
                Ok(file_contents) => {
                    let byte = Byte::new(
                        file_contents.chars()
                        .map(|x| x.to_digit(10).unwrap() as u8)
                        .map(|x| Bit::new(x == 1))
                        .collect::<Vec<Bit>>()
                        .try_into()
                        .unwrap_or([Bit::new(false); 8])
                    );
                    byte
                }
                Err(_) => Byte::zero()
            }
        }
        pub fn write(&self, address: Byte, value: Byte) -> Result<(), std::io::Error> {
            let file_path = format!("{}{}", self.bus_dir, address.to_i32());
            match std::fs::File::create(&file_path) {
                Ok(_) => std::fs::write(&file_path, value.to_string()),
                Err(_) => Ok(()),
            }
        }        
        pub fn clear(&self) {
            for i in 0..PORTS_SIZE {
                _ = self.write(Byte::try_from(i as i32).unwrap(), Byte::zero());
            }
        }
    }

    #[derive(Debug, Clone, Copy)]
    pub struct ByteArithmetic {
        pub value1: Byte,
        pub value2: Byte,
        pub carry: Bit,
        pub neg: Bit,
        pub zero: Bit,
    }

    impl ByteArithmetic {
        pub fn new(value1: Byte, value2: Byte) -> Self {
            ByteArithmetic {
                value1,
                value2,
                carry: Bit::zero(),
                neg: Bit::zero(),
                zero: Bit::zero(),
            }
        }

        pub fn add(&mut self) -> (Byte, Bit) {
            let (result, overflow) = self.value1.to_i32().overflowing_add(self.value2.to_i32());
            self.carry = Bit::from(overflow);
            self.neg = Bit::from(result < 0);
            self.zero = Bit::from(result == 0);
            (Byte::try_from(result).unwrap(), self.carry)
        }

        pub fn sub(&mut self) -> (Byte, Bit) {
            let (result, overflow) = self.value1.to_i32().overflowing_sub(self.value2.to_i32());
            self.carry = Bit::from(overflow);
            self.neg = Bit::from(result < 0);
            self.zero = Bit::from(result == 0);
            (Byte::try_from(result.abs()).unwrap(), self.carry)
        }

        pub fn mul(&mut self) -> (Byte, Bit) {
            let (result, overflow) = self.value1.to_i32().overflowing_mul(self.value2.to_i32());
            self.carry = Bit::from(overflow);
            self.neg = Bit::from(result < 0);
            self.zero = Bit::from(result == 0);
            (Byte::try_from(result.abs()).unwrap(), self.carry)
        }

        pub fn div(&mut self) -> (Byte, Bit) {
            if self.value2.to_i32() == 0 {
                panic!("Division by zero");
            }
            let (result, overflow) = self.value1.to_i32().overflowing_div(self.value2.to_i32());
            self.carry = Bit::from(overflow);
            self.neg = Bit::from(result < 0);
            self.zero = Bit::from(result == 0);
            (Byte::try_from(result.abs()).unwrap(), self.carry)
        }
    }

    #[derive(Debug, Clone, Copy, PartialEq, Eq)]
    pub struct BinaryDecoder {
        pub axis_x: Bit,
        pub axis_y: Bit,
        pub result: [Bit; 4],
    }
    impl BinaryDecoder {
        pub fn new() -> Self {
            BinaryDecoder {
                axis_x: Bit::zero(),
                axis_y: Bit::zero(),
                result: [Bit::zero(); 4],
            }
        }
        pub fn new_with_value(axis_x: Bit, axis_y: Bit) -> Self {
            BinaryDecoder {
                axis_x,
                axis_y,
                result: [Bit::zero(); 4],
            }
        }
        pub fn update(&mut self, axis_x: Bit, axis_y: Bit) {
            self.axis_x = axis_x;
            self.axis_y = axis_y;
            self.decode();
        }
        pub fn decode(&mut self) {
            self.result = Self::decode_internal(self.axis_x, self.axis_y);
        }
        /// Decode axis_x and axis_y into a 4-bit binary number
        pub fn decode_internal(axis_x: Bit, axis_y: Bit) -> [Bit; 4] {
            if !axis_x.value && !axis_y.value {
                Self::BIT1
            }
            else if !axis_x.value && axis_y.value {
                Self::BIT2
            }
            else if axis_x.value && !axis_y.value {
                Self::BIT3
            }
            else {
                Self::BIT4
            }
        }
        /// Decode axis_x and axis_y into a 4-bit binary number
        pub fn decode_internal_i32(axis_x: Bit, axis_y: Bit) -> i32 {
            if !axis_x.value && !axis_y.value {
                1
            }
            else if !axis_x.value && axis_y.value {
                2
            }
            else if axis_x.value && !axis_y.value {
                3
            }
            else {
                4
            }
        }
        
        pub const BIT0: [Bit; 4] = [Bit { value: false }, Bit { value: false }, Bit { value: false }, Bit { value: false }];
        pub const BIT1: [Bit; 4] = [Bit { value: true }, Bit { value: false }, Bit { value: false }, Bit { value: false }];
        pub const BIT2: [Bit; 4] = [Bit { value: false }, Bit { value: true }, Bit { value: false }, Bit { value: false }];
        pub const BIT3: [Bit; 4] = [Bit { value: false }, Bit { value: false }, Bit { value: true }, Bit { value: false }];
        pub const BIT4: [Bit; 4] = [Bit { value: false }, Bit { value: false }, Bit { value: false }, Bit { value: true }];
    }

    #[derive(Debug, Clone, Copy)]
    /// A virtual ALU component with 2 operands, a binary decoder, a byte arithmetic and the overflow, negative, and zero flags 
    pub struct ALU {
        pub value1: Byte,
        pub value2: Byte,
        pub decoder: BinaryDecoder,
        pub math: ByteArithmetic,
        pub overflow: Bit,
        pub zero: Bit,
        pub negative: Bit,
    }

    impl ALU {
        pub fn new(value1: Byte, value2: Byte) -> Self {
            ALU {
                value1,
                value2,
                decoder: BinaryDecoder::new(),
                math: ByteArithmetic::new(value1, value2),
                overflow: Bit::new(false),
                zero: Bit::new(false),
                negative: Bit::new(false),
            }
        }
        pub fn set_decoder(&mut self, axis_x: Bit, axis_y: Bit) {
            self.decoder = BinaryDecoder { axis_x, axis_y, result: [Bit::zero(); 4] };
        }
        pub fn move_bytes_in(&mut self, value1: Byte, value2: Byte) {
            self.value1 = value1;
            self.value2 = value2; 
        }
        /// Compute the value of the ALU
        pub fn compute(&mut self) {
            self.decoder.decode();
            self.compute_decoder(self.decoder);
        }
        pub fn compute_decoder(&mut self, decoder: BinaryDecoder) {
            let half_byte = BinaryDecoder::decode_internal(decoder.axis_x, decoder.axis_y);
            match half_byte {
                BinaryDecoder::BIT1 => self.add(),
                BinaryDecoder::BIT2 => self.sub(),
                BinaryDecoder::BIT3 => self.mul(),
                BinaryDecoder::BIT4 => self.div(),
                _ => {}
            }
        }
        /// # Add
        /// Adds value1 and value2 and stores the result into value1
        /// Updates the overflow, negative, and zero flags
        /// # Example
        /// ```
        /// use vc_8bit::ALU;
        /// use vc_8bit::Byte;
        /// use vc_8bit::Bit;
        /// let mut alu = ALU::new(Byte::try_from(32).unwrap(), Byte::try_from(23).unwrap());
        /// alu.decoder.axis_x = Bit::new(false);
        /// alu.decoder.axis_y = Bit::new(false);
        /// alu.compute();
        /// assert_eq!(alu.value1.to_i32(), 55);
        /// assert_eq!(alu.overflow.value, false);
        /// assert_eq!(alu.negative.value, false);
        /// assert_eq!(alu.zero.value, false);
        /// ```
        /// # Panics
        /// If value1 and value2 are not 8-bit numbers.
        /// If value1 + value2 overflows 256 
        pub fn add(&mut self) {
            self.math.value1 = self.value1;
            self.math.value2 = self.value2;
            let (result, carry) = self.math.add();
            self.value1 = result;
            self.overflow = carry;

            self.zero = Bit::new(result.to_i32() == 0);
            self.negative = Bit::new(result.to_i32() < 0);
        }

        /// # Subtract
        /// Subtracts value1 and value2 and stores the result into value1
        /// Updates the overflow, negative, and zero flags
        /// # Example
        /// ```
        /// use vc_8bit::ALU;
        /// use vc_8bit::Byte;
        /// use vc_8bit::Bit;
        /// let mut alu = ALU::new(Byte::try_from(15).unwrap(), Byte::try_from(23).unwrap());
        /// alu.decoder.axis_x = Bit::new(false);
        /// alu.decoder.axis_y = Bit::new(true);
        /// alu.compute();
        /// assert_eq!(alu.value1.to_i32(), 8); // returns absolute value
        /// assert_eq!(alu.overflow.value, false);
        /// assert_eq!(alu.negative.value, true); // sets negative flag to true
        /// assert_eq!(alu.zero.value, false);
        /// ```
        /// # Panics
        /// If value1 and value2 are not 8-bit numbers. 
        pub fn sub(&mut self) {
            self.math.value1 = self.value1;
            self.math.value2 = self.value2;
            let (result, carry) = self.math.sub();
            self.value1 = result;
            self.overflow = carry;

            self.zero = Bit::new(result.to_i32() == 0);
            self.negative = Bit::new(result.to_i32() < 0);
        }

        /// # Multiply
        /// Multiplies value1 and value2 and stores the result into value1
        /// Updates the overflow, negative, and zero flags
        /// # Example
        /// ```
        /// use vc_8bit::ALU;
        /// use vc_8bit::Byte;
        /// use vc_8bit::Bit;
        /// let mut alu = ALU::new(Byte::try_from(15).unwrap(), Byte::try_from(3).unwrap());
        /// alu.decoder.axis_x = Bit::new(true);
        /// alu.decoder.axis_y = Bit::new(false);
        /// alu.compute();
        /// assert_eq!(alu.value1.to_i32(), 45);
        /// assert_eq!(alu.overflow.value, false);
        /// assert_eq!(alu.negative.value, false);
        /// assert_eq!(alu.zero.value, false);
        /// ```
        /// # Panics
        /// If value1 and value2 are not 8-bit numbers.
        /// If value1 * value2 overflows 256
        pub fn mul(&mut self) {
            self.math.value1 = self.value1;
            self.math.value2 = self.value2;
            let (result, carry) = self.math.mul();
            self.value1 = result;
            self.overflow = carry;

            self.zero = Bit::new(result.to_i32() == 0);
            self.negative = Bit::new(result.to_i32() < 0);
        }

        /// # Divide
        /// Divides value1 and value2 and stores the result into value1
        /// Updates the overflow, negative, and zero flags
        /// # Example
        /// ```
        /// use vc_8bit::ALU;
        /// use vc_8bit::Byte;
        /// use vc_8bit::Bit;
        /// let mut alu = ALU::new(Byte::try_from(15).unwrap(), Byte::try_from(3).unwrap());
        /// alu.decoder.axis_x = Bit::new(true);
        /// alu.decoder.axis_y = Bit::new(true);
        /// alu.compute();
        /// assert_eq!(alu.value1.to_i32(), 5);
        /// assert_eq!(alu.overflow.value, false);
        /// assert_eq!(alu.negative.value, false);
        /// assert_eq!(alu.zero.value, false);
        /// ```
        /// # Panics
        /// If value1 and value2 are not 8-bit numbers.
        pub fn div(&mut self) {
            if self.value2.to_i32() == 0 {
                panic!("Division by zero");
            }
            self.math.value1 = self.value1;
            self.math.value2 = self.value2;
            let (result, carry) = self.math.div();
            self.value1 = result;
            self.overflow = carry;

            self.zero = Bit::new(result.to_i32() == 0);
            self.negative = Bit::new(result.to_i32() < 0);
        }
    }

    #[derive(Debug, Clone)]
    pub struct CPU {
        pub alu: ALU,
        pub reg_1: Register,
        pub reg_2: Register,
        pub reg_3: Register,
        pub reg_4: Register,
    }
    impl CPU {
        pub fn new() -> Self {
            CPU {
                alu: ALU::new(Byte::zero(), Byte::zero()),
                reg_1: Register::new(Byte::try_from(65).unwrap(), Byte::zero()),
                reg_2: Register::new(Byte::try_from(66).unwrap(), Byte::zero()),
                reg_3: Register::new(Byte::try_from(67).unwrap(), Byte::zero()),
                reg_4: Register::new(Byte::try_from(68).unwrap(), Byte::zero()),
            }
        }
        pub fn move_byte_in_register_1(&mut self, reg_1: Byte) {
            self.reg_1.value = reg_1;
        }
        pub fn move_byte_in_register_2(&mut self, reg_2: Byte) {
            self.reg_2.value = reg_2;
        }
        pub fn move_byte_in_register_3(&mut self, reg_3: Byte) {
            self.reg_3.value = reg_3;
        }
        pub fn move_byte_in_register_4(&mut self, reg_4: Byte) {
            self.reg_4.value = reg_4;
        }
        /// returns register from i32 value 1 through 4 for registers R0, R1, R2, and R3
        pub fn get_register(&mut self, reg: i32) -> Register {
            match reg {
                1 => self.reg_1,
                2 => self.reg_2,
                3 => self.reg_3,
                4 => self.reg_4,
                _ => panic!("Invalid register"),
            }
        }
    }

    pub struct Computer {
        pub cpu: CPU,
        pub ports: Ports,
        pub ram: RAM,
    }

    impl Computer {
        pub fn new() -> Self {
            Computer {
                cpu: CPU::new(),
                ports: Ports::default(),
                ram: RAM::new(),
            }
        }
        pub fn move_byte_in_memory(&mut self, address_1: Byte, address_2: Byte) {
            let read = self.ram.read(address_1);
            self.ram.write(address_2, read);
        }
        pub fn byte_into_register(&mut self, mut register: Register, value: Byte) {
            register.write(value);
        }
        pub fn move_byte_to_register(&mut self, reg: i32, address_1: Byte) {
            self.cpu.get_register(reg).write(self.ram.read(address_1));
        }
        pub fn move_byte_from_register(&mut self, register: Register, address_1: Byte) {
            self.ram.write(address_1, register.read());
        }
        /// # Run
        /// Runs the program on the VC
        /// # Example
        /// ```
        /// use vc_8bit::Computer;
        /// use vc_8bit::Byte;
        /// let bytes = vec![Byte::from_string("00110110"), Byte::from_string("1001100")];
        /// let mut computer: Computer = Computer::new();
        /// computer.ram.insert_bytes(bytes);
        /// computer.run();
        /// ```
        /// # Panics
        /// If the program contains an invalid instruction
        pub fn run(&mut self) {
            loop {
                // get the 2 byte stream
                let data = self.ram.get_byte_stream();
                
                // run the stream with the first byte being the instruction
                let halted = self.run_stream(data);
                
                // stop the program if the instruction is HALT 111111111
                if halted {
                    break;
                }
            }
        }
        /// # Run Stream
        /// Runs the stream on the VC. 
        /// # Example
        /// ```
        /// use vc_8bit::Computer;
        /// use vc_8bit::Byte;
        /// let bytes = vec![Byte::from_string("00110110"), Byte::from_string("1001100")];
        /// let mut computer: Computer = Computer::new();
        /// computer.run_stream(bytes);
        /// ```
        /// # Panics
        /// If the program contains an invalid instruction
        pub fn run_stream(&mut self, stream: [Byte; STREAM_SIZE]) -> bool {
            let first_byte = stream[0].value;
            let mut halted = false;

            // 00 ALU 
            // 01 Boolean
            // 10 Ports
            // 11 RAM 
            
            if !first_byte[0].value { // 0X XX XX XX
                // ALU and logic takes 1 byte, Memory takes 2 bytes
                // decrement so next instruction won't be skipped
                self.ram.decrement();

                if first_byte[1].value { // 01 XX XX XX
                    // Boolean Logic
                    let mut reg1_data: [u8; 2] = [0; 2];
                    for i in 0..2 {
                        reg1_data[i] = first_byte[4 + i].to_i32() as u8;
                    } 
                    let mut reg2_data: [u8; 2] = [0; 2];
                    for i in 0..2 {
                        reg2_data[i] = first_byte[6 + i].to_i32() as u8;
                    } 
                    let register1_address = BinaryDecoder::decode_internal_i32(Bit::try_from(reg1_data[0] as i32).unwrap(), Bit::try_from(reg1_data[1] as i32).unwrap());
                    let register2_address = BinaryDecoder::decode_internal_i32(Bit::try_from(reg2_data[0] as i32).unwrap(), Bit::try_from(reg2_data[1] as i32).unwrap());
                    let mut cpu = self.cpu.clone();
                    let mut register1 = cpu.get_register(register1_address);
                    let register2 = cpu.get_register(register2_address);
                    match stream[0].to_u8_array() {
                        [0, 1, 0, 0, _, _, _, _] => {
                            // AND
                            register1.write(register1.value.and(&register2.value));
                        }
                        [0, 1, 0, 1, _, _, _, _] => {
                            // OR
                            register1.write(register1.value.or(&register2.value));
                        }
                        [0, 1, 1, 0, _, _, _, _] => {
                            // NOT
                            register1.write(register1.value.not());
                        }
                        [0, 1, 1, 1, _, _, _, _] => {
                            // XOR
                            register1.write(register1.value.xor(&register2.value));
                        }
                        _ => {
                            panic!("Invalid boolean logic instruction");
                        }
                    }
                    match register1_address {
                        1 => cpu.reg_1 = register1,
                        2 => cpu.reg_2 = register1,
                        3 => cpu.reg_3 = register1,
                        4 => cpu.reg_4 = register1,
                        _ => panic!("Invalid register address"),
                    }
                    self.cpu = cpu;
                }
                else { // 00 XX XX XX
                    // ALU
                    let op1_a = first_byte[4].to_i32();
                    let op1_b = first_byte[5].to_i32();
                    let op2_a = first_byte[6].to_i32();
                    let op2_b = first_byte[7].to_i32();
                    let register_address1 = BinaryDecoder::decode_internal_i32(Bit::try_from(op1_a).unwrap(), Bit::try_from(op1_b).unwrap());
                    let register_address2 = BinaryDecoder::decode_internal_i32(Bit::try_from(op2_a).unwrap(), Bit::try_from(op2_b).unwrap());
                    let operand_1 = self.cpu.get_register(register_address1).value.to_i32();
                    let operand_2 = self.cpu.get_register(register_address2).value.to_i32();
        
                    self.cpu.alu.value1 = Byte::try_from(operand_1).unwrap();
                    self.cpu.alu.value2 = Byte::try_from(operand_2).unwrap();
                    self.cpu.alu.decoder = BinaryDecoder {axis_x: first_byte[2], axis_y: first_byte[3], result: [Bit::new(false); 4]};
                    self.cpu.alu.compute();
        
                    let mut cpu = self.cpu.clone();
                    let mut register = cpu.get_register(register_address1);
                    register.write(Byte::try_from(self.cpu.alu.value1).unwrap());
                    match register_address1 {
                        1 => cpu.reg_1 = register,
                        2 => cpu.reg_2 = register,
                        3 => cpu.reg_3 = register,
                        4 => cpu.reg_4 = register,
                        _ => panic!("Invalid register address"),
                    }
                    self.cpu = cpu;
                }
            }
            else { // 1X XX XX XX
                if !first_byte[1].value { // 10 XX XX XX
                    // Ports

                    // Ports takes 1 byte, Memory takes 2 bytes
                    // decrement so next instruction won't be skipped
                    self.ram.decrement();

                    let register_address = BinaryDecoder::decode_internal_i32(Bit::try_from(first_byte[3].value as i32).unwrap(), Bit::try_from(first_byte[4].value as i32).unwrap());

                    let port = [first_byte[5].value, first_byte[6].value, first_byte[7].value];
                    let port_address: i32 = match port {
                        [false, false, false] => 0,
                        [false, false, true] => 1,
                        [false, true, false] => 2,
                        [false, true, true] => 3,
                        [true, false, false] => 4,
                        [true, false, true] => 5,
                        [true, true, false] => 6,
                        [true, true, true] => 7,
                    };
                    
                    if !first_byte[2].value { // 10 0X XX XX
                        // read
                        let mut cpu = self.cpu.clone();
                        let mut register = cpu.get_register(register_address);
                        let value = self.ports.read(port_address.try_into().unwrap());
                        register.write(value);
                        match register_address {
                            1 => cpu.reg_1 = register,
                            2 => cpu.reg_2 = register,
                            3 => cpu.reg_3 = register,
                            4 => cpu.reg_4 = register,
                            _ => panic!("Invalid register address"),
                        }
                        self.cpu = cpu;
                    }
                    else { // 10 1X XX XX
                        // write
                        let register = self.cpu.get_register(register_address);
                        _ = self.ports.write(port_address.try_into().unwrap(), register.value);
                    }
                } 
                else { // 11 XX XX XX
                    match stream[0].to_u8_array() {
                        [1, 1, 1, 1, 1, 1, 1, 1] => {
                            // Halt
                
                            // Halting takes 1 byte from memory
                            // decrement so next instruction won't be skipped
                            self.ram.decrement();

                            // stop running
                            halted = true;
                        }
                        [1, 1, 0, 0, 0, 0, _, _] => {
                            // Store
                            let mut reg_data: [u8; 2] = [0; 2];
                            for i in 0..2 {
                                reg_data[i] = first_byte[6 + i].to_i32() as u8;
                            } 
                            let address = stream[1];
                            let register_address = BinaryDecoder::decode_internal_i32(Bit::try_from(reg_data[0] as i32).unwrap(), Bit::try_from(reg_data[1] as i32).unwrap());
                            let data = self.cpu.get_register(register_address);
                            self.ram.write(address, data.value);
                        }
                        [1, 1, 0, 0, 0, 1, _, _] => {
                            // Load
                            let mut reg_data: [u8; 2] = [0; 2];
                            for i in 0..2 {
                                reg_data[i] = first_byte[6 + i].to_i32() as u8;
                            } 
                            let address = stream[1];
                            let register_address = BinaryDecoder::decode_internal_i32(Bit::try_from(reg_data[0] as i32).unwrap(), Bit::try_from(reg_data[1] as i32).unwrap());
                            let mut cpu = self.cpu.clone();
                            let mut register = cpu.get_register(register_address);
                            register.write(self.ram.read(address));
                            match register_address {
                                1 => cpu.reg_1 = register,
                                2 => cpu.reg_2 = register,
                                3 => cpu.reg_3 = register,
                                4 => cpu.reg_4 = register,
                                _ => panic!("Invalid register address"),
                            }
                            self.cpu = cpu;
                        }
                        [1, 1, 0, 0, 1, 0, _, _] => {
                            // Move
                            let mut reg_data: [u8; 2] = [0; 2];
                            for i in 0..2 {
                                reg_data[i] = first_byte[6 + i].to_i32() as u8;
                            } 
                            let binary: Byte = stream[1];
                            let register_address = BinaryDecoder::decode_internal_i32(Bit::try_from(reg_data[0] as i32).unwrap(), Bit::try_from(reg_data[1] as i32).unwrap());
                            let mut cpu = self.cpu.clone();
                            let mut register = cpu.get_register(register_address);
                            register.write(binary);
                            match register_address {
                                1 => cpu.reg_1 = register,
                                2 => cpu.reg_2 = register,
                                3 => cpu.reg_3 = register,
                                4 => cpu.reg_4 = register,
                                _ => panic!("Invalid register address"),
                            }
                            self.cpu = cpu;
                        }
                        [1, 1, 0, 0, 1, 1, _, _] => {
                            // Copy
                            let mut reg1_data: [u8; 2] = [0; 2];
                            for i in 0..2 {
                                reg1_data[i] = first_byte[6 + i].to_i32() as u8;
                            } 
                            let mut reg2_data: [u8; 2] = [0; 2];
                            for i in 0..2 {
                                reg2_data[i] = stream[1].value[i].to_i32() as u8;
                            } 
                            let register1_address = BinaryDecoder::decode_internal_i32(Bit::try_from(reg1_data[0] as i32).unwrap(), Bit::try_from(reg1_data[1] as i32).unwrap());
                            let register2_address = BinaryDecoder::decode_internal_i32(Bit::try_from(reg2_data[0] as i32).unwrap(), Bit::try_from(reg2_data[1] as i32).unwrap());
                            let mut cpu = self.cpu.clone();
                            let mut register1 = cpu.get_register(register1_address);
                            let register2 = cpu.get_register(register2_address);
                            register1.write(register2.value);
                            match register1_address {
                                1 => cpu.reg_1 = register1,
                                2 => cpu.reg_2 = register1,
                                3 => cpu.reg_3 = register1,
                                4 => cpu.reg_4 = register1,
                                _ => panic!("Invalid register address"),
                            }
                            self.cpu = cpu;
                        }
                        [1, 1, 0, 1, 0, 0, _, _] => {
                            // Shift Left
                            let mut reg1_data: [u8; 2] = [0; 2];
                            for i in 0..2 {
                                reg1_data[i] = first_byte[6 + i].to_i32() as u8;
                            } 
                            let binary: Byte = stream[1];
                            let register1_address = BinaryDecoder::decode_internal_i32(Bit::try_from(reg1_data[0] as i32).unwrap(), Bit::try_from(reg1_data[1] as i32).unwrap());
                            let mut cpu = self.cpu.clone();
                            let mut register1 = cpu.get_register(register1_address);
                            register1.write(Byte::shift_array(register1.value, -binary.to_i32()));
                            match register1_address {
                                1 => cpu.reg_1 = register1,
                                2 => cpu.reg_2 = register1,
                                3 => cpu.reg_3 = register1,
                                4 => cpu.reg_4 = register1,
                                _ => panic!("Invalid register address"),
                            }
                            self.cpu = cpu;
                        }
                        [1, 1, 0, 1, 0, 1, _, _] => {
                            // Shift Right
                            let mut reg1_data: [u8; 2] = [0; 2];
                            for i in 0..2 {
                                reg1_data[i] = first_byte[6 + i].to_i32() as u8;
                            } 
                            let binary: Byte = stream[1];
                            let register1_address = BinaryDecoder::decode_internal_i32(Bit::try_from(reg1_data[0] as i32).unwrap(), Bit::try_from(reg1_data[1] as i32).unwrap());
                            let mut cpu = self.cpu.clone();
                            let mut register1 = cpu.get_register(register1_address);
                            register1.write(Byte::shift_array(register1.value, binary.to_i32()));
                            match register1_address {
                                1 => cpu.reg_1 = register1,
                                2 => cpu.reg_2 = register1,
                                3 => cpu.reg_3 = register1,
                                4 => cpu.reg_4 = register1,
                                _ => panic!("Invalid register address"),
                            }
                            self.cpu = cpu;
                        }
                        [1, 1, 0, 1, 1, 0, _, _] => {
                            // Out

                            // only takes 1 byte from memory
                            // decrement so next instruction won't be skipped
                            self.ram.decrement();

                            let mut reg1_data: [u8; 2] = [0; 2];
                            for i in 0..2 {
                                reg1_data[i] = first_byte[6 + i].to_i32() as u8;
                            } 
                            let register_address = BinaryDecoder::decode_internal_i32(Bit::try_from(reg1_data[0] as i32).unwrap(), Bit::try_from(reg1_data[1] as i32).unwrap());
                            let value = self.cpu.get_register(register_address).value;
                            print!("{}", value.to_string());
                        }
                        [1, 1, 0, 1, 1, 1, _, _] => {
                            // Msg

                            // only takes 1 byte from memory
                            // decrement so next instruction won't be skipped
                            self.ram.decrement();

                            let mut reg1_data: [u8; 2] = [0; 2];
                            for i in 0..2 {
                                reg1_data[i] = first_byte[6 + i].to_i32() as u8;
                            } 
                            let register_address = BinaryDecoder::decode_internal_i32(Bit::try_from(reg1_data[0] as i32).unwrap(), Bit::try_from(reg1_data[1] as i32).unwrap());
                            let value = self.cpu.get_register(register_address).value;
                            let c = bool_array_to_ascii(value.to_bool_array());
                            print!("{}", c);
                        }
                        [1, 1, 1, 0, 0, 0, _, _] => {
                            // Increment

                            // only takes 1 byte from memory
                            // decrement so next instruction won't be skipped
                            self.ram.decrement();

                            let mut reg1_data: [u8; 2] = [0; 2];
                            for i in 0..2 {
                                reg1_data[i] = first_byte[6 + i].to_i32() as u8;
                            } 
                            let register_address = BinaryDecoder::decode_internal_i32(Bit::try_from(reg1_data[0] as i32).unwrap(), Bit::try_from(reg1_data[1] as i32).unwrap());
                            let mut cpu = self.cpu.clone();
                            let mut register = cpu.get_register(register_address);
                            register.write((register.value.to_i32() + 1).try_into().unwrap());
                            match register_address {
                                1 => cpu.reg_1 = register,
                                2 => cpu.reg_2 = register,
                                3 => cpu.reg_3 = register,
                                4 => cpu.reg_4 = register,
                                _ => panic!("Invalid register address"),
                            }
                            self.cpu = cpu;
                        }
                        [1, 1, 1, 0, 0, 1, _, _] => {
                            // Decrement

                            // only takes 1 byte from memory
                            // decrement so next instruction won't be skipped
                            self.ram.decrement();

                            let mut reg1_data: [u8; 2] = [0; 2];
                            for i in 0..2 {
                                reg1_data[i] = first_byte[6 + i].to_i32() as u8;
                            } 
                            let register_address = BinaryDecoder::decode_internal_i32(Bit::try_from(reg1_data[0] as i32).unwrap(), Bit::try_from(reg1_data[1] as i32).unwrap());
                            let mut cpu = self.cpu.clone();
                            let mut register = cpu.get_register(register_address);
                            register.write((register.value.to_i32() - 1).try_into().unwrap());
                            match register_address {
                                1 => cpu.reg_1 = register,
                                2 => cpu.reg_2 = register,
                                3 => cpu.reg_3 = register,
                                4 => cpu.reg_4 = register,
                                _ => panic!("Invalid register address"),
                            }
                            self.cpu = cpu;
                        }
                        [1, 1, 1, 0, 1, 0, 0, 0] => {
                            // Jump
                            let binary = stream[1];
                            self.ram.set_index(binary);
                        }
                        [1, 1, 1, 0, 1, 0, 0, 1] => {
                            // Jump Neg
                            let binary = stream[1];
                            if self.cpu.alu.math.neg.to_bool() {
                                self.ram.set_index(binary);
                            }
                        }
                        [1, 1, 1, 0, 1, 0, 1, 0] => {
                            // Jump Zero
                            let binary = stream[1];
                            if self.cpu.alu.math.zero.to_bool() {
                                self.ram.set_index(binary);
                            }
                        }
                        [1, 1, 1, 0, 1, 0, 1, 1] => {
                            // Jump Above
                            let binary = stream[1];
                            if !self.cpu.alu.math.neg.to_bool() && !self.cpu.alu.math.zero.to_bool() {
                                self.ram.set_index(binary);
                            }
                        }
                        [1, 1, 1, 1, 0, 0, _, _] => {
                            // CMP_NEG

                            // only takes 1 byte from memory
                            // decrement so next instruction won't be skipped
                            self.ram.decrement();
                            
                            let mut reg_data: [u8; 2] = [0; 2];
                            for i in 0..2 {
                                reg_data[i] = first_byte[6 + i].to_i32() as u8;
                            }
                            let binary = if self.cpu.alu.math.neg.to_bool() { Byte::full() } else { Byte::zero() };
                            let register_address = BinaryDecoder::decode_internal_i32(Bit::try_from(reg_data[0] as i32).unwrap(), Bit::try_from(reg_data[1] as i32).unwrap());
                            let mut cpu = self.cpu.clone();
                            let mut register = cpu.get_register(register_address);
                            register.write(binary);
                            match register_address {
                                1 => cpu.reg_1 = register,
                                2 => cpu.reg_2 = register,
                                3 => cpu.reg_3 = register,
                                4 => cpu.reg_4 = register,
                                _ => panic!("Invalid register address"),
                            }
                            self.cpu = cpu;
                        }
                        [1, 1, 1, 1, 0, 1, _, _] => {
                            // CMP_ZRO

                            // only takes 1 byte from memory
                            // decrement so next instruction won't be skipped
                            self.ram.decrement();

                            let mut reg_data: [u8; 2] = [0; 2];
                            for i in 0..2 {
                                reg_data[i] = first_byte[6 + i].to_i32() as u8;
                            }
                            let binary = if self.cpu.alu.math.zero.to_bool() { Byte::full() } else { Byte::zero() };
                            let register_address = BinaryDecoder::decode_internal_i32(Bit::try_from(reg_data[0] as i32).unwrap(), Bit::try_from(reg_data[1] as i32).unwrap());
                            let mut cpu = self.cpu.clone();
                            let mut register = cpu.get_register(register_address);
                            register.write(binary);
                            match register_address {
                                1 => cpu.reg_1 = register,
                                2 => cpu.reg_2 = register,
                                3 => cpu.reg_3 = register,
                                4 => cpu.reg_4 = register,
                                _ => panic!("Invalid register address"),
                            }
                            self.cpu = cpu;
                        }
                        [1, 1, 1, 1, 1, 0, _, _] => {
                            // CMP_ABV

                            // only takes 1 byte from memory
                            // decrement so next instruction won't be skipped
                            self.ram.decrement();

                            let mut reg_data: [u8; 2] = [0; 2];
                            for i in 0..2 {
                                reg_data[i] = first_byte[6 + i].to_i32() as u8;
                            }
                            let binary = if !self.cpu.alu.math.neg.to_bool() && !self.cpu.alu.math.zero.to_bool() { Byte::full() } else { Byte::zero() };
                            let register_address = BinaryDecoder::decode_internal_i32(Bit::try_from(reg_data[0] as i32).unwrap(), Bit::try_from(reg_data[1] as i32).unwrap());
                            let mut cpu = self.cpu.clone();
                            let mut register = cpu.get_register(register_address);
                            register.write(binary);
                            match register_address {
                                1 => cpu.reg_1 = register,
                                2 => cpu.reg_2 = register,
                                3 => cpu.reg_3 = register,
                                4 => cpu.reg_4 = register,
                                _ => panic!("Invalid register address"),
                            }
                            self.cpu = cpu;
                        }
                        _ => {
                            panic!("Invalid function {}", stream[0].to_string());
                        }
                    }
                }
            }
            halted
        }
    }

    pub fn bool_array_to_ascii(arr: [bool; 8]) -> char {
        let mut value = 0u8;

        for (i, &bit) in arr.iter().enumerate() {
            if bit {
                value |= 1 << (7 - i); // Set the appropriate bit
            }
        }

        value as char
    }
}