unit_sphere/
lib.rs

1// Copyright (c) 2024-2025 Ken Barker
2
3// Permission is hereby granted, free of charge, to any person obtaining a copy
4// of this software and associated documentation files (the "Software"),
5// to deal in the Software without restriction, including without limitation the
6// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
7// sell copies of the Software, and to permit persons to whom the Software is
8// furnished to do so, subject to the following conditions:
9
10// The above copyright notice and this permission notice shall be included in
11// all copies or substantial portions of the Software.
12
13// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
16// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
17// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
18// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
19// THE SOFTWARE.
20
21//! # unit-sphere
22//!
23//! [![crates.io](https://img.shields.io/crates/v/unit-sphere.svg)](https://crates.io/crates/unit-sphere)
24//! [![docs.io](https://docs.rs/unit-sphere/badge.svg)](https://docs.rs/unit-sphere/)
25//! [![License](https://img.shields.io/badge/License-MIT-blue)](https://opensource.org/license/mit/)
26//! [![Rust](https://github.com/kenba/unit-sphere-rs/actions/workflows/rust.yml/badge.svg)](https://github.com/kenba/unit-sphere-rs/actions)
27//! [![codecov](https://codecov.io/gh/kenba/unit-sphere-rs/graph/badge.svg?token=G1H1XINERW)](https://codecov.io/gh/kenba/unit-sphere-rs)
28//!
29//! A library for performing geometric calculations on the surface of a sphere.
30//!
31//! The library uses a combination of spherical trigonometry and vector geometry
32//! to perform [great-circle navigation](https://en.wikipedia.org/wiki/Great-circle_navigation)
33//! on the surface of a unit sphere, see *Figure 1*.
34//!
35//! ![great circle arc](https://via-technology.aero/img/navigation/sphere/great_circle_arc.svg)
36//!
37//! *Figure 1 A Great Circle Arc*
38//!
39//! A [great circle](https://en.wikipedia.org/wiki/Great_circle) is the
40//! shortest path between positions on the surface of a sphere.
41//! It is the spherical equivalent of a straight line in planar geometry.
42//!
43//! ## Spherical trigonometry
44//!
45//! A great circle path between positions may be found using
46//! [spherical trigonometry](https://en.wikipedia.org/wiki/Spherical_trigonometry).
47//!
48//! The [course](https://en.wikipedia.org/wiki/Great-circle_navigation#Course)
49//! (initial azimuth) of a great circle can be calculated from the
50//! latitudes and longitudes of the start and end points.
51//! While great circle distance can also be calculated from the latitudes and
52//! longitudes of the start and end points using the
53//! [haversine formula](https://en.wikipedia.org/wiki/Haversine_formula).
54//! The resulting distance in `Radians` can be converted to the required units by
55//! multiplying the distance by the Earth radius measured in the required units.
56//!
57//! ## Vector geometry
58//!
59//! Points on the surface of a sphere and great circle poles may be represented
60//! by 3D [vectors](https://www.movable-type.co.uk/scripts/latlong-vectors.html).
61//! Many calculations are simpler using vectors than spherical trigonometry.
62//!
63//! ![Spherical Vector Coordinates](https://via-technology.aero/img/navigation/sphere/ecef_coordinates.svg)
64//!
65//! *Figure 2 Spherical Vector Coordinates*
66//!
67//! For example, the across track distance of a point from a great circle can
68//! be calculated from the [dot product](https://en.wikipedia.org/wiki/Dot_product)
69//! of the point and the great circle pole vectors.
70//! While intersection points of great circles can simply be calculated from
71//! the [cross product](https://en.wikipedia.org/wiki/Cross_product) of their
72//! pole vectors.
73//!
74//! ## Design
75//!
76//! The `great_circle` module performs spherical trigonometric calculations
77//! and the `vector` module performs vector geometry calculations.
78//! See: [spherical vector geometry](https://via-technology.aero/navigation/spherical-vector-geometry/).
79//!
80//! The software uses types: `Angle`, `Degrees` and `Radians` from the
81//! [angle-sc](https://crates.io/crates/angle-sc) crate.
82//!
83//! The library is declared [no_std](https://docs.rust-embedded.org/book/intro/no-std.html)
84//! so it can be used in embedded applications.
85//!
86//! ## Example
87//!
88//! The following example calculates the intersection between two Great Circle `Arc`s
89//! it is taken from Charles Karney's original solution to
90//! [Intersection between two geodesic lines](https://sourceforge.net/p/geographiclib/discussion/1026621/thread/21aaff9f/#fe0a).
91//!
92//! ```rust
93//! use unit_sphere::{Arc, Degrees, LatLong, calculate_intersection_point};
94//! use angle_sc::is_within_tolerance;
95//!
96//! let istanbul = LatLong::new(Degrees(42.0), Degrees(29.0));
97//! let washington = LatLong::new(Degrees(39.0), Degrees(-77.0));
98//! let reyjavik = LatLong::new(Degrees(64.0), Degrees(-22.0));
99//! let accra = LatLong::new(Degrees(6.0), Degrees(0.0));
100//!
101//! let arc1 = Arc::try_from((&istanbul, &washington)).unwrap();
102//! let arc2 = Arc::try_from((&reyjavik, &accra)).unwrap();
103//!
104//! let intersection_point = calculate_intersection_point(&arc1, &arc2).unwrap();
105//! let lat_long = LatLong::from(&intersection_point);
106//! // Geodesic intersection latitude is 54.7170296089477
107//! assert!(is_within_tolerance(54.72, lat_long.lat().0, 0.05));
108//! // Geodesic intersection longitude is -14.56385574430775
109//! assert!(is_within_tolerance(-14.56, lat_long.lon().0, 0.02));
110//! ```
111
112#![cfg_attr(not(test), no_std)]
113
114extern crate angle_sc;
115extern crate nalgebra as na;
116
117pub mod great_circle;
118pub mod vector;
119
120use angle_sc::min;
121pub use angle_sc::{Angle, Degrees, Radians, Validate};
122use thiserror::Error;
123
124/// Test whether a latitude in degrees is a valid latitude.
125///
126/// I.e. whether it lies in the range: -90.0 <= degrees <= 90.0
127#[must_use]
128pub fn is_valid_latitude(degrees: f64) -> bool {
129    (-90.0..=90.0).contains(&degrees)
130}
131
132/// Test whether a longitude in degrees is a valid longitude.
133///
134/// I.e. whether it lies in the range: -180.0 <= degrees <= 180.0
135#[must_use]
136pub fn is_valid_longitude(degrees: f64) -> bool {
137    (-180.0..=180.0).contains(&degrees)
138}
139
140/// A position as a latitude and longitude pair of `Degrees`.
141#[derive(Clone, Copy, Debug, PartialEq)]
142pub struct LatLong {
143    lat: Degrees,
144    lon: Degrees,
145}
146
147impl Validate for LatLong {
148    /// Test whether a `LatLong` is valid.
149    ///
150    /// I.e. whether the latitude lies in the range: -90.0 <= lat <= 90.0
151    /// and the longitude lies in the range: -180.0 <= lon <= 180.0
152    fn is_valid(&self) -> bool {
153        is_valid_latitude(self.lat.0) && is_valid_longitude(self.lon.0)
154    }
155}
156
157impl LatLong {
158    #[must_use]
159    pub const fn new(lat: Degrees, lon: Degrees) -> Self {
160        Self { lat, lon }
161    }
162
163    #[must_use]
164    pub const fn lat(&self) -> Degrees {
165        self.lat
166    }
167
168    #[must_use]
169    pub const fn lon(&self) -> Degrees {
170        self.lon
171    }
172}
173
174/// A Error type for an invalid `LatLong`.
175#[derive(Error, Debug, PartialEq)]
176pub enum LatLongError {
177    #[error("invalid latitude value: `{0}`")]
178    Latitude(f64),
179    #[error("invalid longitude value: `{0}`")]
180    Longitude(f64),
181}
182
183impl TryFrom<(f64, f64)> for LatLong {
184    type Error = LatLongError;
185
186    /// Attempt to convert a pair of f64 values in latitude, longitude order.
187    ///
188    /// return a valid `LatLong` or a `LatLongError`.
189    fn try_from(lat_long: (f64, f64)) -> Result<Self, Self::Error> {
190        if !is_valid_latitude(lat_long.0) {
191            Err(LatLongError::Latitude(lat_long.0))
192        } else if !is_valid_longitude(lat_long.1) {
193            Err(LatLongError::Longitude(lat_long.1))
194        } else {
195            Ok(Self::new(Degrees(lat_long.0), Degrees(lat_long.1)))
196        }
197    }
198}
199
200/// Calculate the azimuth and distance along the great circle of point b from
201/// point a.
202/// * `a`, `b` - the start and end positions
203///
204/// returns the great-circle azimuth relative to North and distance of point b
205/// from point a.
206#[must_use]
207pub fn calculate_azimuth_and_distance(a: &LatLong, b: &LatLong) -> (Angle, Radians) {
208    let a_lat = Angle::from(a.lat);
209    let b_lat = Angle::from(b.lat);
210    let delta_long = Angle::from((b.lon, a.lon));
211    (
212        great_circle::calculate_gc_azimuth(a_lat, b_lat, delta_long),
213        great_circle::calculate_gc_distance(a_lat, b_lat, delta_long),
214    )
215}
216
217/// Calculate the distance along the great circle of point b from point a.
218///
219/// See: [Haversine formula](https://en.wikipedia.org/wiki/Haversine_formula).
220/// This function is less accurate than `calculate_azimuth_and_distance`.
221/// * `a`, `b` - the start and end positions
222///
223/// returns the great-circle distance of point b from point a in `Radians`.
224#[must_use]
225pub fn haversine_distance(a: &LatLong, b: &LatLong) -> Radians {
226    let a_lat = Angle::from(a.lat);
227    let b_lat = Angle::from(b.lat);
228    let delta_lat = Angle::from((b.lat, a.lat));
229    let delta_long = Angle::from(b.lon - a.lon);
230    great_circle::calculate_haversine_distance(a_lat, b_lat, delta_long, delta_lat)
231}
232
233/// A `Vector3d` is a [nalgebra](https://crates.io/crates/nalgebra) `Vector3<f64>`.
234#[allow(clippy::module_name_repetitions)]
235pub type Vector3d = na::Vector3<f64>;
236
237impl From<&LatLong> for Vector3d {
238    /// Convert a `LatLong` to a point on the unit sphere.
239    ///
240    /// @pre |lat| <= 90.0 degrees.
241    /// * `lat` - the latitude.
242    /// * `lon` - the longitude.
243    ///
244    /// returns a `Vector3d` of the point on the unit sphere.
245    fn from(a: &LatLong) -> Self {
246        vector::to_point(Angle::from(a.lat), Angle::from(a.lon))
247    }
248}
249
250impl From<&Vector3d> for LatLong {
251    /// Convert a point to a `LatLong`
252    fn from(value: &Vector3d) -> Self {
253        Self::new(
254            Degrees::from(vector::latitude(value)),
255            Degrees::from(vector::longitude(value)),
256        )
257    }
258}
259
260/// An `Arc` of a Great Circle on a unit sphere.
261#[derive(Clone, Copy, Debug, PartialEq)]
262pub struct Arc {
263    /// The start point of the `Arc`.
264    a: Vector3d,
265    /// The right hand pole of the Great Circle of the `Arc`.
266    pole: Vector3d,
267    /// The length of the `Arc`.
268    length: Radians,
269    /// The half width of the `Arc`.
270    half_width: Radians,
271}
272
273impl Validate for Arc {
274    /// Test whether an `Arc` is valid.
275    ///
276    /// I.e. both a and pole are on the unit sphere and are orthogonal and
277    /// both length and `half_width` are not negative.
278    fn is_valid(&self) -> bool {
279        vector::is_unit(&self.a)
280            && vector::is_unit(&self.pole)
281            && vector::are_orthogonal(&self.a, &self.pole)
282            && !self.length.0.is_sign_negative()
283            && !self.half_width.0.is_sign_negative()
284    }
285}
286
287impl Arc {
288    /// Construct an `Arc`
289    ///
290    /// * `a` - the start point of the `Arc`.
291    /// * `pole` - the right hand pole of the Great Circle of the `Arc`.
292    /// * `length` - the length of the `Arc`.
293    /// * `half_width` - the half width of the `Arc`.
294    #[must_use]
295    pub const fn new(a: Vector3d, pole: Vector3d, length: Radians, half_width: Radians) -> Self {
296        Self {
297            a,
298            pole,
299            length,
300            half_width,
301        }
302    }
303
304    /// Construct an `Arc`
305    ///
306    /// * `a` - the start position
307    /// * `azimuth` - the azimuth at a.
308    /// * `length` - the length of the `Arc`.
309    #[must_use]
310    pub fn from_lat_lon_azi_length(a: &LatLong, azimuth: Angle, length: Radians) -> Self {
311        Self::new(
312            Vector3d::from(a),
313            vector::calculate_pole(Angle::from(a.lat()), Angle::from(a.lon()), azimuth),
314            length,
315            Radians(0.0),
316        )
317    }
318
319    /// Construct an `Arc` from the start and end positions.
320    ///
321    /// Note: if the points are the same or antipodal, the pole will be invalid.
322    /// * `a`, `b` - the start and end positions
323    #[must_use]
324    pub fn between_positions(a: &LatLong, b: &LatLong) -> Self {
325        let (azimuth, length) = calculate_azimuth_and_distance(a, b);
326        let a_lat = Angle::from(a.lat());
327        // if a is at the North or South pole
328        if a_lat.cos().0 < great_circle::MIN_VALUE {
329            // use b's longitude
330            Self::from_lat_lon_azi_length(&LatLong::new(a.lat(), b.lon()), azimuth, length)
331        } else {
332            Self::from_lat_lon_azi_length(a, azimuth, length)
333        }
334    }
335
336    /// Set the `half_width` of an `Arc`.
337    ///
338    /// * `half_width` - the half width of the `Arc`.
339    #[must_use]
340    pub const fn set_half_width(&mut self, half_width: Radians) -> &mut Self {
341        self.half_width = half_width;
342        self
343    }
344
345    /// The start point of the `Arc`.
346    #[must_use]
347    pub const fn a(&self) -> Vector3d {
348        self.a
349    }
350
351    /// The right hand pole of the Great Circle at the start point of the `Arc`.
352    #[must_use]
353    pub const fn pole(&self) -> Vector3d {
354        self.pole
355    }
356
357    /// The length of the `Arc`.
358    #[must_use]
359    pub const fn length(&self) -> Radians {
360        self.length
361    }
362
363    /// The half width of the `Arc`.
364    #[must_use]
365    pub const fn half_width(&self) -> Radians {
366        self.half_width
367    }
368
369    /// The azimuth at the start point.
370    #[must_use]
371    pub fn azimuth(&self) -> Angle {
372        vector::calculate_azimuth(&self.a, &self.pole)
373    }
374
375    /// The direction vector of the `Arc` at the start point.
376    #[must_use]
377    pub fn direction(&self) -> Vector3d {
378        vector::direction(&self.a, &self.pole)
379    }
380
381    /// A position vector at distance along the `Arc`.
382    #[must_use]
383    pub fn position(&self, distance: Radians) -> Vector3d {
384        vector::position(&self.a, &self.direction(), Angle::from(distance))
385    }
386
387    /// The end point of the `Arc`.
388    #[must_use]
389    pub fn b(&self) -> Vector3d {
390        self.position(self.length)
391    }
392
393    /// The mid point of the `Arc`.
394    #[must_use]
395    pub fn mid_point(&self) -> Vector3d {
396        self.position(Radians(0.5 * self.length.0))
397    }
398
399    /// The position of a perpendicular point at distance from the `Arc`.
400    ///
401    /// * `point` a point on the `Arc`'s great circle.
402    /// * `distance` the perpendicular distance from the `Arc`'s great circle.
403    ///
404    /// returns the point at perpendicular distance from point.
405    #[must_use]
406    pub fn perp_position(&self, point: &Vector3d, distance: Radians) -> Vector3d {
407        vector::position(point, &self.pole, Angle::from(distance))
408    }
409
410    /// The position of a point at angle from the `Arc` start, at `Arc` length.
411    ///
412    /// * `angle` the angle from the `Arc` start.
413    ///
414    /// returns the point at angle from the `Arc` start, at `Arc` length.
415    #[must_use]
416    pub fn angle_position(&self, angle: Angle) -> Vector3d {
417        vector::rotate_position(&self.a, &self.pole, angle, Angle::from(self.length))
418    }
419
420    /// The `Arc` at the end of an `Arc`, just the point if `half_width` is zero.
421    ///
422    /// @param `at_b` if true the `Arc` at b, else the `Arc` at a.
423    ///
424    /// @return the end `Arc` at a or b.
425    #[must_use]
426    pub fn end_arc(&self, at_b: bool) -> Self {
427        let p = if at_b { self.b() } else { self.a };
428        let pole = vector::direction(&p, &self.pole);
429        if self.half_width.0 < great_circle::MIN_VALUE {
430            Self::new(p, pole, Radians(0.0), Radians(0.0))
431        } else {
432            let a = self.perp_position(&p, self.half_width);
433            Self::new(a, pole, self.half_width + self.half_width, Radians(0.0))
434        }
435    }
436
437    /// Calculate great-circle along and across track distances of point from
438    /// the `Arc`.
439    ///
440    /// * `point` - the point.
441    ///
442    /// returns the along and across track distances of the point in Radians.
443    #[must_use]
444    pub fn calculate_atd_and_xtd(&self, point: &Vector3d) -> (Radians, Radians) {
445        vector::calculate_atd_and_xtd(&self.a, &self.pole(), point)
446    }
447
448    /// Calculate the shortest great-circle distance of a point from the `Arc`.
449    ///
450    /// * `point` - the point.
451    ///
452    /// returns the shortest distance of a point from the `Arc` in Radians.
453    #[must_use]
454    pub fn shortest_distance(&self, point: &Vector3d) -> Radians {
455        let (atd, xtd) = self.calculate_atd_and_xtd(point);
456        if vector::intersection::is_alongside(atd, self.length, Radians(4.0 * f64::EPSILON)) {
457            xtd.abs()
458        } else {
459            let sq_a = vector::sq_distance(&self.a, point);
460            let sq_b = vector::sq_distance(&self.b(), point);
461            let sq_d = min(sq_a, sq_b);
462            great_circle::e2gc_distance(libm::sqrt(sq_d))
463        }
464    }
465}
466
467/// A Error type for an invalid `Arc`.
468#[derive(Error, Debug, PartialEq)]
469pub enum ArcError {
470    #[error("positions are too close: `{0}`")]
471    PositionsTooClose(f64),
472    #[error("positions are too far apart: `{0}`")]
473    PositionsTooFar(f64),
474}
475
476impl TryFrom<(&LatLong, &LatLong)> for Arc {
477    type Error = ArcError;
478
479    /// Construct an `Arc` from a pair of positions.
480    ///
481    /// * `params` - the start and end positions
482    fn try_from(params: (&LatLong, &LatLong)) -> Result<Self, Self::Error> {
483        // Convert positions to vectors
484        let a = Vector3d::from(params.0);
485        let b = Vector3d::from(params.1);
486        // Calculate the great circle pole
487        vector::normalise(&a.cross(&b), vector::MIN_SQ_NORM).map_or_else(
488            || {
489                let sq_d = vector::sq_distance(&a, &b);
490                if sq_d < 1.0 {
491                    Err(ArcError::PositionsTooClose(sq_d))
492                } else {
493                    Err(ArcError::PositionsTooFar(sq_d))
494                }
495            },
496            |pole| {
497                Ok(Self::new(
498                    a,
499                    pole,
500                    great_circle::e2gc_distance(vector::distance(&a, &b)),
501                    Radians(0.0),
502                ))
503            },
504        )
505    }
506}
507
508/// Calculate the great-circle distances along a pair of `Arc`s to their
509/// closest intersection point or their coincident arc distances if the
510/// `Arc`s are on coincident Great Circles.
511///
512/// * `arc1`, `arc2` the `Arc`s.
513///
514/// returns the distances along the first `Arc` and second `Arc` to the intersection
515/// point or to their coincident arc distances if the `Arc`s do not intersect.
516#[must_use]
517pub fn calculate_intersection_distances(arc1: &Arc, arc2: &Arc) -> (Radians, Radians) {
518    vector::intersection::calculate_intersection_point_distances(
519        &arc1.a,
520        &arc1.pole,
521        arc1.length(),
522        &arc2.a,
523        &arc2.pole,
524        arc2.length(),
525        &(0.5 * (arc1.mid_point() + arc2.mid_point())),
526    )
527}
528
529/// Calculate whether a pair of `Arc`s intersect and (if so) where.
530///
531/// * `arc1`, `arc2` the `Arc`s.
532///
533/// returns the distance along the first `Arc` to the second `Arc` or None if they
534/// don't intersect.
535///
536/// # Examples
537/// ```
538/// use unit_sphere::{Arc, Degrees, LatLong, calculate_intersection_point};
539/// use angle_sc::is_within_tolerance;
540///
541/// let istanbul = LatLong::new(Degrees(42.0), Degrees(29.0));
542/// let washington = LatLong::new(Degrees(39.0), Degrees(-77.0));
543/// let reyjavik = LatLong::new(Degrees(64.0), Degrees(-22.0));
544/// let accra = LatLong::new(Degrees(6.0), Degrees(0.0));
545///
546/// let arc1 = Arc::try_from((&istanbul, &washington)).unwrap();
547/// let arc2 = Arc::try_from((&reyjavik, &accra)).unwrap();
548///
549/// // Calculate the intersection point position
550/// let intersection_point = calculate_intersection_point(&arc1, &arc2).unwrap();
551/// let lat_long = LatLong::from(&intersection_point);
552///
553/// // The expected latitude and longitude are from:
554/// // <https://sourceforge.net/p/geographiclib/discussion/1026621/thread/21aaff9f/#fe0a>
555///
556/// // Geodesic intersection latitude is 54.7170296089477
557/// assert!(is_within_tolerance(54.72, lat_long.lat().0, 0.05));
558/// // Geodesic intersection longitude is -14.56385574430775
559/// assert!(is_within_tolerance(-14.56, lat_long.lon().0, 0.02));
560/// ```
561#[must_use]
562pub fn calculate_intersection_point(arc1: &Arc, arc2: &Arc) -> Option<Vector3d> {
563    let (distance1, distance2) = calculate_intersection_distances(arc1, arc2);
564
565    // Determine whether both distances are within both arcs
566    if vector::intersection::is_alongside(distance1, arc1.length(), Radians(4.0 * f64::EPSILON))
567        && vector::intersection::is_alongside(distance2, arc2.length(), Radians(4.0 * f64::EPSILON))
568    {
569        Some(arc1.position(distance1.clamp(arc1.length())))
570    } else {
571        None
572    }
573}
574
575#[cfg(test)]
576mod tests {
577    use super::*;
578    use angle_sc::{is_within_tolerance, Degrees};
579
580    #[test]
581    fn test_is_valid_latitude() {
582        // value < -90
583        assert!(!is_valid_latitude(-90.0001));
584        // value = -90
585        assert!(is_valid_latitude(-90.0));
586        // value = 90
587        assert!(is_valid_latitude(90.0));
588        // value > 90
589        assert!(!is_valid_latitude(90.0001));
590    }
591
592    #[test]
593    fn test_is_valid_longitude() {
594        // value < -180
595        assert!(!is_valid_longitude(-180.0001));
596        // value = -180
597        assert!(is_valid_longitude(-180.0));
598        // value = 180
599        assert!(is_valid_longitude(180.0));
600        // value > 180
601        assert!(!is_valid_longitude(180.0001));
602    }
603
604    #[test]
605    fn test_latlong_traits() {
606        let a = LatLong::try_from((0.0, 90.0)).unwrap();
607
608        assert!(a.is_valid());
609
610        let a_clone = a.clone();
611        assert!(a_clone == a);
612
613        assert_eq!(Degrees(0.0), a.lat());
614        assert_eq!(Degrees(90.0), a.lon());
615
616        println!("LatLong: {:?}", a);
617
618        let invalid_lat = LatLong::try_from((91.0, 0.0));
619        assert_eq!(Err(LatLongError::Latitude(91.0)), invalid_lat);
620        println!("invalid_lat: {:?}", invalid_lat);
621
622        let invalid_lon = LatLong::try_from((0.0, 181.0));
623        assert_eq!(Err(LatLongError::Longitude(181.0)), invalid_lon);
624        println!("invalid_lon: {:?}", invalid_lon);
625    }
626
627    #[test]
628    fn test_vector3d_traits() {
629        let a = LatLong::try_from((0.0, 90.0)).unwrap();
630        let point = Vector3d::from(&a);
631
632        assert_eq!(0.0, point.x);
633        assert_eq!(1.0, point.y);
634        assert_eq!(0.0, point.z);
635
636        assert_eq!(Degrees(0.0), Degrees::from(vector::latitude(&point)));
637        assert_eq!(Degrees(90.0), Degrees::from(vector::longitude(&point)));
638
639        let result = LatLong::from(&point);
640        assert_eq!(a, result);
641    }
642
643    #[test]
644    fn test_great_circle_90n_0n_0e() {
645        let a = LatLong::new(Degrees(90.0), Degrees(0.0));
646        let b = LatLong::new(Degrees(0.0), Degrees(0.0));
647        let (azimuth, dist) = calculate_azimuth_and_distance(&a, &b);
648
649        assert!(is_within_tolerance(
650            core::f64::consts::FRAC_PI_2,
651            dist.0,
652            f64::EPSILON
653        ));
654        assert_eq!(180.0, Degrees::from(azimuth).0);
655
656        let dist = haversine_distance(&a, &b);
657        assert!(is_within_tolerance(
658            core::f64::consts::FRAC_PI_2,
659            dist.0,
660            f64::EPSILON
661        ));
662    }
663
664    #[test]
665    fn test_great_circle_90s_0n_50e() {
666        let a = LatLong::new(Degrees(-90.0), Degrees(0.0));
667        let b = LatLong::new(Degrees(0.0), Degrees(50.0));
668        let (azimuth, dist) = calculate_azimuth_and_distance(&a, &b);
669
670        assert!(is_within_tolerance(
671            core::f64::consts::FRAC_PI_2,
672            dist.0,
673            f64::EPSILON
674        ));
675        assert_eq!(0.0, Degrees::from(azimuth).0);
676
677        let dist = haversine_distance(&a, &b);
678        assert!(is_within_tolerance(
679            core::f64::consts::FRAC_PI_2,
680            dist.0,
681            f64::EPSILON
682        ));
683    }
684
685    #[test]
686    fn test_great_circle_0n_60e_0n_60w() {
687        let a = LatLong::new(Degrees(0.0), Degrees(60.0));
688        let b = LatLong::new(Degrees(0.0), Degrees(-60.0));
689        let (azimuth, dist) = calculate_azimuth_and_distance(&a, &b);
690
691        assert!(is_within_tolerance(
692            2.0 * core::f64::consts::FRAC_PI_3,
693            dist.0,
694            2.0 * f64::EPSILON
695        ));
696        assert_eq!(-90.0, Degrees::from(azimuth).0);
697
698        let dist = haversine_distance(&a, &b);
699        assert!(is_within_tolerance(
700            2.0 * core::f64::consts::FRAC_PI_3,
701            dist.0,
702            2.0 * f64::EPSILON
703        ));
704    }
705
706    #[test]
707    fn test_arc() {
708        // Greenwich equator
709        let g_eq = LatLong::new(Degrees(0.0), Degrees(0.0));
710
711        // 90 degrees East on the equator
712        let e_eq = LatLong::new(Degrees(0.0), Degrees(90.0));
713
714        let mut arc = Arc::between_positions(&g_eq, &e_eq);
715        let arc = arc.set_half_width(Radians(0.01));
716        assert!(arc.is_valid());
717        assert_eq!(Radians(0.01), arc.half_width());
718
719        assert_eq!(Vector3d::from(&g_eq), arc.a());
720        assert_eq!(Vector3d::new(0.0, 0.0, 1.0), arc.pole());
721        assert!(is_within_tolerance(
722            core::f64::consts::FRAC_PI_2,
723            arc.length().0,
724            f64::EPSILON
725        ));
726        assert_eq!(Angle::from(Degrees(90.0)), arc.azimuth());
727        let b = Vector3d::from(&e_eq);
728        assert!(is_within_tolerance(
729            0.0,
730            vector::distance(&b, &arc.b()),
731            f64::EPSILON
732        ));
733
734        let mid_point = arc.mid_point();
735        assert_eq!(0.0, mid_point.z);
736        assert!(is_within_tolerance(
737            45.0,
738            Degrees::from(vector::longitude(&mid_point)).0,
739            32.0 * f64::EPSILON
740        ));
741
742        let start_arc = arc.end_arc(false);
743        assert_eq!(0.02, start_arc.length().0);
744
745        let start_arc_a = start_arc.a();
746        assert_eq!(start_arc_a, arc.perp_position(&arc.a(), Radians(0.01)));
747
748        let angle_90 = Angle::from(Degrees(90.0));
749        let pole_0 = Vector3d::new(0.0, 0.0, 1.0);
750        assert!(vector::distance(&pole_0, &arc.angle_position(angle_90)) <= f64::EPSILON);
751
752        let end_arc = arc.end_arc(true);
753        assert_eq!(0.02, end_arc.length().0);
754
755        let end_arc_a = end_arc.a();
756        assert_eq!(end_arc_a, arc.perp_position(&arc.b(), Radians(0.01)));
757    }
758
759    #[test]
760    fn test_north_and_south_poles() {
761        let north_pole = LatLong::new(Degrees(90.0), Degrees(0.0));
762        let south_pole = LatLong::new(Degrees(-90.0), Degrees(0.0));
763
764        let (azimuth, distance) = calculate_azimuth_and_distance(&south_pole, &north_pole);
765        assert_eq!(0.0, Degrees::from(azimuth).0);
766        assert_eq!(core::f64::consts::PI, distance.0);
767
768        let (azimuth, distance) = calculate_azimuth_and_distance(&north_pole, &south_pole);
769        assert_eq!(180.0, Degrees::from(azimuth).0);
770        assert_eq!(core::f64::consts::PI, distance.0);
771
772        // 90 degrees East on the equator
773        let e_eq = LatLong::new(Degrees(0.0), Degrees(50.0));
774
775        let arc = Arc::between_positions(&north_pole, &e_eq);
776        assert!(is_within_tolerance(
777            e_eq.lat().0,
778            LatLong::from(&arc.b()).lat().abs().0,
779            1e-13
780        ));
781        assert!(is_within_tolerance(
782            e_eq.lon().0,
783            LatLong::from(&arc.b()).lon().0,
784            50.0 * f64::EPSILON
785        ));
786
787        let arc = Arc::between_positions(&south_pole, &e_eq);
788        assert!(is_within_tolerance(
789            e_eq.lat().0,
790            LatLong::from(&arc.b()).lat().abs().0,
791            1e-13
792        ));
793        assert!(is_within_tolerance(
794            e_eq.lon().0,
795            LatLong::from(&arc.b()).lon().0,
796            50.0 * f64::EPSILON
797        ));
798
799        let w_eq = LatLong::new(Degrees(0.0), Degrees(-140.0));
800
801        let arc = Arc::between_positions(&north_pole, &w_eq);
802        assert!(is_within_tolerance(
803            w_eq.lat().0,
804            LatLong::from(&arc.b()).lat().abs().0,
805            1e-13
806        ));
807        assert!(is_within_tolerance(
808            w_eq.lon().0,
809            LatLong::from(&arc.b()).lon().0,
810            256.0 * f64::EPSILON
811        ));
812
813        let arc = Arc::between_positions(&south_pole, &w_eq);
814        assert!(is_within_tolerance(
815            w_eq.lat().0,
816            LatLong::from(&arc.b()).lat().abs().0,
817            1e-13
818        ));
819        assert!(is_within_tolerance(
820            w_eq.lon().0,
821            LatLong::from(&arc.b()).lon().0,
822            256.0 * f64::EPSILON
823        ));
824
825        let invalid_arc = Arc::try_from((&north_pole, &north_pole));
826        assert_eq!(Err(ArcError::PositionsTooClose(0.0)), invalid_arc);
827        println!("invalid_arc: {:?}", invalid_arc);
828
829        let arc = Arc::between_positions(&north_pole, &north_pole);
830        assert_eq!(north_pole, LatLong::from(&arc.b()));
831
832        let invalid_arc = Arc::try_from((&north_pole, &south_pole));
833        assert_eq!(Err(ArcError::PositionsTooFar(4.0)), invalid_arc);
834        println!("invalid_arc: {:?}", invalid_arc);
835
836        let arc = Arc::between_positions(&north_pole, &south_pole);
837        assert_eq!(south_pole, LatLong::from(&arc.b()));
838
839        let arc = Arc::between_positions(&south_pole, &north_pole);
840        assert_eq!(north_pole, LatLong::from(&arc.b()));
841
842        let arc = Arc::between_positions(&south_pole, &south_pole);
843        assert_eq!(south_pole, LatLong::from(&arc.b()));
844    }
845
846    #[test]
847    fn test_arc_atd_and_xtd() {
848        // Greenwich equator
849        let g_eq = LatLong::new(Degrees(0.0), Degrees(0.0));
850
851        // 90 degrees East on the equator
852        let e_eq = LatLong::new(Degrees(0.0), Degrees(90.0));
853
854        let arc = Arc::try_from((&g_eq, &e_eq)).unwrap();
855        assert!(arc.is_valid());
856
857        let start_arc = arc.end_arc(false);
858        assert_eq!(0.0, start_arc.length().0);
859
860        let start_arc_a = start_arc.a();
861        assert_eq!(arc.a(), start_arc_a);
862
863        let longitude = Degrees(1.0);
864
865        // Test across track distance
866        // Accuracy drops off outside of this range
867        for lat in -83..84 {
868            let latitude = Degrees(lat as f64);
869            let latlong = LatLong::new(latitude, longitude);
870            let point = Vector3d::from(&latlong);
871
872            let expected = (lat as f64).to_radians();
873            let (atd, xtd) = arc.calculate_atd_and_xtd(&point);
874            assert!(is_within_tolerance(1_f64.to_radians(), atd.0, f64::EPSILON));
875            assert!(is_within_tolerance(expected, xtd.0, 2.0 * f64::EPSILON));
876
877            let d = arc.shortest_distance(&point);
878            assert!(is_within_tolerance(
879                libm::fabs(expected),
880                d.0,
881                2.0 * f64::EPSILON
882            ));
883        }
884
885        let point = Vector3d::from(&g_eq);
886        let d = arc.shortest_distance(&point);
887        assert_eq!(0.0, d.0);
888
889        let point = Vector3d::from(&e_eq);
890        let d = arc.shortest_distance(&point);
891        assert_eq!(0.0, d.0);
892
893        let latlong = LatLong::new(Degrees(0.0), Degrees(-1.0));
894        let point = Vector3d::from(&latlong);
895        let d = arc.shortest_distance(&point);
896        assert!(is_within_tolerance(1_f64.to_radians(), d.0, f64::EPSILON));
897
898        let point = -point;
899        let d = arc.shortest_distance(&point);
900        assert!(is_within_tolerance(89_f64.to_radians(), d.0, f64::EPSILON));
901    }
902
903    #[test]
904    fn test_arc_intersection_point() {
905        // Karney's example:
906        // Istanbul, Washington, Reyjavik and Accra
907        // from: <https://sourceforge.net/p/geographiclib/discussion/1026621/thread/21aaff9f/#fe0a>
908        let istanbul = LatLong::new(Degrees(42.0), Degrees(29.0));
909        let washington = LatLong::new(Degrees(39.0), Degrees(-77.0));
910        let reyjavik = LatLong::new(Degrees(64.0), Degrees(-22.0));
911        let accra = LatLong::new(Degrees(6.0), Degrees(0.0));
912
913        let arc1 = Arc::try_from((&istanbul, &washington)).unwrap();
914        let arc2 = Arc::try_from((&reyjavik, &accra)).unwrap();
915
916        let intersection_point = calculate_intersection_point(&arc1, &arc2).unwrap();
917        let lat_long = LatLong::from(&intersection_point);
918        // Geodesic intersection latitude is 54.7170296089477
919        assert!(is_within_tolerance(54.72, lat_long.lat().0, 0.05));
920        // Geodesic intersection longitude is -14.56385574430775
921        assert!(is_within_tolerance(-14.56, lat_long.lon().0, 0.02));
922
923        // Switch arcs
924        let intersection_point = calculate_intersection_point(&arc2, &arc1).unwrap();
925        let lat_long = LatLong::from(&intersection_point);
926        // Geodesic intersection latitude is 54.7170296089477
927        assert!(is_within_tolerance(54.72, lat_long.lat().0, 0.05));
928        // Geodesic intersection longitude is -14.56385574430775
929        assert!(is_within_tolerance(-14.56, lat_long.lon().0, 0.02));
930    }
931
932    #[test]
933    fn test_arc_intersection_same_great_circles() {
934        let south_pole_1 = LatLong::new(Degrees(-88.0), Degrees(-180.0));
935        let south_pole_2 = LatLong::new(Degrees(-87.0), Degrees(0.0));
936
937        let arc1 = Arc::try_from((&south_pole_1, &south_pole_2)).unwrap();
938
939        let intersection_lengths = calculate_intersection_distances(&arc1, &arc1);
940        assert_eq!(Radians(0.0), intersection_lengths.0);
941        assert_eq!(Radians(0.0), intersection_lengths.1);
942
943        let intersection_point = calculate_intersection_point(&arc1, &arc1).unwrap();
944        assert_eq!(0.0, vector::sq_distance(&arc1.a(), &intersection_point));
945
946        let south_pole_3 = LatLong::new(Degrees(-85.0), Degrees(0.0));
947        let south_pole_4 = LatLong::new(Degrees(-86.0), Degrees(0.0));
948        let arc2 = Arc::try_from((&south_pole_3, &south_pole_4)).unwrap();
949        let intersection_point = calculate_intersection_point(&arc1, &arc2);
950        assert!(intersection_point.is_none());
951    }
952}